Statistical Inference for some Robust Regression Estimators | ||||
مجلة البØÙˆØ« التجارية | ||||
Article 26, Volume 38, Issue 2, July 2016, Page 23-46 PDF (686.11 K) | ||||
Document Type: تجاریة کل ما یتعلق بالعلوم التجاریة | ||||
DOI: 10.21608/zcom.2016.131188 | ||||
![]() | ||||
Author | ||||
مشيرة عادل سليمان الأعصر* | ||||
قسم الرياضة ÙˆØ§Ù„Ø¥ØØµØ§Ø¡ والتأمين، کلية التجارة، جامعة الزقازيق، مصر | ||||
Abstract | ||||
Abstract The method of least squares of the most commonly used methods for estimating the parameters of linear regression models,this method requires the availability of several assumptions for the capabilities more efficiently. So robust methods can be used to give better results than OLS when there are outliers. This research discussessome robust regression approach and inference for M-estimators. Empirical study illustrates that robust methods aremore efficiency compare the OLS, when the data contain outliers. | ||||
Keywords | ||||
Keywords:Bootstrap; Linear Regression; M- estimators; Outliers; Robust Inference; Statistical Inference | ||||
Statistics Article View: 167 PDF Download: 521 |
||||