

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 SEC-03 1

Military Technical College
Kobry El-Kobba

Cairo, Egypt

12-th International Conference
on

Aerospace Sciences &
Aviation Technology

A NOVEL APPROACH FOR IMPLEMENTING RC4 STREAM CIPHER

ALGORITHM

Mohamed Nabil * and Alaa Eldin Rohiem **

ABSTRACT
 The implementation of cryptographic algorithms on reconfigurable hardware
devices based on Field Programmable Gate Arrays (FPGA) devices is highly attractive.
They can run faster than software implementations while preserving the physical
security of hardware solutions. Meanwhile, they maintain the flexibility obtained by using
those software solutions [1]. In this work, a proposed hardware implementation of RC4
algorithm on field programmable gate arrays (FPGAs) is introduced. The design was
described using the hardware description language VHDL (Very high speed integrated
circuit hardware description language). The design was implemented on devices from
XILINX and we achieved speeds of up to 280 Mbits/s.

KEYWORDS

 Stream ciphers, RC4 algorithm, FPGA, Secure Sockets Layer (SSL), Wired

Equivalent Privacy (WEP), VHDL.

ـــ
 * Egyptian Armed Forces.

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 SEC-03 2

I. INTRODUCTION

 Secret key cryptographic systems can be categorized into either block or stream
ciphers. Block ciphers are memory less algorithms that permute N-bit blocks of plaintext data
under the influence of the secret key and generate N-bit blocks of encrypted data [1].
Stream ciphers contain internal states and typically operate serially by generating a stream of
pseudorandom key bits, the key stream (stream ciphers are also called key stream
generators)[2]. The key stream is then bitwise XORed with the data to encrypt/decrypt.
Stream ciphers do not suffer from the error propagation, as in the block ones, because each
bit is independently encrypted/decrypted from any other.They are generally much faster than
block ciphers and they have greater software efficiency [2]. One of the most widely used
stream ciphers is the RC4 stream cipher. It was designed by R. Rivest in 1987[3]. Due to its
remarkable simplicity, RC4 cipher is used in software applications such as Secure Sockets
Layer (SSL) (to protect Internet traffic) and Wired Equivalent Privacy (WEP) (to secure
wireless networks)[3]. RC4 is extremely fast and simple, which makes it ideal for real time
data transmission.
The paper is organized as follows:

1) Description of RC4 algorithm.
2) FPGA design cycle.
3) RC4 design methodology.
4) Results and performance evaluation.
5) Conclusions.
6) References.

II. DESCRIPTION OF RC4 ALGORITHM:

 RC4 is a variable-length key of length from 1 to 256 bytes which is used to initialize a
256-byte state vector S, with elements S[0], S[1],..., S[255]. At all times, S contains a
permutation of all 8-bit numbers from 0 through 255.
For encryption and decryption, a byte k is generated from S by selecting one of the 255
entries in a systematic fashion as shown in Fig. 1 As byte k is generated, the entries in S are
once again permuted [2] to generate the next value k and so on. The algorithm works in two
phases which are initialization of s-box and stream generation.

II. 1 S_BOX Initialization

 At the beginning, the entries of S_box are set equal to the values from 0 through 255 in
ascending order; that is; S[0] = 0, S[1] = 1,..., S[255] = 255. A temporary vector T is also
created. If the length of the key K is 256 bytes, then K is transferred to T. Otherwise, for a key
of length (key len) bytes, the first (keylen) elements of T are copied from K and then K is
repeated as many times as necessary to fill out T. These preliminary operations can be
summarized as follows [2]:

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 SEC-03 3

/* Initialization */
for i = 0 to 255 do

S[i] = i;
T[i] = K[i mod [keylen];

Next, we use T to produce the initial permutation of S. This involves starting with S[0] and
going through to S[255], and, for each S[i], swapping S[i] with another byte in S according to
a scheme dictated by T[i]:

/* Initial Permutation of S */
j = 0;

for i = 0 to 255 do
j = (j + S[i] + T[i]) mod 256;

Swap (S[i], S[j]);

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 SEC-03 4

(1) Initialization Phase

S 0 1 255

T 0 1

KEYLEN KEYLEN KEYLEN

S(i)(1)

T

1 0

1 0 i

j

S(j)
Swap(3)

i S

(2) Stream Generation Phase

T(i)(1)

S(i)(1)

S

S(t) = Key

i j

S(j)

(2)

(3)

Swap(3)

t
(2)

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 SEC-03 5

Fig. 1. RC4 Initialization and stream generation

II.2 Stream Generation :

Once the S vector is initialized, the input key is no longer used. Stream generation involves
cycling through all the elements of S[i], and, for each S[i], swapping S[i] with another byte in S
according to a scheme dictated by the current configuration of S [2]. After S[255] is reached,
the process continues, starting over again at S[0]:

/* Stream Generation */
i, j = 0;

while (true)
i = (i + 1) mod 256;

j = (j + S[i]) mod 256;
Swap (S[i], S[j]);

t = (S[i] + S[j]) mod 256;
k = S[t];

To encrypt, XOR the value k with the next byte of plaintext. To decrypt, XOR the value k with
the next byte of ciphertext. Fig. 2 illustrates this operation.

Pseudorandom
Key Generator

Pseudorandom
Key Generator

RC4 Encryption RC4 Decryption

Key Key

Plaintext Ciphertext Ciphertext

Plaintext

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 SEC-03 6

II. 2 Stream Generation

Once the S vector is initialized, the input key is no longer used. Stream generation
involves cycling through all the elements of S[i], and for each S[i], swapping S[i] with
another byte in S according to a scheme dictated by the current configuration of S [2].
After S[255] is reached, the process continues, starting over again at S[0] These
operations can be summarized as follows [2]:

/* Stream Generation */
i, j = 0;

while (true)
i = (i + 1) mod 256;

j = (j + S[i]) mod 256;
Swap (S[i], S[j]);

t = (S[i] + S[j]) mod 256;
k = S[t];

The plaintext is encrypted by XOR the value k with the next byte of plaintext. The
ciphertext is decrypted by XOR the value k with the next byte of ciphertext as shown in
Fig. (2).

Fig. 2. RC4 Ciphertext and plaintext generation

Plaintext

Pseudorandom
Key Generator

Pseudorandom
Key Generator

RC4 Encryption RC4 Decryption

Ciphertext Ciphertext

Key Key

Plaintext

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 SEC-03 7

III. RC4 DESIGN METHODOLOGY

III. 1 RC4 Design:

RC4 algorithm is broken down the into small elementary computational units. A ROM (with
256 byte length and 8 bit wide) is used to hold the key bytes (K_box), which must be equally
distributed to fill out the whole ROM. Three Block RAMs of the parameterized modules of
Xilinx memory chips were constructed to hold the transaction and swapping of data imposed
by the algorithm. A 8 bit counter is used for the addressing purposes for the key ROM and
the other 3 block rams during initialization and stream generation phases. Multiplexers, they
are used to switch the data and the address buses during the aforementioned phases and
were implemented using the combinational logic.
Adders, two adders were constructed using the VHDL code to achieve the addition operation
required by the algorithm. Registers: they are implemented using the parameterized registers
available on the FPGA resources; to be used is during the swapping operation. Control logic
is to control the timing, (appropriate clocks) and control signals for RC4 algorithm during the
two phases of the algorithm. The control logic unit is designed by mapping the timing for the
RC4 algorithm into two ROMs, one ROM for each phase.

III. 2 Logic Operation

III.2.1 Initialization phase :

 The first phase needs three clock cycles per iteration. The S-box consists of three
256 bytes RAM blocks as shown in Fig.3. The S-boxs is linearly filled, such as S0 = 0, S1 =
1, S2 = 2,...,S255 = 255. Each RAM block has five inputs clock signal, read signal, write
signal, address and data 8-bit buses, one 8-bit output which Si and Sj for the first two RAM
blocks and the key is output of the last one.
The logic construction for the RC4 algorithm is described as shown in Fig..4.
At the first clock cycle, the value of 8-bit counter is used to address the first RAM block. The
value of Si (stored in the Si_register) is used for the computation of the new value of j as it is
shown in Fig.4. The j-adder is used for the computation of the new value of j. The j-adder
accepts as input the values of Ki and Si. At the second clock cycle, the new produced value
of j is used as an address for the second RAM block. The stored value in this address is
temporarily stored in the Sj_register. At the third cycle, the contents of the Si_register and
Sj_register are written at the j and i addresses, respectively. With this procedure, the
swapping is achieved.
The first phase needs three clock cycles per iteration. Therefore, the total time that is
required in the key set-up phase is 256*3 = 768 clock cycles.

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 SEC-03 8

III.2.2 Stream generation phase

The same hardware is being re-used. The difference in this phase is that the values of the K-
box are not used. After the completion of the first phase, the multiplexer in Fig..4 selects the
zero value input. In meantime, the j_register and i_register are initialized to zero so that to
be ready for the second phase. After the two aforementioned actions, the procedure of key
stream generation can begin. The operations at the first three steps are similar to those of
the key set-up phase except that the S-box is already initialized. At the first step, the value of
i is used as address in the first RAM block and the value of Si is stored in the Si_register. In
addition, the new value of j is computed. At the second step, the new value of j is used as
address of the second RAM block and the value of Sj is stored in the Sj_register. In this step,
the values of Si and Sj are being added in the t-adder and the result of the addition is stored
in the St_register. At the third step, the contents of the Si_register and Sj_register are written
at the j and i address, respectively, and the value of the t_register is being used as address
for the third RAM block. Therefore, the value of St is also produced in the third step. This
value of St is the generated key stream byte.
After the completion of this phase, each byte in the key stream can be generated and used
for encryption/decryption. The bitwise XORing of the key stream with the plaintext/ciphertext
achieves the encryption/decryption.

Fig. 3. S_BOX

Si

RD si
WR si

Address i
Data si

Clk Sj

RD sj RD st
WR stWR sj

Clk Clk Si St Sj Key stream

Address tAddress j
Data stData sj

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 SEC-03 9

j_
Adder

S_BOX

K_BOX

 4RC
Timing

&
Control

RD si

WR_Swap
RD ti

Clk

Counter_8
Bit

Adress_i
Mux

Adress_i

C
lk_C

ounte

R
eset

Key Select

Si_
register

Sj_
register

Si

Sj

Data_i

Data_j

Adress_j

Clear
Register

RD sj

St_
register

Adder

t-
Adder

Adress_t

Adress_t

Key Stream

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 SEC-03 10

Fig. 4. RC4 logic.
IV. SIMULATION AND HARDWARE IMPLEMENTATION RESULTS

Fig. 5 shows the simulation results for the proposed RC4 design. The clock signal used in the
proposed algorithm is 104.921 MHZ. The signal names are identical to those shown in Fig.
[3, 4].The signal (rd_s_i) is responsible for the reading the value of Si which is stored in the
Si_register. The signal (rd_s_i) is responsible for the reading the value of Sj which is stored
in the Sj_register. Signal wr_swap is responsible for swapping the content of both i and j
RAMs. These signals are generated during the initialization phase (which continues
255*3=765 cycle) and they continue during the Stream Generation Phase. After the 765
cycle, a clr_latch signal is generated to clear the i and j registers. In the stream cipher phase
the same three signals are still generated in addition to (rd_t_i) signal which is responsible for
generation of the key. All these signals are generated by mapping these timing for the
aforementioned four signals into EPROM, which gives optimized hardware for generation for
the timing of the RC4 algorithm.

Fig. 5. RC4 simulation results

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 SEC-03 11

The algorithm is implemented on a XILINX SPARTAN II (2s200pq208-5) . ISE5.1 synthesis
tool (XST) for synthesis and placing and routing the design.
The performance (in terms of throughput) and of consumed area (in terms of FPGA CLB
slices). The throughput attained is 104.921* (8/3) = 279.79 Mbit / sec.
For the implemented stream ciphers, are presented in Table 1. All the designs were
synthesized on a Xilinx SPARTAN II. From table 1,it is clear that implementing the S_BOXes
on the RAM blocks elements reduces greatly the amount of gate count on the device.
Further, it enhances the performance of the RC4 algorithm. Since lock RAM has the
advantage of being SRAM memories structure and does not have a combinational paths
problem, which means high performance for getting out the S_BOXes values when they are
called.

Table1. Device Utilization Summery After Placing And Routing

The results for the proposed RC4 algorithm design are compared with the results given in [5,
6]. The results give that the proposed design is faster then the results introduced in [5,6]. Our
proposed design is implemented on XILINX SPARTAN II chips where they are low cost
comparing with Xilinx Virtex-IITM 2V250FG256 FPGA used in [5].

Attributes Used Percentage

Number of SLICEs 431 out of 2352 18%

Number of 4_input LUTs 995 out of 4704 21%

Number of Flip Flops 159 out of 4704 3%

Number of BLOCK_RAMs 3 out of 14 21%

V. CONCLUSION

 This paper presents a hardware implementation for one of the most powerful stream
ciphers, that is known as RC4. In this work, we exploited the advantages afforded by the
FGPAs (e.g. flexibility, logic resources, routing resources and low cost) to implement this
design, using the available block rams resources on those FGPAs to implement the S_ BOXs
of the RC4 algorithm to accelerate the calculations of cipher. The achieved results gave
throughput better then [5, 6] and the other known results. Besides, the usage of low cost
chips is favorable to implement such powerful algorithms.

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 SEC-03 12

REFERENCES

[1]

[2]

[3]
[4]

[5]

[6]

[7]
[8]

A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. “Handbook of Applied
Cryptography”. CRC Press, 1996.
Prentice Hall. Stallings W. Cryptography and Network Security - Principles and
Practices (4th Ed.
Bruce Schneier, "Applied Cryptography", 2nd Edition, Wiley, 1996.
Spartan-II2.5V FPGA Family Introduction and Ordering Information. An
application note ds001_1 introduced by Xilinx. M.Galanis, P.Kitsos,
G.Kostopoulos, Nicolas Sklavos, and Costas Goutis Electrical and Computer
Engineering Department, University of Patras. Greece. The International Arab
Journal of Information Technology, Vol. 2, No. 4, October 2005.
Hamalainen P., Hännikäinen M., Hamalainen T., and Saar J., “Hardware
Implementation of the Improved WEP and RC4 Encryption Algorithms for
Wireless Terminals,” in Proceedings European Signal Processing Conference
(EUSIPCO), Tampere, Finland, pp. 2289-2292, September 2000.
R. Stinson, Cryptography: Theory and Practice, CRC Press, Boca Raton, 1995.
Kundarewich P. D., Wilton S. J. E., and Hu A. J, “A CPLD-Based RC4 Cracking
System,” in Proceedings of the Canadian Conference on Electrical and Computer
Engineering, May 1999.

	ـــ
	 *
	Egyptian Armed Forces.

