Influence of Protein Malnutrition on Prenatal Toxicity of Fluoxetine

*Hamed M.R.; *Asmaa M. Kandil; ** El shorbagy O. and *Zeinab M. A. Abbas
* National Organization for Drug Control and Research **Institute of Postgraduate childhood studies. Ain Shams University

Abstract

Background: Protein malnutrition is prevalent in developing countries. Gestational and neonatal malnutrition were considered to contribute to the development of chronic diseases in adulthood. The aim of the present work was to investigate the influence of prenatal protein malnutrition on embryo-fetal toxic effects of the commonly used antidepressant drug Fluoxetine.

Methods: The pregnant rats were divided into two sets: normally fed and protein malnourished. Each set was subdivided into five groups of 10-14 animals each. Starting from 1st day of pregnancy, animals were fed with standard diet (20% casein). Animals specified for protein malnutrition were switched to protein deficient diet (8%casein) from the 7th day of gestation throughout the end of pregnancy. Fluoxetine hydrochloride was administrated orally in the dose levels 2mg and 8mg /kg/day from day 7 to 14 and from day 15 to 20 of gestation. At the 20th day of gestation the outcome of pregnancy was examined immediately for viability and fetal growth parameters, placental weight as well as fetal external anomalies. Hb, RBCs count, total and differential WBCs and platelets counts were estimated. Fetuses from each group were subjected to skeletal examinations using the Alcian blue and Alizarin red technique.

Result: The results showed that prenatal protein malnutrition and administration of Fluoxetine in the high used dose level 8mg /kg were found to cause significant decrease in fetal growth parameters, and placental weights increase in resorption of fetuses multiple hematomas. Blood examination of protein malnourished fetuses and groups treated with fluoxetine revealed significant decrease in Hb level; RBCs count & platelets, however, total the leucocytic count was increase. The incidence of skeletal abnormalities was more obvious when fluoxetine was administrated during embryogenesis period.

Key words: Protein Malnutrition, Prenatal, Fluoxetine

Introduction

Malnutrition occurring during intrauterine period and the first two years of life has adverse effects on child survival and development. When Women in poor areas become pregnant, their nutritional state frequently worsens as the additional demands of pregnancy are not met (De Onis et al., 1998). Alterations in fetal nutrition and endocrine status may result in developmental adaptations that permanently change the structure, physiology and metabolism of the offspring, thereby predisposing individuals to metabolic, endocrine and cardiovascular diseases in adult life (Barker, 1994). Malnutrition may affect the rate of development by causing premature cessation of cell division and early cell differentiation (Cunningham et al., 1997; Hamed et al., 1998; Harding, 2001; Kramer, 2002 and Villar et al., 2003).

The major components of infant mortality i.e. prenatal and early neonatal mortality are directly related to the health and nutritional status of the mother during pregnancy. In developing countries, intrauterine growth retardation (IUGR) is an important determinant of Prenatal mortality. Morbidity is also increased in low birth weight newborns. 50% of all low birth weight babies in Egypt can be attributed to IUGR. A negative correlation between neonatal mortality and birth weight was reported (Mansour et al., 1998; LBWSE, 2000).In animals, nutritional deficiency of protein does not cause congenital defects, but can increase prevalence of stillbirth and abortions (Kotera and Madigan, 1997). Severe degrees of protein deprivation and vitamin deficiencies in mice lead to fetal and placental resorption (Hamed et al.,1994).

Prenatal protein malnutrition in rats may delay the change of proteoglycan character which could affect mineralization of fetal bones (Miwa et al 1989 & 1990).
Chronic protein malnutrition in humans has a profound detrimental effect on fracture healing (Day and Deheer, 2001). In a study by Barone et al. (1998), they found that low protein diet (4%) in pregnant rats during the second half of gestation alters copper and iron transport across the placenta and affects copper and iron status of the fetus leading to fetal anemia and hypoproteinemia.

Protein-calorie malnutrition alters drug disposition and its metabolism in human and in animal models (Anderson, 1988). Protein malnutrition was shown to antagonize the behavioral response to chlorpromazine, increases the sensitivity to amphetamine (Hamed et al., 1991) and potentiates the embryo lethal effects of aspirin in rats (Hamed et al., 1994).

This work aims to investigate the influence of prenatal protein malnutrition on embryo-fetal toxic effects of Fluoxetine.

Material and Methods

Animals 122 Pregnant Sprague Dawley rats were obtained from the animal house of NODCAR. Two females were placed into the cage of one male overnight and presence of sperm in vaginal smears considered the zero day of pregnancy. Mated females were carried and housed in a room maintained at a temperature of 23±3 °C and a relative humidity of 50±10%.

Experimental Design: Standard diet contains 20% casein was given to rats from the first day of gestation (Bamji & Sharada, 1972 and Anthony & Edozien, 1975). The low protein diet (containing 8% casein) was composed of the same constituents of the standard diet except that the amount of casein was reduced to 8g and of sucrose raised to 82g/100g food. Animals of each main group were sub-divided into 10 subgroups as follows:

- **Sub group C1:** normal untreated group where animals were fed normal diet (normal fed NF).
- **Sub group C2:** normal untreated group where animals were fed protein malnourished diet
- **Sub group E1:** animals were administered daily 2mg/kg fluoxetine hydrochloride orally from the 7th to the 14th day of gestation and were fed normal protein diet (20% casein).
- **Sub group E2:** animals were administered daily 2mg/kg fluoxetine hydrochloride orally from the 7th to the 14th day of gestation and were fed protein malnourished diet (8% casein).
- **Sub group E3:** animals were administered daily 8mg/kg fluoxetine hydrochloride orally from the 7th to the 14th day of gestation and were fed normal protein diet (20% casein).
- **Sub group E4:** animals were administered daily 8mg/kg fluoxetine hydrochloride orally from the 7th to the 14th day of gestation and were fed protein malnourished diet (8% casein).
- **Sub group E5:** animals were administered daily 2mg/kg fluoxetine hydrochloride orally from the 15th to the 20th day of gestation and were fed normal protein diet (20% casein).
- **Sub group E6:** animals were administered daily 2mg/kg fluoxetine hydrochloride orally from the 15th to the 20th day of gestation and were fed protein malnourished diet (8% casein).
- **Sub group E7:** animals were administered daily 8mg/kg fluoxetine hydrochloride orally from the 15th to the 20th day of gestation while animals were fed normal protein diet (20% casein).
- **Sub group E8:** animals were administered daily 8mg/kg fluoxetine hydrochloride orally from the 15th to the 20th day of gestation while animals were fed protein malnourished diet (8% casein).

At the day 20st of gestation fetuses were removed from the uteri of pregnant rats by cesarean section and number of implantations, resorptions, placental weights (g) and viability of fetuses were recorded.

Fetal growth parameters: body weight (g), crown-rump length (cm), and tail length (cm) were measured. Fetal external examinations and skeletal examinations were done according to the methods of McLeod, (1980). Hematological parameters of fetuses including hemoglobin level (Hb), erythrocytic count (RBCs), total and differential leucocytic count (TLC) and platelets count were measured according to Taylor and Miler method, 1965 England et al (1976), Nourbakhsh et al, (1978), Hayahoe and Flemans (1982) and Wertz and Koepe (1977) respectively.

Statistical methods: Comparisons between categorical variables were done by the chisquare test (Dawson and Trapp, 2001). All p-values are two sided. P-Values < 0.05 were considered significant.

Results

No major external abnormalities were detected in the fetuses whether of protein malnourished or normally fed treated rats.

Effects of fluoxetine and malnutrition on pregnancy

Table 1 showed that the groups of protein malnourished pregnant rats have higher percentage of abortion (36.7%) in comparison to those of normally fed pregnant rats (29%), but the difference between the two groups was statistically insignificant (P-value=0.369). However the highest percentage of abortion (50%) was showed in group administered fluoxetine 8mg/kg daily during the 7th to the 14th days of gestation.

Effects of fluoxetine and malnutrition on the fetuses There are no stillbirths have been
recorded in all groups. However resorbed fetuses were observed in normally fed and protein malnourished groups. The percentage of resorption in normally fed groups was 3.9% while in protein malnourished groups it was 8.6% (Table 1 and Figs.1&2). The increased rate of resorption among protein malnourished groups compared to normally fed groups was considered statistically significant (P-value = 0.032). However, the highest percentage of resorption (14.3%) was recorded in the group of protein malnourished and treated with fluoxetine 8 mg/kg daily during the 7th to the 14th days of gestation.

External anomalies: Hematomas of variable extent were detected in all treated groups as shown in table 1 and figure 3. Unilateral fore-or hind-limb hematoma was a common observation. Other sites of hematomas were observed at circumsolar region, tip of tail and abdominal wall. Hematomas could be detected in the same fetus in different sites. Severity of hematomas could lead to falling of toes, as noticed in some fetuses of groups (E4) and (E6) in which the percentages of hematomas were 72% and 62.5%, respectively.

Statistical significant difference was observed between normally fed and protein malnourished groups (P-value<0.001). Fetal growth: Fetal body weights (FBW), fetal crown–rump lengths (FCRL), tail lengths and placental weights are significantly decreased in protein malnourished groups in comparison to normally nourished groups (Table 2 and Fig. 3).

Daily oral administration of fluoxetine, to pregnant normally fed rats in doses 2mg and 8mg/kg during embryogenesis and fetogenesis, produced insignificantly different in FBW, FCRL, tail lengths and placental weight compared to normal control. The decrease in FBW observed in control (3.34±0.43 g) and treated malnourished groups (3.32±0.55, 3.35±0.38, 3.25±0.34 and 3.09±0.55g) was considered statistically significant as compared to normal control (3.77±0.59g). Administration of fluoxetine to protein malnourished pregnant rats in a daily dose of 8mg/kg from the 15th to the 20th days of gestation, result in the most affection of mean FBW (3.09± 0.55g). No statistical significance differences in the fetal body weights were observed in treated protein malnourished rats between drug doses in different gestational periods.

Fetal crown - rump length (FCRL):Table 2 showed that the control group in normally fed rats (C1) had fetuses with mean crown-rump length of 3.96 ±0.23 cm. Oral administration of fluoxetine daily in 2mg/kg whether in embryogenesis or fetogenesis periods produced insignificant decrease in FCRL as compared to normal control. While groups E7&E8 (8mg/kg) has significantly decreased FCRL.

In protein malnourished groups, oral administration of fluoxetine daily during the 7th to the 14th days of gestation in doses of 2mg and 8mg/kg produced significant decrease in FCRL as compared to control malnourished group. Oral administration of fluoxetine daily during the 15th to the 20th days of gestation in 2mg/kg produced insignificant decrease in FCRL while significant decrease was observed in 8mg/kg as compared to control malnourished group.

The above observations showed that 8 mg/kg of fluoxetine administered in both gestational periods in N.F and P.M groups caused significant decrement in fetal crown–rump lengths. Dose of 2 mg/kg during the 7th to the 14th days of gestation caused significant decrease in FCRL only in protein malnourished groups. Fetal tail length (FTL): Oral administration of fluoxetine daily from the 7th to the 14th days of gestation in 2mg/kg produced insignificant decrease in FTL compared to normal control, while the 8mg/kg dose produced significant decrease in FTL. Administration of fluoxetine daily from the 15th to the 20th days of gestation in both doses produced significant decrease in fetal tail lengths compared to normal control (Table 2).

In protein malnourished rats, administration of fluoxetine daily from the 7th to the 14th days of gestation in a dose of 2mg/kg produced insignificant decrease in FTL compared to control malnourished group while a dose of 8mg/kg produced significant decrease. Administration of fluoxetine daily from the 15th to the 20th days of gestation in doses of 2mg and 8mg/kg produced significant decrease in fetal tail length compared to control malnourished group.

Placental weight: Oral administration of fluoxetine daily from the 7th to the 14th days of gestation in 2mg/kg produced insignificant decrease in placental weight compared to control malnourished group. While the 8mg/kg dose produced significant decrease (Table 2).

Administration of fluoxetine daily from the 15th to the 20th days of gestation in 2mg/kg produced significant decrease in placental weight compared to normally fed control while 8mg/kg induced decrease but statistically insignificant. The control group of protein malnourished rats had mean placental weight of 0.52±0.05 g which was considered significantly lower than control normally fed (0.59±0.07 g). Administration of fluoxetine daily from the 7th to the 14th days of gestation in the doses of 2mg and 8mg/kg produced insignificant decrease in placental weight.
Influence of Protein Malnutrition on Foetal Development

placental weight compared to control malnourished. During fetogenesis period (15th-20th day) only the dose of 8 mg/kg that produced significant decrease in placental weight.

Hematological parameters: Fetal Hb concentration: Table 3 showed that Hb concentration and RBCs count were significantly lower in fetuses of all groups of protein malnourished (P.M) pregnant rats compared to those of normally fed (N.F). Mean Hb concentration in fetuses of control normally fed mothers (N.F) were 14.9 g%. Mean Hb concentration in the control P.M fetuses were 11.4 ± 0.8 g%.

On administration of fluoxetine in the dose of 2 mg/kg daily during the 7th to the 14th days of gestation in NF and PM rats, the mean fetal Hb concentration was 14.3 ± 1.2 & 10.8 ± 1.4 respectively. Significant decrease in mean fetal Hb concentration occurred on administration of the dose of 8 mg/kg during the same gestational period in NF and PM rats (13.6 ± 1 & 9.6 ± 1.9 respectively) in comparison to controls.

On administration of fluoxetine in 2 mg/kg daily during the 15th to the 20th days of gestation in N.F and P.M rats, the mean fetal Hb concentration was 14.6 ± 1 & 10.6 ± 2 respectively meanwhile with the 8 mg/kg dose the mean fetal Hb concentration was 14 ± 0.8. No significant decrease in fetal Hb concentration was observed on administration of fluoxetine in doses of 2 or 8 mg/kg during the 15th to the 20th days of gestation in N.F and P.M rats in comparison to controls 6.76 ± 0.56 & 4.39 ± 0.51 and 6.98 ± 0.46 & 3.62 ± 0.42 respectively.

Fetal platelets count: Table 3 showed that mean fetal platelets count was significantly diminished in protein malnourished groups (435 ± 131) in comparison to normally fed groups (654 ± 173). A significant decrease in mean fetal platelets count was associated with daily administration of fluoxetine in 8 mg/kg during the 15th to the 20th days of gestation in both normally fed (477 ± 110) and protein malnourished groups (388 ± 115).

Fetal total and differential leucocytic Counts (TLC):

Table 3 showed that mean fetal total leucocytic count (TLC) was higher in protein malnourished groups (12.4 ± 4.4) in comparison to normally fed groups (10.2 ± 2.7).

The mean fetal TLC was very high in protein malnourished groups treated with fluoxetine in comparison to normally fed groups except in a dose of 8 mg/kg daily at the 15th to the 20th days of gestation. The increase of total leucocytic counts was associated with an increase of lymphocytes% and proportional decrease of neutrophils%.

Fetal skeletal system: Fetal skeletal abnormalities were most obvious in fetuses maternally treated during the 7th to 14th day of gestation as shown in Table 4 and figures 4 & 5. The fetal defects observed in fetuses included lack of ossification of skull bones, sternum, ribs, vertebrae, fore limbs bones, pelvic and hind limbs bones (Fig. 5B).

The major skeletal defects were observed mainly in pelvic and hind limbs bones in the form of shortness and partial ossification of ilium ischium, pubis, femur, tibia and fibula (Fig. 4B). Tortuosity and shortness of the 13th rib were observed in some fetuses (Figs. 4B & 5A & B). Incomplete ossifications of vertebral col-umn were observed mainly in sacral and caudal vertebrae (Fig 5 B). Forelimbs bones were less affected than hind limbs bones. Abnormalities detected in forelimbs bones were in the form of partial ossifications of humerus, ulna, and radius and missed ossifications of metacarpals and phalanges (Fig. 5).

in almost groups was observed in (Fig. 5).

The most affected group was the group of
fetuses of protein malnourished pregnant rats that are administered fluoxetine in a dose of 8mg/kg during the 7th to the 14th days of gestation. The bone defects observed were mainly partial ossifications of hind limbs bones in 90% of fetuses, which are extended to the forelimbs in 50% of them (Fig 4B). The least effects on bones were observed in fetuses maternally exposed to fluoxetine (8mg/kg).

Fig (1): A photograph of two uteri of pregnant rats at the 21st day of gestation showing:
A) Normal symmetrical uterine horns of a control N.F pregnant rat.
B) Asymmetrical uterine horns of a N.F pregnant rat treated with 8mg/kg of fluoxetine at (7-14 days) of gestation.

Fig (2): A photograph of uteri of two P.M. pregnant rats at the 21st day of gestation treated with 8mg/kg of Fluoxetine at (7-14 days) of gestation showing:
A) Hemorrhagic spots denoting abortion. B) Complete resorption of fetuses.
Fig (3): A photograph of fetuses at the 20th day of gestation showing that (A) control malnourished fetus, (B, C & D, E) protein malnourished fluoxetine treated fetuses by 2 and 8 mg/kg during embryogenesis and fetogenesis, respectively, showing multiple hemorrhagic sites with variable degrees of severity.

Fig (4): Two photographs of skeletons of two full term NF fetuses: control (A) and treated by 8 mg/kg of FX from 7-14d of gestation (B) showing defective ossification in skull bones, sacral, pelvic, hind limbs bones as well as metacarpals and metatarsals in comparison to control.
Fig (5): A photograph of dorsal aspects of two skeletons of full term PM fetuses treated by 8/mg of FX from 7-14 d of gestation showing that the fetuses have missed ossification of phalanges fore and hind limbs and lack of ossification in pelvic girdles and ribs.
Table (1): Effects of oral administration of fluoxetine on the outcome of pregnancy and fetuses in normally fed and protein malnourished groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>No of pregnant rats</th>
<th>Abortion</th>
<th>No of mothers</th>
<th>Total implant.</th>
<th>No of alive fetus</th>
<th>Resorption</th>
<th>No of alive fetus</th>
<th>External anomalies (hematoma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF Control (C1)</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>9</td>
<td>62</td>
<td>6.9</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>FX(2mg7-14 d)(E1)</td>
<td>10</td>
<td>3</td>
<td>30</td>
<td>7</td>
<td>47</td>
<td>6.7</td>
<td>45</td>
<td>2</td>
</tr>
<tr>
<td>FX(2mg15-20 d)(E2)</td>
<td>14</td>
<td>2</td>
<td>14.2</td>
<td>12</td>
<td>54</td>
<td>4.5</td>
<td>52</td>
<td>2</td>
</tr>
<tr>
<td>FX(8mg7-14 d)(E3)</td>
<td>14</td>
<td>6</td>
<td>42.9</td>
<td>8</td>
<td>44</td>
<td>5.5</td>
<td>42</td>
<td>2</td>
</tr>
<tr>
<td>FX(8mg15-20 d)(E4)</td>
<td>14</td>
<td>6</td>
<td>42.9</td>
<td>8</td>
<td>52</td>
<td>6.5</td>
<td>52</td>
<td>2</td>
</tr>
<tr>
<td>PM Control (C2)</td>
<td>10</td>
<td>2</td>
<td>20</td>
<td>8</td>
<td>39</td>
<td>4.8</td>
<td>37</td>
<td>2</td>
</tr>
<tr>
<td>FX(2mg7-14 d)(E5)</td>
<td>12</td>
<td>4</td>
<td>33.3</td>
<td>8</td>
<td>48</td>
<td>6</td>
<td>45</td>
<td>3</td>
</tr>
<tr>
<td>FX(2mg15-20 d)(E6)</td>
<td>12</td>
<td>4</td>
<td>33.3</td>
<td>8</td>
<td>52</td>
<td>6.5</td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td>FX(8mg7-14 d)(E7)</td>
<td>14</td>
<td>7</td>
<td>50</td>
<td>7</td>
<td>35</td>
<td>5</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>FX(8mg15-20 d)(E8)</td>
<td>12</td>
<td>5</td>
<td>41.6</td>
<td>7</td>
<td>36</td>
<td>5.1</td>
<td>32</td>
<td>4</td>
</tr>
</tbody>
</table>
Table (2): Changes in fetal body weights; fetal crown–length and tail length induced by fluoxetine in normally fed (NF) and protein malnourished (PM) rats.

<table>
<thead>
<tr>
<th>Drug</th>
<th>fetal body weights (g)</th>
<th>Mean ±SD</th>
<th>fetal crown – length (cm)</th>
<th>Mean ±SD</th>
<th>fetal tail length (cm)</th>
<th>Mean ±SD</th>
<th>placental weight (g)</th>
<th>Mean ±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control N. F. (C1)</td>
<td>3.77 ±0.59</td>
<td></td>
<td>3.96 ±0.23</td>
<td>1.27 ±0.11</td>
<td>0.59 ±0.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flx. 2mg/kg (at 7-14 days) (E1)</td>
<td>3.58 ±0.40</td>
<td></td>
<td>3.82 ±0.30</td>
<td>1.23 ±0.09</td>
<td>0.56 ±0.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flx. 2mg/kg (at 15-20 days) (E2)</td>
<td>3.58 ±0.23</td>
<td></td>
<td>3.94 ±0.27</td>
<td>1.21 ±0.07</td>
<td>0.49 ±0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flx. 8mg/kg (at 7-14 days) (E3)</td>
<td>3.70 ±0.58</td>
<td></td>
<td>3.76 ±0.16</td>
<td>1.20 ±0.08</td>
<td>0.48 ±0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flx. 8mg/kg (at 15-20 days) (E4)</td>
<td>3.73 ±0.66</td>
<td></td>
<td>3.69 ±0.21</td>
<td>1.18 ±0.05</td>
<td>0.54 ±0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control P. M. (C2)</td>
<td>3.34 ±0.43</td>
<td>**2.39 ±0.11</td>
<td></td>
<td>1.27 ±0.07</td>
<td>0.52 ±0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flx. 2mg/kg (at 7-14 days) (E5)</td>
<td>3.32 ±0.55</td>
<td>**2.34 ±0.09</td>
<td></td>
<td>1.23 ±0.08</td>
<td>0.46 ±0.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flx. 2mg/kg (at 15-20 days) (E6)</td>
<td>3.35 ±0.38</td>
<td>**2.26 ±0.07</td>
<td></td>
<td>1.21 ±0.07</td>
<td>0.47 ±0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flx. 8mg/kg (at 7-14 days) (E7)</td>
<td>*3.25 ±0.34</td>
<td>**2.32 ±0.08</td>
<td></td>
<td>1.20 ±0.10</td>
<td>0.49 ±0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flx. 8mg/kg (at 15-20 days) (E8)</td>
<td>*3.09 ±0.55</td>
<td>**2.26 ±0.05</td>
<td></td>
<td>1.18 ±0.07</td>
<td>0.43 ±0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table (3): Effects of protein malnutrition and fluoxetine administration on hematological parameters of fetuses.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Hemoglobin conc. g/100 ml (Mean ± SD)</th>
<th>RBCs (million/μm³) (Mean ± SD)</th>
<th>platelets count (10⁰/cm³) (Mean ± SD)</th>
<th>Total leucocytic count (10⁰/cm³) (Mean ± SD)</th>
<th>Lymphocytes % (Mean ± SD)</th>
<th>Neutrophils % (Mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control N. F. (C1)</td>
<td>14.9 ± 1.8</td>
<td>7.83 ± 1.43</td>
<td>654 ± 173</td>
<td>10.2 ± 2.7</td>
<td>72.0 ± 6.1</td>
<td>11.6 ± 3.4</td>
</tr>
<tr>
<td>Flx. 2mg/kg (at 7-14 days) (E1)</td>
<td>14.3 ± 1.2</td>
<td>6.43 ± 1.32</td>
<td>675 ± 124</td>
<td>8.8 ± 1.3</td>
<td>72.5 ± 5.6</td>
<td>13.0 ± 2.9</td>
</tr>
<tr>
<td>Flx. 2mg/kg (at 15-20 days) (E2)</td>
<td>14.6 ± 1.0</td>
<td>6.76 ± 0.56</td>
<td>622 ± 111</td>
<td>9.4 ± 1.3</td>
<td>71.8 ± 4.2</td>
<td>12.4 ± 3.0</td>
</tr>
<tr>
<td>Flx. 8mg/kg (at 7-14 days) (E3)</td>
<td>13.0 ± 1.0</td>
<td>5.73 ± 1.25</td>
<td>535 ± 139</td>
<td>11.5 ± 3.6</td>
<td>86.6 ± 7.5</td>
<td>9.0 ± 5.4</td>
</tr>
<tr>
<td>Flx. 8mg/kg (at 15-20 days) (E4)</td>
<td>14.0 ± 0.8</td>
<td>6.98 ± 0.46</td>
<td>477 ± 110</td>
<td>18.5 ± 4.2</td>
<td>80.7 ± 18.6</td>
<td>7.2 ± 3.5</td>
</tr>
<tr>
<td>Control P. M. (C2)</td>
<td>11.4 ± 0.8</td>
<td>5.20 ± 0.67</td>
<td>435 ± 131</td>
<td>12.4 ± 4.4</td>
<td>81.3 ± 7.2</td>
<td>9.2 ± 4.1</td>
</tr>
<tr>
<td>Flx. 2mg/kg (at 7-14 days) (E5)</td>
<td>10.8 ± 1.4</td>
<td>3.94 ± 0.47</td>
<td>457 ± 124</td>
<td>14.9 ± 3.0</td>
<td>81.1 ± 4.7</td>
<td>11.6 ± 3.4</td>
</tr>
<tr>
<td>Flx. 2mg/kg (at 15-20 days) (E6)</td>
<td>10.6 ± 2.0</td>
<td>4.59 ± 0.51</td>
<td>408 ± 133</td>
<td>16.2 ± 5.3</td>
<td>78.4 ± 8.5</td>
<td>12.4 ± 3.8</td>
</tr>
<tr>
<td>Flx. 8mg/kg (at 7-14 days) (E7)</td>
<td>9.6 ± 1.9</td>
<td>3.82 ± 0.34</td>
<td>406 ± 113</td>
<td>20.7 ± 4.9</td>
<td>88.5 ± 3.2</td>
<td>6.9 ± 2.4</td>
</tr>
<tr>
<td>Flx. 8mg/kg (at 15-20 days) (E8)</td>
<td>10.2 ± 0.8</td>
<td>3.62 ± 0.42</td>
<td>388 ± 115</td>
<td>9.0 ± 1.4</td>
<td>74.3 ± 4.1</td>
<td>16.2 ± 5.3</td>
</tr>
</tbody>
</table>

*significant P< 0.01
**highly significant P< 0.001
Table (4): Incidence of fetal skeletal malformations induced by fluoxetine in normally fed and protein malnourished rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>No. of alive fetuses</th>
<th>Abnormalities%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Forelimbs bones</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inter-parietal bone of the skull (P.O)</td>
</tr>
<tr>
<td>NF Control (C1)</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>FX(2mg7-14d)(E1)</td>
<td>45</td>
<td>70</td>
</tr>
<tr>
<td>FX(2mg15-20d)(E2)</td>
<td>52</td>
<td>50</td>
</tr>
<tr>
<td>FX(8mg7-14d)(E3)</td>
<td>42</td>
<td>60</td>
</tr>
<tr>
<td>FX(8mg15-20d)(E4)</td>
<td>52</td>
<td>30</td>
</tr>
<tr>
<td>PM Control (C2)</td>
<td>37</td>
<td>10</td>
</tr>
<tr>
<td>FX(2mg7-14d)(E5)</td>
<td>45</td>
<td>-</td>
</tr>
<tr>
<td>FX(2mg15-20d)(E6)</td>
<td>48</td>
<td>-</td>
</tr>
<tr>
<td>FX(8mg7-14d)(E7)</td>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>FX(8mg15-20d)(E8)</td>
<td>32</td>
<td>-</td>
</tr>
</tbody>
</table>

M.O: denotes miss ossified
P.O: denotes partially ossified
The data represented as percentage (%)

239
Discussion

Since the pioneering work of Eward et al. (1914) demonstrating that maternal dietary protein deficiency resulted in lower birth weights and decreased vigor of the offspring in pigs, there have been extensive studies of the effects of dietary protein restriction on fetal growth in humans, pigs and rats (Pond et al., 1992; Schoknecht et al., 1994; Jain et al., 1995; Desai et al., 1996). Collectively, these studies have shown that protein deficiency during early or mid-gestation results in decreased placental and fetal growth and may permanently retard postnatal growth. Amino acids are not only the building blocks of proteins and peptides, but also essential precursors for the synthesis of important molecules such as hormones, neurotransmitters, purine and pyrimidine nucleotides, polyamines, creatine, carnitine, nitric oxide (NO) (Moncada and Higgs, 1993) and porphyrins (Reeds and Hutchens, 1994). NO synthesized from arginine by NO synthase, was reported to be essential for fetal development (Herrero et al, 1996), embryo attachment and development in the uterus (Norman, 1996, Novaro et al., 1997) and plays a critical role in regulating uterine blood flow and nutrient supply to the fetus during gestation (Sladek et al., 1997).

In this study the percentage of resorptions in normally fed control group was 3.2% while in the protein malnourished one it was 5.4%. The mean body weight of control normally fed group was 3.77 ± 0.59 g while in protein malnourished control group it was 3.34 ± 0.43 g. Mean fetal crown-rump length and fetal tail length were significantly decreased in control malnourished group compared to normally fed one. Mean placental weight was significantly reduced in control malnourished group. Levy and Jackson (1993) reported a decrease in the number of viable fetuses and an increase in the number of resorptions in pregnant rats feeding 6% and 9% protein diet. The placental weight was not different to the 18% group and on the 12% diet, but was significantly increased on the 9% diet and significantly decreased on the 6% diet. Fetal weight was greater on the 12% diet and significantly decreased on the 9% diet. The decrease in concentration of essential and non-essential amino acids in the fetus may be a mechanism whereby maternal protein restriction results in fetal growth retardation (Guayao et al., 1998). In the present study, fetuses of control malnourished group have missed ossification of phalanges of fore and hind limbs in comparison to normal control. Some of these fetuses showed defective skull and vertebral cartilage formation. According to Miwa et al. (1990) prenatal protein malnutrition may delay the changes of proteoglycan character, which could affect the mineralization of fetal bones.

In this study Hb level and RBCs count were significantly lower in protein malnourished control group in comparison to fetuses of control normal group. Total leucocytic count was higher in fetuses of malnourished control group in comparison to fetuses of normally nourished control group. The increase of total leucocytic count was associated with an increase in the lymphocytes % and proportional decrease in the neutrophils %. Maternal protein malnutrition is a regulatory factor in fetal mineral homeostasis. Maternal low protein diet may affect transport of iron across the placenta leading to anaemia (Barone et al., 1998). Amino acids are essential precursors for the synthesis of porphyrins (Reeds and Hutchens, 1994). Decrease in amino acid content of maternal diet may lead to decrease in synthesis of hemoglobin (Cosens et al., 1977). Increased total leucocytic count and lymphocytes % may be due to immaturity of the fetus as a result of maternal malnutrition (Davies et al., 1992).

The present work showed that administration of fluoxetine (FX) to normally fed pregnant rats during the period of organogenesis (7 – 14 days) and the last week of gestational period (15 – 20 days) resulted in increased incidence of abortion compared to normal control pregnant rats. This increase was dose-dependent. This agrees with Koren et al., (2005) who demonstrated that antidepressants used by pregnant women may be associated with increased risk for spontaneous abortion. Also, Fluoxetine and its metabolites were found to traverse the placenta and distribute within the conceptus during periods of organogenesis and post-organogenesis in Wistar rats (Pohland et al., 1989).

In the present study, increased percentage of resorbed fetuses was observed specially in normally fed rats treated with 8mg/kg according to Carey and Mclaughlin fluoxetine during organogenesis period. This was in (2002), who observed prevalence of stillborn pups and pups with reduced birth weight and decreased viability in rats exposed to ≥ 1.5 times the maximum recommended dose of Fluoxetine in human.

In the present study, although fetal body weight was not significantly affected by time of administration or by doubling the dose of fluoxetine, one must be careful to evaluate the data in light of other known factor influencing this parameter. For instance, fetal weight is
Inversely proportional to litter size in mice, rats and rabbits (Hafez, 1963; McLaren, 1965). In our study Fluoxetine resulted in significant reduction of FCRL and tail lengths when administered to normally fed rats, in a dose of 8 mg / kg during late gestational period. Different doses of fluoxetine (2, 5, 12.5mg / kg) were given orally to pregnant rats by Byrd and Markham (1994). Maternal toxicity was observed only, at dose of 12.5 mg / kg by reduction of weight gain and food consumption. The authors added that fetal viability, weight and morphology were not affected by smaller doses. This was confirmed by Vorhees et al., (1994), who reported that giving a dose of 12.5 mg / kg fluoxetine resulted in obvious loss of maternal weight, reduced litter sizes at birth and increased neonatal mortality. Chambers et al. (1996) demonstrated an increased risk of premature birth and lower birth weight when fluoxetine was given to pregnant women during the last trimester compared to the first trimester. Fluoxetine (FX) is a selective serotonin reuptake inhibitor (SSRI) which increases serotonin neurotransmission. Serotonin is involved in the regulation of a variety of physiological systems, including the sleep–wake cycle, circadian rhythms and the hypothalamic–pituitary–adrenal axis. Each of these systems plays also an important role in fetal development. FX causes an acute increase in plasma serotonin level, leading to a transient reduction in uterine blood flow. This, in turn, reduces the delivery of oxygen and nutrients to the fetus, thereby presenting a mechanism for reducing growth and / or eliciting preterm delivery. Moreover, because FX crosses the placenta, the fetus is exposed directly to FX as well as to the effects of the drug on the mother. (Morrison et al. 2005).

In the present work no major or minor fetal malformations were detected by external and internal examination of normally nourished fetuses exposed to different doses of fluoxetine in both gestational periods. These results were in agreement with the available animal and human experience with fluoxetine, which appeared to indicate that the antidepressant was not related to major congenital malformation (Pastuszak et al. 1993; Addis and Koren 2000).

In the present study dose-dependent hematomas were observed in normally fed (N.F) treated fetuses in comparison to control. In a study by Stanford and Patton (1992), higher frequency of skin hematomas were observed in rat fetuses subjected to fluoxetine (5.6 mg/kg/day) from day 7th of gestation until delivery. The mechanism was thought to be related to the inhibition of serotonin uptake by platelets or vascular instability.

In the present study, skeletal examination of N.F fetuses maternally exposed to 2mg and 8mg/kg of fluoxetine during both gestational periods revealed incomplete ossification of bones of skull, pelvis and hind limbs, moreover absence of small bones of fore and hind limbs. Daily administration of fluoxetine from 7th to 14th days of gestation had more influence on bone formation than late gestational period. Shuey et al. (1992) mentioned that inhibition of 5-HT uptake into craniofacial epithelia of mouse embryo at 9-12 days of gestation might produce developmental defects by interference with serotonergic regulation of epithelial-mesenchymal interactions important for normal cranio-facial morphogenesis. Skeletal changes induced by fluoxetine in the present work were in accordance with Warden et al. (2005) who studied the effects of fluox-etine on the growing skeleton in mice and found a reduction in bone formation without an increase in bone resorption and these effects were not influenced by serum biochemistries. They explained that fluox-etine might inhibit serotonin transporter, which was present on osteoclasts and played a critical role in the differentiation of these cells. Mundell (2004) reported that fluoxetine may stunt growing bone of mice.

Reference

Influence of Protein Malnutrition on the Fetal Origins of Adult Disease.

11. Cunningham FG; MacDonald P C; Gant NF; Levero KJ; Gilstrap LC; Hankins GDV and Clark SL (1997): Fetal growth restriction. In Williams Obstetrics, pp 839-853. eds FG cunningham, PC.

53- Villar j; Menaldi M; Gulmezoglu M; Abalos E; Carrol G; kulier R and de Onis M (2003): Characteristics of randomized control trials included in systematic reviews of nutritional interventions reporting maternal morbidity mortality, preterm delivery, IUGR and small for gestational age and birth outcome. Nutr 133:1632s–1639s.

55- Warden SJ; Robling AG; Sanders MS; Bliziotes MM and Turner CH (2005): Inhibition of the serotonin (5-hydroxy-tryptamine) transporter reduces bone accrual during growth. Endocrinology, 146 (2) 685-93.

Influence of Protein Malnutrition on....

اثر نقص البروتين على سمية عقار الفلوكستين عند استعماله في فترة الحمل على المواليد

محمد رؤف حامد* - أسامة منير قنديل* - عمر الشروبي**
زينب محمد عبد الرحمن عباس*

هيئة الرقابة والبحوث الدوائية** - معهد الدراسات العليا للطفلة جامعة عين شمس

يتمثل سوء التغذية البروتيني مشكلة اجتماعية في أنحاء متفرقة من العالم وعلى وجه الخصوص الدول النامية.

تهدف هذه الدراسة إلى معرفة مدى تأثير نقص البروتين في الغذاء على قدرة عقار فلوكستين وهو من الأدوية المضادة للأمراض بالأدوية في إحداث تأثيرات سمية واحتمالات إحداث شوتهات في جذور الحبوب. وقد استخدم في هذه الدراسة 122 من الحيوانات تم تقسيمها إلى مجموعتين رئيسيتين: عادية التغذية والآخرى ناقصة البروتين في الفواكه وكل منها قسم إلى خمس مجموعات في فرعة. اعتباراً من اليوم الأول من الحمل تم تغذية الجردان على غذاء غرافي حتى 80% كاربون ومن اليوم السابع للحمل بدأ تغذية المجموعة الثانية (ناقصة البروتين في الغذاء) غذاء غرافي حتى 80% كاربون حتى نهاية الحمل.

تم معالجة الجردان الحوامل بواسطة الفم بجرعين متفاوتين وهي 2ملج/ كجم من الفلوكستين يوميا على مرحلتين الأولى من اليوم السابع حتى اليوم الرابع عشر والثانية من اليوم الخامس عشر حتى اليوم العشرين من الحمل.

تم ذبح الإحاث الحوامل في اليوم الواحد والعشرين، وفي الحالة تم اختبار الآتي: وزن المشيمة والأجنحة الحية وكذلك ملاحظة التشوهات الخارجية للأنثى. تم فحص الدم لبعض الأجنحة من كل مجموعة من المجموعات عدة وذلك بقياس نسبة الهيموجلوبين وعدد كرات الدم الحمراء والبيضاء والصفائح الدموية. عشرة أجنحة من كل مجموعة من المجموعات العشر استخدمت لفحص الهيكل العظمي والغضروف بطرقية صبغة الأشعة الزرقاء والأنسجة الأيزون الحمراء. النتائج التي تم الحصول عليها من خلال الدراسة كانت كالتالي:

- نقص البروتين قلل من وزن المشيمة ووزن الأجنة وطول الجسم وكذلك طول الذيل في الجنين.
- إعطاء الفلوكستين بالجرعة العالية 8 ملجم/ كجم أدى إلى نقص واضح في طول الأجنة وطول الذيل وزن المشيمة في فترات الحمل المختلفة وهذا النقص أكثر وضوحاً في مجموعات الجردان ناقصة البروتين في الغذاء.
- نقص البروتين في الغذاء أدى إلى زيادة عدد الأجنة الممتصة في المجموعات ناقصة التغذية البروتينية.
- الفحص الظاهري للأجنحة في كل المجموعات سواء مجموعات التغذية العادية أو مجموعات التغذية ناقصة البروتين أظهر بعض البقع الدموية في الأطراف بنسب مختلفة كما أظهر عدم وجود تشوتهات ظاهرية.
- نقص البروتين في غذاء الأمهات الحوامل أدى إلى نقص نسبة الهيموجلوبين وعدد كرات الدم الحمراء وزيادة عدد كرات الدم البيضاء (والأنسجة الأيزون) في اجنة مجموعات الأمهات ناقصة التغذية البروتينية بالمقارنة بالمجموعات عادية التغذية. عدد صفات الدم قد نقص في اجنة
مجموعات الأمهات ناقصة التغذية البروتينية بالمقارنة بالمجموعات عبارة التغذية

0 إعطاء

الفولكستين بالجرعة العالية 8ملجم/ كجم من اليوم السابع حتى اليوم الرابع عشر للحمل أدى إلى

زيادة النقص في الهيموجلوبين وعدد كرات الدم الحمراء و زيادة عدد كرات الدم البيضاء في اجنة

مجموعات الأمهات ناقصة التغذية البروتينية والمجموعات عبارة التغذية.

- فحص التركيب الهيكلي للأجنة أظهر زيادة كبيرة في تشوهات العظام في المجموعات ناقصة

التغذية البروتينية و عند إعطاء الفولكستين من اليوم السابع حتى اليوم الرابع عشر من الحمل وقد

كانت التشوهات عبارة عن نقص التعظم في تكوين عظام الجمجمة و الحزام الحوضي والفخذ

وعظام الساق وعظام هيكل القدم واليد.