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Abstract

Block and Basu bivariate exponential distribution is a standout amongst the most absolutely
continuous bivariate distributions. This idea can be extended to the generalized exponential
distribution also. In this case this distribution is called as the Block and Basu bivariate
generalized exponential (BBBGE) distribution. Some properties of BBBGE distribution can
be obtained as the moment generating function, median and mode . The exact forms for the
distribution of sum; ratio and product of dependent variables follow the Block and Basu
bivariate generalized exponential distribution are derived. The maximum likelihood
estimation (MLE) procedure is performed for the parameters of the BBBGE distribution. A

numerical illustration performed to see the performances of the MLEs.

Keywords: Block and Basu bivariate exponential distribution, moment generating function,

Marshal-Olkin bivariate exponential distribution.

1 Introduction

Block and Basu bivariate generalized exponential (BBBGE) distribution has been
obtained from the Marshal- Olkin bivariate generalized exponential (MOBGE)
distribution by removing the singular part and that makes BBBGE distribution as an

absolutely continuous bivariate distribution.
An important operation in probability theory is to obtain the distribution of the sum of
two correlated random variables X, and X,. Applications of the sums appear in

many areas of mathematics, probability theory, physics and engineering. In many
applications a random variable Z is a functionally related to two or more different

random variables X, and X, . A good example is the random signal S at the input of

an amplifier consists of a random signal X, to which is add independent random
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noise X, . Hence the random signals S is the sum of X, and X,. Now an important
question assess, what is the probability density function of the random variable S,
which represents the amplifiers input. Also, many signal processing systems use

electronic multipliers to multiply two signals together. If X, is the signal of one
input and X, is another signal input, what is the probability density function of

P=X, X,.

The ratios of two random variables X, and X, is the stress-strength model in the
reliability theory. An important example is that model which describes the lifetimes of
a component which has a random strength X, and subject to random stress X, . These
components fail at the time instant that the stress exceeds the strength and this
component  will  function whenever X, >X,. Hence the probability
P(X,>X,)=P@2X,/I(X,+X,)<1) is a measure of the reliability of the
component.

The paper is organized as follows: In Section 2, the BBBGE distribution is introduced
and the representations for the probability density function (pdf), cumulative
distribution function (cdf), marginal distributions and moment generating function
(mfg) are obtained . The exact forms for the distribution of sum; ratio and product of
dependent variables follow the BBBGE distribution are derived in Section 3. The
maximum likelihood estimation, estimated variance-covariance matrix and asymptotic
confidence intervals for BBBGE distribution are provided in Section 4. Simulation

results are presented in Section 5. Finally conclude the paper in Section 6.

2 The BBBGE Distribution

If X has univariate generalized exponential (GE) distribution with the shape
and scale parameters as « >0 and 4 > 0 respectively, then the cdf and pdf of the GE

distribution is as follows respectively,
Fee (X, 2)=(1-e™)* y>0

foe(Xa,A)=a A(l-e?) e | y>0,a,1>0
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Kundu and Gupta (2009) introduced that (Y,,Y,) have MOBGE distribution if

The joint cdf of (Y,,Y,)can be written as

F(y,y,) If O<y <y, <o
Fuosce (Y1, Y2) =1 Fo (Y1, y,) if 0<y, <y, <o (2.1)
Fs(Y) if O<y =y,=y<w

Where

F(Y1Y.) = Fee (Yo aug) - Fee (V21 ,)
Fo (Y1, Y2) = Fee (Vi) - Fee (Vor a3)
F(Y) = Fee (Vi auy)

Where o, =a, +a,, o, =a, +0; and o, =a, +a, + .
They observed that the joint distribution function of (Y,,Y,) can be written as a

mixture of an absolutely continuous part and a singular part as follows;

(04 a
2 F, (YY) +—F(y)

A Ay

Fuosce (Y1 Y2) =
where y =min(y,,Y,) .
F(y)=@-e7)",
and F,(y,,y,) =28 (1-e )% (@—e )% (L-e)= -2 (1—e V),

Oy, Oy,
Here F.(..)and F,(.,.) are the singular and the absolutely continuous part

respectively.

The BBBGE distribution can be obtained from MOBGE distribution by removing the
singular part and keeping only the continuous part. The joint pdf of BBBGE
distribution can be written as

cf, (X, X,) if 0<X <X, <o

fosce (X1, %) = { (2.2)

cf, (X, X,) if 0<X, <X <oo.

Where
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(%, %) = fee (X g3, 4) foe (X505, 4)

— a13a212e—l(xl+xz) [1_ e—lxl ]0:13—1 [1_ e—/ixz ]a2—1,
and

fo (X, %) = foe (X aq, 4) foe (X105, 4)
— alaza/»lZefﬂ.(lerxz) [1_ e—lxl ]le—l [1_ e—ﬂxz ]0{23—1.

Here c is the normalizing constant and ¢ = <y Therefore, the joint pdf of

ayp

(X, X,) can be written as (2.2) and will be denoted by BBBGE(¢,,@,, a5, 1) .

In what follows the joint cdf corresponding to Equation (2.2), the

marginal distributions of the BBBGE are presented.
Proposition 2.1. Let (X,,X,) ~BBBGE(a,, @, @3, A). The joint cdf is given as

: o ] ! : :
Fy,x, (%1, %) = %FGE(Il: A, ay) Fgp(xp; A, @3)Fop(x; 4, a3)
12

ag
— —Fge(x: 4, ay23);
M2

Where x = min(x,, x). Moreover, the marginal cdfs are given by

: 123 . 3 5 ;
Fy (%) = Fep(xy; A, ay3) ——Fgg(x1; 4, @423)
(24 12
= X223 i 3 Ag
Fy (x3) = Fggl(xa: A, az3) e Fgg(Xx2: A, @y23)

12 12

Proof : The joint cdf given in (2.1) can be written as follows

O oy

F,(0n.n)+
s g

Fyosee (31:32) = F.(»y)
== )"
where F,(...) and F,(...) are the singular and the absolutely continuous part

respectively. For y =mimn(y,.y,).

F()=Fg(y:l.ax)

o

and F,(yy,V2) = —=Fgg(y1; 4. @;) Fer(¥2: A, a, ) Fgg(y: 4, a3)
12

o

ay _
——Fge(V; A, @y53).
I12
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Once F

Y1,Y,

(Y1, ¥,) =F. (Y., Y,), the result holds. The marginal cdfs are obtained

simply.

Proposition 2.2. The marginal pdfs correspond to the cdf given in Proposition 2.1

are as follows

. e :
f}rl{_-ﬁ.} = cFgg(Xy; 4, a43) — Ca—fc;ﬂﬁ_-‘ﬁ:ft X123), Xy >0

123
And
| t; . .
fx, (x2) = cFgplxy; A, @zs) — Cg_fc:ﬂ(_l'zi A, @123), X3 >0
123
dFy, (x;) dFy, (x2)

, the results obtained.

Proof: By apply fy (x,) = and fy (x,) =

X1 df-{z

Unlike those of the MOBGE distribution, the marginals of the BBBGE distribution are
not GE distributions. If a3 — 0%, then X; and X, follow GE distributions and in this

case. X, and X, become independent .

Proposition 2.3. Let (X;,X,) ~BBBGE(a,, @5, a5, A). Then

1. the Stress- Strength parameter has the following form:

; oty
ay2

ii. TIIEIX(Xl,Xg)N GE[R’lzgj.

The BBBGE density may be unimodal depending on the values of ¢,.¢,.a, and /

that s fzpger (X,.X,) 1s unimodal and the respective modes are

{iln{:algz) J%ln(nﬂg)} and Eln('ai) ,%111(:0{23)}.

The median for the BBBGE distribution 1s obtained as

)
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Proposition 2.4. the joint moment generating function (mgf) for the BBBGE

distribution is given by

a,a
Mt t,)= % BL-t,,a53) sFo[l-t, a5t 005 + 1, +1-1,1]
? (2.3)

o
+ 2Bt ap) SF [ty 05,1 00 + 1y +1-1,11]

ap

Where
1
B(o,B) = [u“*(@-u)**du,
0

© (bl)i"'(bP)i u_I

qu(bv""bP;Cl"“’Cq;“):ifo (c)j(Co); i
N . _T(b+i) -
(b)j = b(b+1)...0+i-1) o) (b=0,i=12,.),

and p,q are nonnegative integers.

Proof: The mgf of BBGE is defined as
M (t;,t) = [ € fogaee (%1, %,) dx,dlx,
00
By Substitute fggpqe (X, X,) from (2.2) gets

o] X
M(t,,t,) = cla,a, J. (1-e o) te (i) J.(l— g M) aratg gy dx,
0 0
o X
+ Cﬂzalazg, I (1_ efﬂxl )alflefxl(iftl) J.(l_ eflxz )0:2+ot3—lefxz(ﬂr’(2)dxzd)(:L
0 0

(2.4)

then by using the following relation
h a-1 b1 Xa
B, (a, ) =ju (1-u)" du=" ,F(al-Bia+Lx), (0<x<1)
0 94
where B, (a,p) isanincomplete beta function
and the identity

Ua_l(l—u)ﬁ*l ,F.(c,d; p;u)du =B(a, B) ;F,(a,c.d; p,a+ B1)

O ey

for «,f>0 and d+pf—-a-c>0,
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For A =1 the expression for M (t,,t,) that given in (2.3) is obtained.

To check whether M (t;,t,) mgfor not: set t, =t, =0 in (2.3)

hence

JFolla +a3.0,0, +a; +La, +a, +a, +11]=1 , 1=12
And then

Bllay)=a,, M(@00)=1.

3 The Distribution of Sum, Product and Ratio for BBBGE Random

Variables

This Section is devoted to derive the exact forms of the distribution of sum;
ratio and also product of dependent variables follow the BBBGE distribution.

Proposition 3.1. If X, and X, are jointly distributed according to (2.2), then the
probability density function of S = X, + X, is given by

fo(s) = A A3y 0oy ZOO“ _Kij_ [e—ls(iJrl) _e_/ls(%ﬂ)

ool =)

» K i+] (3'1)
+/~La13a2a123 Z ii_[e_ls(Tﬂ) _e—/ls(nl)]; i< j.

A, ol )
Where
K. =(-1)" oy —1)a, -1 and K. =(-1)" o =1\ ay-1

ij | J ij | J '
Proof: based on the following transformation
X
S=X,+X, and R= L,
X+ X,

So, X, =RS and X, =S(1-R). (3.2)

Now, there exist the following two possibilities X, > X, and X, < X,.
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. 1
i. if X;>X,thenr >§,S > 0 and the Jacobian is —s.

i. if X, <X, thenr <%,s >0 and the Jacobian is —s

Using (2.2), (3.2) and the Jacobian values, the joint density function of S and R is
given by

g,(s,r), 0<r<%
Os g (S, I’) = 1 (3-3)
g,(s,r), §<r<1,

where

Qo0

91(81 r) — 22 a13 S e—/ls [1_ e—ﬂsr ]0:13—1[1_ e—/ls(l—r)]azfl’

12

Q0

g,(s,1) = 22 22 se[l—e e [l 0N

1227)

Now to derive the pdf of S
1
f (s) =_|'g&R (s,rydr. (3.4)
0

Substituting from (3.3) into (3.4), gets

1

fs(s) = j g,(s,r)dr +j.gz(s, r)dr.

After solving the above integral the exact pdf of S = X, + X, asgivenin (3.1).

Proposition 3.2. If X, and X, are jointly distributed according to (2.2), then the

probability density function of R = ” Xlx is given by

l+ 2
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f.(r), O<r<=
fo(r) = 2 (35)
f,(r), E< r<l

where

f(r) = 2% % (- )+ +1]2,

12 i,j=0
f,(r) = 29858 SR [r(i- j)+ j+1 7
12 i,j=0

Proof: To derive the pdf there are two possibilities

First, when r <% in (3.3), then

f,(r) = [ g.(s,r)ds
0
by using the binomial series expansion

(1 _ e—X)a—l — i (_l)i La T 1Je—ix

i=1

and solving the above integral, gets

£ (r) = 28%2%m (- )+ 4112,

12 i,j=0

Next, when r >% in (3.3), then

f,(r) = [ 9, (5,

= DB R Te(i— )+ ] +11°

Ay i,j=0

By summarizing the two parts of f.(r), the exact form of probability density

function of the ratio R as given in (3.5) is obtained.

Proposition 3.3. If X, and X, are jointly distributed according to (2.2), then the

probability density function of P = X, X, is given by
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f,(p) = 22 28%2% 3 p 04T <k, A(j +1)/p)

1247) i,].k=0 (3.6)
12 6{lCXZ?;C{lZ - ka(—k,/?,(j—Fl)\/E)
Q) le:
where
D (g, -1 a, -1 : :
Aijk:( ?(l (13' J( zj J[12(|+1)(J+1)]k1

_ _1\i+i+k _1 _1
Ay = (“j ](“231. juz(i+1)(,-+1)]k,

F*(c,z):IUC’le’”du :c>0
0

and

r (c,z):J‘u“l e'du ;c>0.

Proof: based on the the following transformation

P=X,X, and X=X,. (3.7)
P
So, X, =X and X, =—.
X
Now there exist the following two possibilities X, > X, and X, < X,.
, , 1
i. if X, > X, then X>,/P and the Jacobian is 2

1
i. X, < X, then X<,/ P and the Jacobian is —
X

Using (2.2), (3.7) and the Jacobian values, the joint density function of X and P is
given by

hy e (%, ){hl(x’ P 0<x<yp (3.8)
h,(x,p), x>4/p,

Where
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202y 22
hl(X, p) — 12 CZl3a26Z123 1 e 4 X [1_efiX]a13—1[1_e X]a2—1,
X

Ay

h, (x, p) = A2 Q00 1 e_ﬂ(
X

1227)

LN P
X [1_efﬂ><]a1—1[l_e X]a23fl.

Now to derive the pdf of P

fo (p) = [ - (x, P)OX

(3.9)
Substituting from (3.8) into (3.9), becomes
Jp o
fa(p) = [h.(x, p)dx+ [, (x, pdx
0 Vp
© Jp
_ 22 Q30 A3 Z(_l)iﬂ(al?i _]j( j_‘- E —A[X(i+1)+= (J+1)]dx (3.10)
Oy i,j=0 I 0 X
4 32 Fannl i(_l)i-;.j(al-_l](az‘% ]]ﬁ 1 —ﬂ[x(i+l)+§(j+1)]dx
yp i,j=0 I | AR
1 : :
Sety= " and use the series expansion
Equation (3.10) becomes
A, > I -
f (p) — 2 Z1372tes A. y—(k+1) e—/lp(1+1)ydy
] 12 IJZKEO Jk'!
v (3.11)
o Jp
+ )2 U301 Uyp3 AI y kD gDy gy
12 i,j%:—o " 2[

By the definition of the complementary incomplete gamma function
J"y—(k+1) e—/lp(j+1)ydy - F*(—k,/l(j +1)\/B), (3.12)
1
7
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1
o _

J.y’(k*l) e PUDYdy = [(=k, A( ] _,_1)\/6)_ (3.13)
0

The result of the theorem follows by substituting (3.12) and (3.13) into (3.11).

4 Maximum likelihood Estimation
In this Section, the maximum likelihood estimators (MLEs) of the unknown

parameters of the BBBGE distribution are obtained. Suppose {(X;;, X5;),---» (Xi0 X500 )}
is a random sample from BBBGE(«,,«,, a4, A) distribution. Consider the following

notation
I ={x; <Xy} 1, ={iXx;, >X,} I=10ul,,
l]=n, |I,/]=n, and n +n,=n.
The log-likelihood function of the sample of size n is given by

INL(®) = > In f,(x;,X5) + D In F,(x;, %y, 4.1)

iel, iel,
INL(®)=2(n, +n,)InA+n,In(ex,) +n, In(e;) + 0, In(er; +5)
+n,In(a, + ;) - ﬂ[i(x1i + Xy ) + i:(xli + X5)]
+(a, +a —l)iijllln(l—e’1X1i )+ (a, —1)2In(1—e“2i) 4.2)
+ (e —l)iln(l—e‘*Xli )+ (a, +a, —1)iln(l—e“X2i ).
= =
where O =(a,,a,,a;,1).

On differentiating (4.2) with respectto ¢,,@,,; and 4 and equating to zero, obtain

the following likelihood equations are obtained.

na
ny, _m :
A Zln 1-— e‘“l Zln[’_l — g5 = (,
=1

@ ﬂ‘i+ﬂ‘3

+¥ In (1 - e‘ir?f) + X2 In (l - e‘j"z!') =0,

'wz fT2+ﬂ'3
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na
n n =
= 1,.._ 5 _=op Z In (1 — e_j“"li + Z In (1 = e—-lxza') =0,
aq =3 a3 Cl’z = (T3 =
i=

and
—Ax —Ax; 2(' ) "2
\1[ ; 1 Xq; € i Ny Nny
—1 -1 . = = i+ X
(@, ) § S e—hu + (a, ) E 1 £ g_/lxli 3 i_g'l()(la X2;)
.lxz[

Xz € x2;

_ E (i ) T{a, 1) E e i, L, 1) E e = 0.
(4.3)

The system (4.3) of nonlinear equation will be solved numerically to obtain &,, &,, &
and 1.

Based on Cohen(1965), the approximate variance-covariance matrix is given as

ay ap 83 ay
Ay @8p Ay Ay
A3 8y dy dy
ay 8y g Ay

Where
_ d%InL oo n,
11 2 ~ ~ N2 T A2
oa; 1.6y i (a,+a3)
2
_0%InL B n, n
2 =T (a4, +a)? &2
2 dudz!&s'/i 2 3 2
_ 2%InL n, n,
ccH 2 T ERY: ~ A \2
das P (g +a3)” (@, +a,)
o%InL
a12:_a P =0,
@, 0a, &y, Gy,Gi3,4
2
_0°InL 3 n,
Q3 = T w da. = 2
1 0Q3| 4 6yaah (&, +ay)
_ 9%InL n,
23— = ~ 2!
00,005 ;. ;i (a, +a3)
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8, = - o%InL Xy ejx“ i X, e % |
0a, 04| ; ;. Hl-e€ U - e
_9°InL X, e L x, et
= oa,00 bdid Z1 e 2_1:1—e-“2i ’
a, :_82 InL _ix g M ixﬁ g M |
0az04| , . . ; i=31- et Sl _e M
~ a%InL 2 A% X1| o Ah
U =7 o = (&, +a, - 1)2 _M) - )Z e )
A X; A X;
03 A >Z(1X2'ew§ PR

Now, to obtain the asymptotic confidence intervals of A,a,,a, and «,. The
asymptotic normality results can be stated as follows

nI(A =@~ ). (@, ~ ;). (6, ~ )] > N0, 1(©)7) as n>w  (44)
where 17(®) is the variance-covariance matrix, ©=(4,,&,,4;,4) and

O = (ay,a,, a3, A) .Since © is unknown in (4.4), 17(®) is estimated by 17(0).

5 Simulation Results
In this Section, a simulation experiment is presented in which the estimation of the
parameters of the BBBGE distribution are evaluated . The simulations were

performed using the Mathcad program, the number of the replications R = 1000.

The evaluation of the point estimation was performed based on the following
quantities for each sample size: the Average Estimates (AE), the Mean Squared
Error, (MSE) are estimated from R replications and the coverage rate of the 95%

confidence interval for A,¢,,a, and «;, the sample size is chosen at n = 20,40,60
and 100, and considered some values for the parameters A,¢;,, and a,.

It can be seen from Table 1 that the estimates are slightly positively biased and that
the MSE decreases as the sample size increases, as expected. The estimates are close
to the true values. Also the coverage probabilities are close to the nominal level.
These results indicate that the proposed model and the asymptotic approximation

work well under the situation where no censoring occurs.
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Table 1: The average estimates (AE), the mean squared errors (MSE), and the coverage

percentages (Cl) of «,,«,,cr; and A for BBBGE distribution

n parameters AE MSE 95%
CI Coverage
a 0.725 0.055 0.94
20 a, 0.828 0.010 0.95
a, 0.522 0.123 0.91
A 0.0559 0.018 0.95
a, 1.541 0.001 0.95
40 a, 3.024 0.009 0.91
a, 2.125 0.0815 0.92
A 0.0530 0.001 0.97
a, 1.113 0.001 0.97
60 a, 2471 0.004 0.95
a, 3.441 0.031 0.93
A 0.0525 0.002 0.98
a, 1.501 0.0007 0.99
100 a, 2.657 0.0005 0.97
o, 2.701 0.002 0.96
A 0.0528 0.00003 0.98

6. Conclusion

In this paper the absolutely continuous bivariate model following the approach
of Block and Basu (1974) has been introduced. That obtained from the Marshal —
Olkin bivariate generalized exponential model by removing the singular part. The
BBBGE model has an absolutely continuous probability density function. The
moment generating function for the BBBGE distribution has been obtained. The exact
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forms for the distribution of sum; ratio and product of dependent variables follows the
BBBGE distribution have been derived. The maximum likelihood estimates for
the four unknown parameters and their approximate variance- covariance matrix
have been obtained. Finally some a numerical illustration has been performed to

see the performances of the MLEs.
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