
ENGINEERING JOURNAL Volume 2 Issue 2 

Received Date January 2023  
Accepted Date March 2023 
Published Date March 2023 

DOI: 10.21608/MSAENG.2023.291922 

 

 
Equations of Motion for Spinning Fluids and their Deviation 

Equations in Finslerian Geometry 

Magd E. Kahil 1,a, Samah A. Ammar 2,b and Shymaa A. Refaey 2,c,* 

1 Professor, Faculty of Engineering, October University for Modern Sciences and 

Arts (MSA), Giza, Egypt  
2 Lecturer, Women’s College for Arts, Science and Education, Ain Shams University, 

Cairo, Egypt  
3Assistant lecturer, Women’s College for Arts, Science and Education, Ain Shams 

University, Cairo, Egypt  
 

E-mail: a mkahil@msa.edu.eg, bSamah.Ammar@women.asu.edu.eg, 
c,*Shymaa_Refaey@women.asu.edu.eg (Corresponding author) 

Abstract 

Finsler geometry is a natural extension of the Riemannian geometry and a 

good a platform used to interpret the infrastructure of physical phenomena, 

especially for relativistic applications. Accordingly it is worthy to study spinning 

fluids in the context of this geometry that would share their benefits in 

cosmological applications. Equations of motion of spinning fluids and their 

corresponding deviation equations are obtained. The problem of motion for 

studying a fluid with a variable mass is also obtained. The set of Equations of 

spinning fluids and spinning deviation fluids equations for some classes of the 

Finslerian geometry have been derived, using a modified type of the Bazanski 

Lagrangian. Due to the richness of the Finslerian geometry, a new perspective for 

revisiting the problem of stability is based on solving the deviation equations of 

spinning fluids in strong fields of gravity is performed. Such a problem has a 

direct application on examining the stability of accretion disk orbiting   Sgr A*. 

https://doi.org/10.21608/msaeng.2023.291864


DOI:10.4186/ej.2009.VOL.ISSUE.pp 

2              MSA ENGINEERING 

JOURNAL 

Volume 2 Issue 2, E-ISSN 2812-4928, P-ISSN 28125339 

(https://msaeng.journals.ekb.eg//) 

Keywords:  Finsler geometry, Geodesic deviation, Spin density 

deviation, Spinning fluid.  



 

3              MSA ENGINEERING JOURNAL 

Volume 2 Issue 2, E-ISSN 2812-4928, P-ISSN 28125339 (https://msaeng.journals.ekb.eg//) 

1. Introduction 

Equations of motion for spinning particles are basically good evidence to examine 

the behavior of objects in various gravitational fields [1]. Accordingly, the problem of 

stability of celestial objects have been revisited throughout the studying the motion of 

objects.  The issue of using spinning object as a tool to examine motion is due to the 

reliability of its existence in nature. As it is well known that every object in space is 

spinning, while the case of non-spinning objects for probes to examine motion in orbits is 

regarded as a special case for simplicity. From this perspective many authors like Mathison, 

Papapetrou, Dixon and others have performed the spinning equations for objects and 

charged objects in gravitational fields expressed in the Riemannian geometry [2, 3]. Not 

only that but also, there are other approaches examining the equations of motion for 

spinning objects in other types of geometries like AP-space -a specific type of non-

Riemannian geometry and the Finselerian geometry.  Meanwhile, the reason for introducing 

different types of geometries is related to apply the concept made by H. Poincare who 

connected the feasibility of a specific geometry with its associated measurements [4].  

Moreover, the problem of spinning particles has been extended to examine spinning 

fluids.  This has been done by obtaining equations of spinning fluid and spinning deviation 

fluid in Riemannian geometry [5].  The stability of spinning object orbiting very strong field 

has been discssed by Kahil based on the use of spinning deviation tensor [6].  Yet as a step 

to replace spinning fluid by spinning tensor in the accretion disc orbiting SgrA*, it is 

mandory to obtain their corresponding  spinning and spinning  fluid deviation equations   

Spinning fluids are in fact describing the state of matter orbiting very strong gravitational 

fields like the material of the accretion disc orbiting the core of our galaxy  Sgr A*. 

Accordingly, as a step to search for an alternative type of geometry expressing the 

manifold which is based not only on points but also on their direction.  The problem of 

inserting the direction is assigned to get more details about the behaviour of objects in 

strong fields of gravity. This may led many authors to seek for the alternative types of 

geometries rather than relying to the Riemannian geometry.   

Finsler geometry is regarded as a wider classes of geometries based on a 

fundamental function L such that 

                                                    𝑠 =  ∫𝐿 𝛾(𝑡)𝛾(𝑡))𝑑𝑡̇ ,                                                 (1) 

where 𝑠  is  the arc length of the curve γ(t) in a Finsler Space  𝐹𝑛 , whose geodesics are 

defined as the  solutions of the Euler-Lagrange equation        

                                                         
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑦𝛼
−

𝜕𝐿

𝜕𝑥𝛼
= 0.                                                 (2) 

From this perspective, it can be sought that Finsler spaces are more flexible than their 

Riemannian counterpart. These spaces have freedom of the choice of metric and connection 

comparing with the Riemannain ones [7], that having a unique metric and affine connection 

[8]. Such an advantage may give rise to implement Finsler geometry in Physics, Biology [9], 

and other fields such as Modeling of epidemic curves [10]. 
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The paper is organized in the following way.  In section 2, we display two different 

types of approaches for describing the Finslerian geometry, the Cartan-Rund and the Cartan-

Finsler ones. In Section 3, we review the problem of motion in both Cartan-Rund and 

Cartan-Finsler approach. While in Section 4, we obtain spinning and spinning deviation 

equation in both Finslerian approachs. In Section 5, we perform the equations of motion for 

a spinning fluid with a variable mass for Cartan-Rund and Cartan-Finsler approach. 

Conditions for studying the stability in the presences of spinning fluid are given in Sect. 6. 

Section 7, we comment on the previous results and through some light on our forthcoming 

work. 

2. Underlying Geometry: The Finsler Geometry: 

A Finsler space (𝑀, 𝐹) is an 𝑛- dimensional smooth manifold 𝑀 equipped with a 

scalar𝐹(𝑥, 𝑦), where the functions (𝑥(𝑡), 𝑦(𝑡)), with 𝑦 (≝ 𝑥̇ =
𝑑𝑥

𝑑𝑡
), defines the coordinates 

on the tangent bundle 𝑇𝑀, and 𝑡 is an invariant parameter. (For more details cf Ref.[11, 12, 

13]) 

A second-order tensor 𝑔µ𝜈(𝑥, 𝑥̇) symmetric, non-degenerate tensor and 

characterizes the metric of Finsler space, which is defined as  

                                                           𝑔µ𝜈 ≝ 
𝜕2𝐹2(𝑥, 𝑥̇)

𝜕𝑥̇𝜇𝜕𝑥̇𝜈
,                                                      (3) 

Also, this space admits a third order tensor  

                                             𝐶(𝑥,𝑥̇) = 𝐶𝜇𝜈𝜌 𝑑𝑥
𝜇 ⊗ 𝑑𝑥𝜈 ⊗ 𝑑𝑥𝜌,                                        (4) 

which is known as the Cartan tensor  may be defined as          

                                                                𝐶𝜇𝜈𝜌 ≝
1

2
  

𝜕𝑔µ𝜈

𝜕𝑥̇𝜈𝜕𝑥̇𝜌
 .                                               (5) 

Using (3), one can write 

                                                     𝐶𝜇𝜈𝜌 =
1

2
  

𝜕3𝐹2

𝜕𝑥̇𝜇𝜕𝑥̇𝜈𝜕𝑥̇𝜌
 .                                                  (6) 

In case of vanishing Cartan tensor 𝐶𝜇𝜈𝜌 = 0, the Finsler space becomes a Riemannian one 

[14]. 

Also, geodesic equation in Finsler Geometry is defined as  

                                                               
𝑑2𝑥𝜇

𝑑𝑆2
+ 2𝐺𝜇 = 0,                                                      (7) 

such that                                    

                                              𝐺𝜇 ≝
1

4
 𝑔𝜇𝜈 [𝑥̇𝜎

𝜕2𝐹2

𝜕𝑥𝜈𝜕𝑥̇𝜎
−
𝜕𝐹2

𝜕𝑥𝜈
],                                           (8)  

where  𝐺𝜇  is called a spray, to be defined as  

                                                               𝐺𝜇 =
1

2
{𝜈𝜌
 𝜇
}𝑥̇𝜈𝑥̇𝜌,                                                        (9)   

In which  {𝜈𝜌
 𝜇
} is the Christoffel symbol as defined in the Riemannian geometry [5]. 

From this perspective, we are going to review two approaches of Finslerian-geometry: 

Cartan-Rund Approach and Finsler cartan approach [12, 13, 15]. 

2.1.   Cartan-Rund Approach   
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It is well known that the Cartan-Rund Approach admits an affine connection 𝛤̃   𝜈𝜌
𝜇

defined as 

                                               𝛤̃   𝜈𝜌
𝜇

≝ {𝜈𝜌
 𝜇
} − 𝐶   𝜈𝛿

𝜇
{𝜆𝜌
 𝛿 }𝑥̇𝜆,                                               (10) 

Also, its corresponding covariant derivative   defined due to Chern [16] to have the form 

                                                                    
𝛿𝐴𝜇

𝛿𝑆
= 𝐴   ;𝜈

𝜇
 
𝑑𝑥𝜈

𝑑𝑆
,                                             (11) 

 where 

                                                               𝐴   ;𝜈
𝜇

=
𝜕𝐴𝜇

𝜕𝑥𝜈
+ 𝛤̃    𝜈𝜌

𝜇
𝐴𝜈𝑥̇𝜌,                                    (12) 

Thus, its corresponding geodesic equation can be written in the following form:  

                                                                         
𝛿𝑈𝜇

𝛿𝑆
= 0,                                                        (13) 

Also, the commutation relation as defined in Cartan-Rund approach is expressed as follows  

                                                     𝐴   ;𝜈𝜌
𝜇

− 𝐴   ;𝜌𝜈
𝜇

= 𝐾  𝜈𝜌𝛿
𝜇

 𝐴𝛿 ,                                            (14)      

where   𝐾  𝜈𝜌𝛿
𝜇

  is its corresponding curvature as defined in the following way 

𝐾  𝜈𝜌𝜎
𝜇

= (𝛤̃    𝜈𝜌,𝜎
𝜇

−
𝜕𝛤̃    𝜈𝜌

𝜇

𝜕𝑥̇𝛿
𝜕𝐺𝛿

𝜕𝑥̇𝜎
) − (𝛤̃    𝜈𝜎,𝜌

𝜇
−
𝜕𝛤̃    𝜈𝜎

𝜇

𝜕𝑥̇𝛿
𝜕𝐺𝛿

𝜕𝑥̇𝜌
) + 𝛤̃    𝜈𝜌

𝜆 𝛤̃    𝜆𝜎
𝜇

− 𝛤̃    𝜈𝜌
𝜆 𝛤̃    𝜈𝜌

𝜇
. (15) 

2.2. Finsler- cartan approach 

Another version of Finsler-geometry will be displayed called the Finsler-Cartan 

approach. In this approach a nonlinear connection 𝑁   𝛽
𝛼   has been defined and acts as gauge 

potential [13], to be expressed as follows: 

                                       𝑁   𝛽
𝛼 =

1

2
𝑔𝛼𝜖 [𝑦𝛾

𝜕2𝐹2(𝑥, 𝑦)

𝜕𝑥𝛽𝜕𝑦𝛾
−
𝜕𝐹2(𝑥, 𝑦)

𝜕𝑥𝛽
].                                (16) 

 As mentioned above, the coordinates are expressed in Finsler space within tangent 

space, the addition of nonlinear connection led to splitting the tangent bundle into two sub-

bundles. One for the horizontal coordinates while the other assigned the vertical coordinates. 

The arising 𝑇𝑀  admitting the basis (𝛿𝛼 , 𝜕𝑎), the Greek indices are used to characterize 

horizontal coordinates and Latin indices for vertical coordinates. This is important for 

describing an anisotropic gravitational field theory. 

In the context of this approach, the line element is defined as following 

                                 𝑑𝑠2 = 𝑔𝜇𝜈(𝑥, 𝑦)𝑑𝑥
𝜇𝑑𝑥𝜈 + ℎ𝑎𝑏(𝑥, 𝑦)𝛿𝑦

𝑎𝛿𝑦𝑏 ,                                    (17) 

where 𝛿𝑦𝑎  the extended derivative as is defined in the admitted basis(𝛿𝛼 , 𝜕𝑎) and the 

tensors 𝑔𝜇𝜈(𝑥, 𝑦), ℎ𝑎𝑏(𝑥, 𝑦) define (non-degenerate) metrics of horizontal and vertical 

coordinate systems respectively.  

In addition to the non-linear connection of the Finsler-Cartan approach, there exists   

                                       𝛤   𝜇𝜈
𝛼

≝
1

2
𝑔𝛼𝛽(𝛿𝜇𝑔𝛽𝜈 + 𝛿𝛽𝑔𝜇𝜈 − 𝛿𝜈𝑔𝛽𝜇).                                        (18)  

While, for its corresponding vertical sub-bundle, threre is by analogy another affine 

connection 𝐶   𝑏𝑐
𝑎  defined as: 

                                           𝐶   𝑏𝑐
𝑎 ≝

1

2
𝑔𝑎𝑑(𝜕̇𝑏𝑔𝑐𝑑 + 𝜕̇𝑑𝑔𝑏𝑐 − 𝜕̇𝑐𝑔𝑑𝑏),                                     (19) 

where, 𝜕̇𝑏 ≝
𝜕

𝜕𝑦𝑏
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Consequently. For an arbitrary vector 𝐴𝛼 ,  the covariant differentiation using the 

non-linear connection defined as: 

                                              
𝛿𝐴𝛼

𝛿𝑥𝜇
, =

𝜕𝐴𝛼

𝜕𝑥𝜇
 −  𝑁    𝜇

𝜈
𝜕𝐴𝛼

𝜕𝑥̇𝜐
.                                                 (20) 

The spray  𝐺𝛼is related to the non-linear connection 𝑁  𝛽
𝛼  by the following relation 

                                                                𝐺𝛼 =
1

4
 𝑁  𝛽

𝛼 𝑦𝛽,                                                     (21) 

Accordingly, it's easy to show that  

                                                                𝑁  𝛽
𝛼 = 2

𝜕𝐺𝛼

𝜕𝑦𝛽
.                                                        (22) 

Geodesic   equation: Consequently, we have two equations for geodesic one 

defined for the horizontal coordinate, which can be written as:  

                                                                   
𝛻𝑈𝜇

𝛻𝑠
= 0,                                                              (23) 

where 𝑈𝜇 ≝
𝛿𝑥𝜇

𝛿𝑠
 is the unit tangent vector, and 

 
𝛻𝑈𝜇

𝛻𝑠
≝
𝛿𝑈𝜇

𝛿𝑠
+ 𝛤   𝜈𝜎

𝜇
𝑈𝜐𝑈𝜎. 

While for the vertical coordinate, the geodesic have the form: 

                                                                 
𝐷𝑉𝑎

𝐷𝑠
= 0,                                                                (24) 

where 

                                                   
𝐷𝑉𝑎

𝐷𝑠
≝
𝜕𝑉𝑎

𝜕𝑠
+ 𝐶   𝑏𝑑

𝑎 𝑉𝑏𝑉𝑑 ,                                                 

as 𝑉𝑎 ≝
𝜕𝑦𝑎

𝜕𝑠
.    

3. From Geodesic Equation  to Spinning Equation  in Finsler Geometry:  

3.1. Cartan-Rund Approach  

Equation of geodesic and geodesic deviation in the Finslerian geometry based on the 

Cartan -Rund approach may be expressed based on the following Lagrangian function [17]  

                                                      𝐿 = 𝑔𝛼𝛽(𝑥, 𝑥̇)𝑈
𝛼
𝛿𝛹𝛽

𝛿𝑆
.                                                      (25)  

Where  𝑈𝛼 is its four vector velocity,  𝛹𝛽 its corresponding deviation vector defined as 

follows 

𝛹𝛽 = 𝜖
𝜕𝑥𝛽

𝜕𝜖
|𝜖=0 

Thus, by taking the variation with respect to 𝛹𝛽 one gets  

                                                                         
𝛿𝑈𝜇

𝛿𝑆
= 0.                                                         (26) 

Also, the relationship between the two parameters between S and  𝜏 becomes [18]:  
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𝛿𝑈𝜇

𝛿𝑆
=
𝛿𝛹𝜇

𝛿𝜏
.                                                    (27) 

Using the commutation relation as defined in (14 ) together with the condition (27) in a 

similar way as in [16], one gets  

                                                              
𝛿2𝛹𝜇

𝛿𝑆2
= 𝐾  𝜈𝜌𝜎

𝜇
 𝑈𝜈 𝑈𝜌 𝛹𝜎.                                         (28)   

Accordingly, the spinning equations may be obtained due to the following relation  

𝑈̃   
𝜇 = 𝑈𝜇 + 𝛽

𝛿𝛹𝜇

𝛿𝑆
, 

Such that  𝑈̃   
𝜇 is a vector defined as combination between the ususal four unit vector 

velocity and its corresponding deviation vector    

                                                       
𝛿𝑈̃   

𝜇

𝛿𝜌
=

𝛿

𝛿𝑆
(𝑈𝜇 + 𝛽

𝛿𝛹𝜇

𝛿𝑆
)
𝑑𝑆

𝑑𝜌
 ,                                       (29) 

which  𝜌 is a parameter associated with spinning motion, provided that  the spin tensor 𝑆𝜇𝜈 

is defined as(cf. [6]) 

                                                      𝑆𝜇𝜈 ≝ 𝜎(𝑈𝜇𝛹𝜈 − 𝑈𝜈𝛹𝜇),                                              (30) 

Thus, the spinning equation in Finsler Equation takes the form [13]:  

                                                            
𝛿𝑈̃𝜇

𝛿𝜌
=

1

2𝑚
𝐾  𝜈𝜌𝜎
𝜇

 𝑆𝜌𝜎𝑈𝜈,                                              (31) 

3.2.  Finsler- Cartan approach  

Equation of geodesic and geodesic deviation in the context of Finsler-Cartan 

approach can be obtained using the following Lagrangian function [13]  

                                 𝐿 = 𝑔𝛼𝛽(𝑥, 𝑦)𝑈
𝛼𝑈𝛽 + ℎ𝑎𝑏(𝑥, 𝑦)𝑉

𝑎𝑉𝑏.                                             (32) 

The deviation equation for the h-derivative can be obtained using the commutation relation 

as defined in (14 ) together with the condition (27) in a similar way as in, one gets  

                                                         
𝛻2𝛹𝜇

𝛻𝑆
= 𝑅  𝜈𝛼𝜎

𝜇
 𝑈𝜈 𝑈𝛼 𝛹𝜎,                                              (33) 

where, 𝑅  𝜈𝛼𝜎
𝜇

represents the curvature tensor, have the following definition 

𝑅  𝜇𝜈𝜎
𝛼 = 𝛤    𝜇𝜎||𝜈

𝛼
− 𝛤    𝜇𝜈||𝜎

𝛼
+ 𝛤    𝜇𝜎

𝜖
𝛤    𝜖𝜈
𝛼

− 𝛤    𝜇𝜈
𝜖

𝛤    𝜖𝜎
𝛼

 

Similarly, one can obtain the deviation equation for the v-derivative 
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𝛻2𝛷𝑎

𝛻𝑆
= 𝐵  𝑏𝑐𝑑

𝑎  𝑉𝑏 𝑉𝑐 𝛷𝑑 ,                                            (34) 

where; 

𝐵  𝑏𝑐𝑑
𝑎 = 𝐶   𝑏𝑑|𝑐

𝑎 − 𝐶   𝑏𝑐|𝑑
𝑎 + 𝐶   𝑏𝑑

𝑙 𝐶   𝑙𝑐
𝑎 − 𝐶   𝑏𝑐

𝑙 𝐶   𝑙𝑑
𝑎 . 

In order to derive the equation of motion for spinning fluids in the context of 

Finsler-Cartan geometry, we have to introduce the following functions  

𝑈𝜇 = 𝑈𝜇 + 𝛽
𝛻𝛹𝜇

𝛻𝑆
, 

𝑉𝛼 = 𝑉𝛼 + 𝛽
𝐷𝛷𝛼

𝐷𝑆
, 

to express horizontal and the vertical components each for its corresponding coordinate 

systems defined in the two sub-bundles.  

Accordingly, equation of motion for spinning fluids for the h-derivative has the form 

                                                     
𝛻𝑈𝜇

𝛻𝑆
=

1

2𝑚
𝑅  𝜈𝛼𝜎
𝜇

 𝑈𝜈 𝑆𝛼𝜎.                                          (35) 

While, for the v-derivative 

                                                      
𝐷𝑉𝑎

𝐷𝑆
=

1

2𝑚
𝐵  𝑏𝑐𝑑
𝑎 𝑉𝑏 𝑆𝑐𝑑,                                            (36) 

Where; 
𝛻

𝛻𝑆
,
𝐷

𝐷𝑆
 characterizes horizontal and the vertical derivatives, respectively.  

4. Spinning and Spinning Deviation Equations in Finsler Geometry: 

The aim of the present section is to derive equation of motion of spinning 

fluid in the context of both approach of Finslerian geometry that mentioned above. 

Those equations have a vital role to describe extended object. 

4.1. Cartan-Rund Approach  

In this section, we are going to drive equation of motion of spinning fluid in the 

context of Cartan-Rund approach.  

Accordingly, the Weyssenhoff spin tensor is expressed as follows (cf. [19]): 

                                                 𝑆𝛼𝛽𝛾 = 𝑆𝛽𝛾𝑈𝛼                                                  (37) 
(i) In case 𝑃𝛼 = 𝑚𝑈𝛼: 

The Lagrangian of spinning fluid take the form [13]:  

       𝐿 = 𝑔𝛼𝛽(𝑥, 𝑦)𝑈
𝛼
𝛿𝛹𝛽

𝛿𝑆
+ 𝑆𝛼𝛽  

𝛿𝛹𝛼𝛽

𝛿𝑆
+

1

2𝑚
𝐾𝜇𝜈𝛼𝛽 𝑆

𝛼𝛽𝑈𝜈𝛹𝜇 .           (38) 

Applying the Euler-Largrange equation with respect to deviation vectors becomes: 
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𝑑

𝑑𝑆

𝜕𝐿

𝜕𝛹̇𝛼
−

𝜕𝐿

𝜕𝛹𝛼
= 0,                                       (39) 

to obtain 

                                          
𝛿𝑈𝜇

𝛿𝑆
=

1

2𝑚
𝐾  𝜈𝜌𝜎
𝜇

 𝑆𝜌𝜎𝑈𝜈.                                     (40) 

Similarly, the Euler Lagrange equation with respect to spinning deviation tensor 

becomes  

                                             
𝑑

𝑑𝑆

𝜕𝐿

𝜕𝛹̇𝛼𝛽
−

𝜕𝐿

𝜕𝛹𝛼𝛽
= 0.                                         (41) 

We get, 

                                                             
𝛿𝑆𝜇𝜈

𝛿𝑆
= 0.                                                (42) 

Accordingly, the equation of motion of spinning fluid will have the form: 

                                       
𝛿𝑆𝛼𝛽𝛾

𝛿𝑆
=

1

2𝑚
𝐾  𝜇𝜈𝜎
𝛼 𝑆𝜈𝜎  𝑆𝛽𝛾𝑈𝜇.                              (43) 

Consequently, to obtain its corresponding deviation equations, must satisfy the following 

condition[18]  

                                                   
𝛿𝑈𝛽

𝛿𝑆
=
𝛿𝛹𝛽

𝛿𝜏
,                                              (44) 

to get the following relation   

                          (
𝛿

𝛿𝑆

𝛿

𝛿𝜏
−

𝛿

𝛿𝜏

𝛿

𝛿𝑆
)𝐴𝛼 = 𝐴𝜇 𝐾   𝜇𝜌𝜎

𝛼  𝑈𝜌 𝛹𝜎 .                    (45) 

Thus, one can get, 

         
𝛿2𝛹𝜇

𝛿𝑆2
= 𝐾  𝜈𝜌𝜎

𝜇
 𝑈𝜈 𝑈𝜌 𝛹𝜎 +

1

2𝑚
(𝐾  𝜈𝛼𝜎

𝜇
 𝑈𝜈 𝑆𝛼𝜎 )

;𝜌
𝛹𝜌,                  (46) 

and 

                                              
𝛿2𝛹𝜇𝜈

𝛿𝑆2
= 𝑆𝜇[𝛼𝐾   𝛼𝜌𝜎

𝜈]
 𝑈𝜌 𝛹𝜎 .                            (47) 

To obtain the spinning density deviation equation for a spinning fluid, we will apply the 

following commutation relation 

                        (
𝛿

𝛿𝑆

𝛿

𝛿𝜏
−

𝛿

𝛿𝜏

𝛿

𝛿𝑆
)𝑆𝛼𝛽𝛾 = 𝑆𝜖[𝛽𝛾𝐾   𝜖𝜌𝜎

𝛼]
 𝑈𝜌 𝛹𝜎,                            (48) 

To gether with condition (44), we get 

             
𝛿2𝛹𝛼𝛽𝛾

𝛿𝑆2
= 𝑆𝜌[𝛽𝛾𝐾   𝜌𝜈𝜎

𝛼]
 𝑈𝜈 𝛹𝜎 +

1

2𝑚
(𝐾   𝜇𝜈𝜎

𝛼  𝑈𝜇 𝑆𝜈𝜎  𝑆𝛽𝛾)
;𝜌
𝛹𝜌.       (49) 

(ii) In case 𝑃𝛼 ≠ 𝑚𝑈𝛼: 

In this case the Lagrangian of spinning fluid have the form:  

𝐿 = 𝑔𝛼𝛽(𝑥, 𝑦)𝑈
𝛼
𝛿𝛹𝛽

𝛿𝑆
+ 𝑆𝛼𝛽  

𝛿𝛹𝛼𝛽

𝛿𝑆
+

1

2𝑚
𝐾𝜇𝜈𝛼𝛽 𝑆

𝛼𝛽𝑈𝜈𝛹𝜇 + 2𝑃𝛼𝑈𝛽𝛹
𝛼𝛽.  (50) 
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Then, by taking the variation with respect to 𝛹𝜇 as given by (39), we get 

                                                    
𝛿𝑃𝜇

𝛿𝑆
=

1

2𝑚
𝐾  𝜈𝜌𝜎
𝜇

 𝑆𝜌𝜎𝑈𝜈.                                     (51) 

Also, by operating the variation with respect to 𝛹𝜇𝜈 as given by (41), we obtain 

                                                                  
𝛿𝑆𝜇𝜈

𝛿𝑆
= 2𝑃𝜇𝑈𝜈.                                         (52) 

To obtain the equation of motion for spinning fluid, we take in consideration the 

Weyssenhoff tensor written in the following form: 

                                                               𝑆𝛼𝛽𝛾 = 𝑆𝛽𝛾𝑃𝛼                                                 (53) 

Using (51) and(52), we get 

                                  
𝛿𝑆𝛼𝛽𝛾

𝛿𝑆
= 2𝑃𝛼𝑃𝛽𝑈𝛾 +

1

2𝑚
𝐾  𝜇𝜈𝜎
𝛼 𝑆𝜈𝜎  𝑆𝛽𝛾𝑈𝜇 .                          (54) 

Consequently, its corresponding spin density deviation tensor equation can be obtained, by 

applying the commutation relations as given in (48) and the condition (44), to have the form: 

𝛿2𝛹𝛼𝛽𝛾

𝛿𝑆2
= 𝑆𝜌[𝛽𝛾𝐾    𝜌𝜈𝜎

𝛼]
 𝑈𝜈 𝛹𝜎 + (2𝑃𝛼𝑃𝛽𝑈𝛾 +

1

2𝑚
𝐾  𝜇𝜈𝜎
𝛼 𝑆𝜈𝜎 𝑆𝛽𝛾𝑈𝜇)

;𝜆
𝛹𝜆.  (55) 

4.2. Finsler-Cartan Approach: 

For such a tendency the chosen Lagrangian describe the spinning motion in both 

horizontal and the vertical coordinate coordinates. Thus by taking in consideration the terms 

𝑔𝜇𝜈(𝑥),𝛹
𝜈,  𝛹𝜇𝜈describe coefficients of metric and deviation tensors for the horizontal 

coordinate system. Beside additive terms ℎ𝑎𝑏(𝑦),  𝛷
𝑏 , 𝛷𝑎𝑏 and 𝑃𝑎  describe coefficients of 

metric, deviation tensors and momentum vector for the vertical coordinate system.  

(i) Case 𝑃𝛼 = 𝑚𝑈𝛼 and 𝑃𝑎 = 𝑚𝑉𝑎  

𝐿 = 𝑔𝜇𝜈(𝑥)𝑈
𝜇
𝛻𝛹𝜈

𝛻𝑆
+ 𝑆𝜇𝜈  

𝛻𝛹𝜇𝜈

𝛻𝑆
+ ℎ𝑎𝑏(𝑦)𝑉

𝑎
𝐷𝛷𝑏

𝐷𝑆
+ 𝑆𝑎𝑏  

𝐷𝛷𝑎𝑏

𝐷𝑆
+

1

2𝑚
𝑅𝜇𝜈𝛼𝛽  𝑆

𝛼𝛽𝑈𝜈𝛹𝜇

+
1

2𝑚
𝐵𝑎𝑏𝑐𝑑 𝑆

𝑐𝑑𝑉𝑏𝛷𝑎.                                                                               (56) 

Taking the variation for the above Lagrangian w.r.to 𝛹𝛼 and 𝛹𝛼𝛽 , we obtain the following 

equations 

                                                     
𝛻𝑈𝜇

𝛻𝑆
=

1

2𝑚
𝑅  𝜈𝛼𝜎
𝜇

 𝑈𝜈 𝑆𝛼𝜎 ,                                              (57) 

and, 

                                                                  
𝛻𝑆𝛼𝛽

𝛻𝑆
= 0.                                                             (58) 

Consequently, the equation of motion of spinning fluid will have the form, using the 

Weyssenhoff tensor 

                                                
𝛻𝑆𝛼𝛽𝛾

𝛻𝑆
=

1

2𝑚
𝑅  𝜇𝜈𝜎
𝛼 𝑆𝜈𝜎 𝑆𝛽𝛾𝑈𝜇.                                        (59) 

The spin density deviation tensor equation can be obtained, by applying the commutation 

relations as given in (48) and the condition (44), as follows: 
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𝛻2𝛹𝛼𝛽𝛾

𝛻𝑆2
= 𝑆𝜌[𝛽𝛾𝑅    𝜌𝜈𝜎

𝛼]
 𝑈𝜈 𝛹𝜎 +

1

2𝑚
(𝑅  𝜇𝜈𝜎

𝛼 𝑆𝜈𝜎 𝑆𝛽𝛾𝑈𝜇)
||𝜆
𝛹𝜆.       (60) 

Meanwhile, for the V-components, by applying the variation for the above Lagrangian 

w.r.to 𝛷𝑎 and 𝛷𝑎𝑏 , we get 

                                                    
𝐷𝑉𝑎

𝐷𝑆
=

1

2𝑚
𝐵  𝑏𝑐𝑑
𝑎  𝑉𝑏 𝑆𝑐𝑑,                                            (61) 

                                                                   
𝐷𝑆𝑎𝑏 

𝐷𝑆
= 0.                                                        (62) 

Then, the equations of motion for spinning fluid and spin density deviation will 

have the form  

                                                
𝐷𝑆𝑎𝑏𝑐

𝐷𝑆
=

1

2𝑚
𝐵   𝑑𝑒𝑓
𝑎 𝑆𝑏𝑐  𝑆𝑒𝑓𝑉𝑑 .                                     (63) 

                      
𝐷2𝛹𝑎𝑏𝑐

𝐷𝑆2
= 𝑆𝑒[𝑏𝑐𝐵    𝑒𝑏𝑐

𝑎]
 𝑉𝑏 𝛷𝑐 +

1

2𝑚
(𝐵   𝑑𝑒𝑓

𝑎 𝑆𝑏𝑐 𝑆𝑒𝑓𝑉𝑑)
|𝑙
𝛷𝑙.           (64) 

 

(ii) Case 𝑃𝛼 ≠ 𝑚𝑈𝛼 𝑎𝑛𝑑 𝑃𝑎 ≠ 𝑚𝑉𝑎  : 

𝐿 = 𝑔𝜇𝜈(𝑥)𝑃
𝜇
𝛻𝛹𝜈

𝛻𝑆
+ 𝑆𝜇𝜈  

𝛻𝛹𝜇𝜈

𝛻𝑆
+ ℎ𝜇𝜈(𝑦)𝑃

𝑎
𝐷𝛷𝑏

𝐷𝑆
+ 𝑆𝑎𝑏  

𝐷𝛷𝑎𝑏

𝐷𝑆
+

1

2𝑚
𝑅𝜇𝜈𝛼𝛽  𝑆

𝛼𝛽𝑈𝜈𝛹𝜇

+
1

2𝑚
𝐵𝑎𝑏𝑐𝑑 𝑆

𝑐𝑑𝑈𝑏𝛷𝑎 + 2𝑃𝜇𝑈𝜈𝛹
𝜇𝜈 + 2𝑃𝑎𝑉𝑏𝛷

𝑎𝑏.                           (65) 

Thus, by taking the variation w.r.to  𝛹𝛼and 𝛷𝑎, we get 

                                                       
𝛻𝑃𝜇

𝛻𝑆
=

1

2𝑚
𝑅  𝜈𝛼𝜎
𝜇

 𝑈𝜈 𝑆𝛼𝜎,                                         (66) 

and 

                                                         
𝐷𝑃𝑎

𝐷𝑆
=

1

2𝑚
𝐵  𝑏𝑐𝑑
𝑎  𝑉𝑏 𝑆𝑐𝑑,                                          (67) 

Also, taking the variation for Lagrangian (64) w.r.to 𝛹𝛼𝛽and 𝛷𝑎𝑏, we obtain 

                                                              
𝛻𝑆𝛼𝛽

𝛻𝑆
= 2𝑃𝛼𝑈𝛽,                                                    (68) 

and 

                                                               
𝐷𝑆𝑎𝑏 

𝐷𝑆
= 2𝑃𝑎𝑉𝑏.                                                   (69) 

Accordingly, the equation of motion of spinning equation will have the form 

                                 
𝛻2𝑆𝛼𝛽𝛾

𝛻𝑆2
= 2𝑃𝛼𝑃𝛽𝑈𝛾 +

1

2𝑚
𝑅  𝜇𝜈𝜎
𝛼 𝑆𝜈𝜎 𝑆𝛽𝛾𝑈𝜇 ,                              (70) 

and 

                                    
𝐷𝑆𝑎𝑏𝑐

𝐷𝑆
= 2𝑃𝑎𝑃𝑏𝑉𝑐 +

1

2𝑚
𝐵  𝑑𝑒𝑓
𝑎  𝑉𝑑 𝑆𝑐𝑑𝑆𝑒𝑓 ,                              (71) 

The spin density deviation tensor equations can be obtained, by applying the commutation 

relations as given in (48) and the condition (44), as follows: 

   
𝛻2𝛹𝛼𝛽𝛾

𝛻𝑆2
= 𝑆𝜌[𝛽𝛾𝑅    𝜌𝜈𝜎

𝛼]
 𝑈𝜈 𝛹𝜎 + (2𝑃𝛼𝑃𝛽𝑈𝛾 +

1

2𝑚
𝑅  𝜇𝜈𝜎
𝛼 𝑆𝜈𝜎 𝑆𝛽𝛾𝑈𝜇)

||𝜌
𝛹𝜌, (72)  

and 
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𝐷2𝛷𝑎𝑏𝑐

𝐷𝑆2
= 𝑆𝑒[𝑏𝑐𝐵   𝑒𝑑𝑓

𝑎]
 𝑉𝑑  𝛷𝑓 + (2𝑃𝑎𝑃𝑏𝑉𝑐 +

1

2𝑚
𝐵  𝑑𝑒𝑓
𝑎  𝑉𝑑 𝑆𝑐𝑑𝑆𝑒𝑓 )

|𝜌
𝛷𝜌.      (73) 

5. Equations of Motion for a Spinning Fluid with a Variable Mass  

In case of a variable mass the Weyssenhoff tensor will be written as (cf. [4]) 

                                                               𝑆̂𝛼𝛽𝛾 = 𝑚(𝑠)𝑆𝛽𝛾𝑈𝛼,                                          (74) 
where 𝑚(𝑠) is chosen to represents variable mass which is a function of the parameter 𝑠. 

In what follows, we are going to derive spinning density tensor and spinning density 

deviation tensor equations for a fluid with a variable mass in the context of Finsler 

geometry, Cartan-Rund Approach and Finsler-Cartan Approach. 

5.1. Cartan-Rund Approach  

The Lagrangian for spinning variable mass can be written as: 

𝐿 = 𝑚(𝑠)𝑔𝛼𝛽(𝑥, 𝑦)𝑈
𝛼
𝛿𝛹𝛽

𝛿𝑠
+ 𝑆𝛼𝛽  

𝛿𝛹𝛼𝛽

𝛿𝑠
+ (𝑚(𝑠),𝜎 +

1

2𝑚(𝑠)
𝐾𝜎𝜈𝛼𝛽  𝑆

𝜈𝛼𝛽)𝛹𝜎 . (75) 

By applying the variation for Lagrangian (74) with respect to 𝛹𝜇 𝑎𝑛𝑑 𝛹𝜇𝜈 , we get 

                          
𝛿𝑈𝜇

𝛿𝑠
=
𝑚(𝑠),𝜈
𝑚(𝑠)

(𝑔𝜇𝜈 − 𝑈𝜇𝑈𝜈) +
1

2𝑚(𝑠)
𝐾  𝜈𝜌𝜎
𝜇

 𝑆𝜈𝜌𝜎.                            (76) 

and 

                                                                    
𝛿𝑆𝜇𝜈

𝛿𝑠
= 0.                                                             (77) 

Accordingly, the equation of motion of spinning fluid for a variable mass has the form: 

                     
𝛿𝑆̂𝛼𝛽𝛾

𝛿𝑠
= (

𝑚(𝑠),𝜈
𝑚(𝑠)

(𝑔𝛼𝜈 − 𝑈𝛼𝑈𝜈) +
1

2𝑚(𝑠)
𝐾  𝜈𝜌𝜎
𝛼  𝑆𝜈𝜌𝜎) 𝑆𝛽𝛾.               (78) 

Following the same steps for deriving the spinning deviation equation mentioned in 

the above section, and then we can obtain the spinning deviation equation for a variable 

mass to have the form  

            
𝛿2𝛹𝛼𝛽𝛾

𝛿𝑠2
= 𝑆𝜌[𝛽𝛾𝐾   𝜌𝜈𝜎

𝛼]
 𝑈𝜈 𝛹𝜎

+ (
𝑚(𝑠),𝜈
𝑚(𝑠)

(𝑔𝛼𝜈 −𝑈𝛼𝑈𝜈)𝑆𝛽𝛾 +
1

2𝑚(𝑠)
𝐾   𝜇𝜈𝜎
𝛼  𝑆𝜇𝜈𝜎  𝑆𝛽𝛾)

;𝜌

𝛹𝜌.     (79) 

5.2. Finsler-Cartan Approach 

We suggest the Lagrangian for spinning variable mass in the context of Finsler-

Cartan Approach to have the form: 
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  𝐿 = 𝑚(𝑠)𝑔𝜇𝜈(𝑥)𝑈
𝜇
𝛻𝛹𝜈

𝛻𝑆
+ 𝑆𝜇𝜈  

𝛻𝛹𝜇𝜈

𝛻𝑆
+𝑚(𝑠)ℎ𝑎𝑏(𝑦)𝑉

𝑎
𝐷𝛷𝑏

𝐷𝑆
+ 𝑆𝑎𝑏  

𝐷𝛷𝑎𝑏

𝐷𝑆

+ (𝑚(𝑠),𝜇 +
1

2
𝑅𝜇𝜈𝛼𝛽  𝑆

𝜈𝛼𝛽)𝛹𝜇 + (𝑚(𝑠),𝑎 +
1

2
𝐵𝑎𝑏𝑐𝑑  𝑆

𝑏𝑐𝑑)𝛷𝑎 . (80) 

By operating the variation for the above Lagrangian (79) w.r.to 𝛹𝛼 and 𝛹𝛼𝛽 , we get the 

following equations  

                    
𝛻𝑈𝜇

𝛻𝑠
=
𝑚(𝑠),𝜈
𝑚(𝑠)

(𝑔𝜇𝜈(𝑥) − 𝑈𝜇𝑈𝜈) +
1

2𝑚(𝑠)
𝑅  𝜈𝛼𝜎
𝜇

 𝑆𝜈𝛼𝜎,                           (81) 

and, 

                                                             
𝛻𝑆𝛼𝛽

𝛻𝑠
= 0.                                                                   (82) 

Using the Weyssenhoff tensor for variable mass given by (73), then, the equation of motion 

for spinning fluid can be written as,  

            
𝛻𝑆̂𝛼𝛽𝛾

𝛻𝑠
= (

𝑚(𝑠),𝜈
𝑚(𝑠)

(𝑔𝜇𝜈(𝑥) − 𝑈𝜇𝑈𝜈) +
1

2𝑚(𝑠)
𝑅  𝜇𝜈𝜎
𝛼 𝑆𝜇𝜈𝜎) 𝑆𝛽𝛾.                   (83) 

The spin density deviation tensor equation will have the form: 

𝛻2𝛹𝛼𝛽𝛾

𝛻𝑠2
= 𝑆𝜌[𝛽𝛾𝑅    𝜌𝜈𝜎

𝛼]
𝑈𝜈𝛹𝜎

+ ((
𝑚(𝑠),𝜈
𝑚(𝑠)

(𝑔𝜇𝜈(𝑥) − 𝑈𝜇𝑈𝜈) +
1

2𝑚(𝑠)
𝑅  𝜇𝜈𝜎
𝛼 𝑆𝜇𝜈𝜎) 𝑆𝛽𝛾)

||𝜆

𝛹𝜆. (84) 

While, for the V-components, we perform variation for Lagrangian (79) w.r.to 𝛷𝑎 and 𝛷𝑎𝑏 , 

to obtain 

                          
𝐷𝑉𝑎

𝐷𝑠
=
𝑚(𝑠),𝑏
𝑚(𝑠)

(ℎ𝑎𝑏(𝑦) − 𝑉𝑎𝑉𝑏) +
1

2𝑚(𝑠)
𝐵  𝑏𝑐𝑑
𝑎  𝑆𝑏𝑐𝑑 ,                    (85) 

and 

                                                                      
𝐷𝑆𝑎𝑏 

𝐷𝑠
= 0.                                                          (86) 

Consequently, the equations of motion for spinning fluid and spin density deviation will 

have the form  

                      
𝐷𝑆̂𝑎𝑏𝑐

𝐷𝑠
= (

𝑚(𝑠),𝑑
𝑚(𝑠)

(ℎ𝑎𝑑(𝑦) − 𝑉𝑎𝑉𝑑) +
1

2𝑚(𝑠)
𝐵  𝑒𝑓𝑑
𝑎  𝑆𝑒𝑓𝑑)𝑆𝑏𝑐  .            (87) 

  
𝐷2𝛹𝑎𝑏𝑐

𝐷𝑠2
= 𝑆𝑒[𝑏𝑐𝐵    𝑒𝑏𝑐

𝑎]
 𝑉𝑏 𝛷𝑐

+ ((
𝑚(𝑠),𝑑
𝑚(𝑠)

(ℎ𝑎𝑑(𝑦) − 𝑉𝑎𝑉𝑑) +
1

2𝑚(𝑠)
𝐵  𝑒𝑓𝑑
𝑎  𝑆𝑒𝑓𝑑)𝑆𝑏𝑐)

|𝑙

𝛷𝑙 . (88) 

6. Condition of Stability for Spinning Fluid 

In 1995, Wanas and Bakry used the deviation vector as an indicator of stability of 

gravitating systems. This method has a vital issue to become independent of any types of 

coordinate systems [21, 22]. 
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Inspiring by the idea that the deviation vector can reflects the reaction of the system 

under perturbation. Their criterion to study the stability of any gravitating system was 

determined by evaluating the following quanitity 

𝐴 ≝ √𝛹𝜇𝛹𝜇 ,                                                     (89) 

where, 𝛹𝜇(𝑠) is the deviation vector in a given interval [𝑎, 𝑏]. The system under 

consideration was unstable if 𝐴 → ∞, otherwise it is stable.  

This idea has been extended to study spinning objects with precession [23]. The 

criteria of stability for study spinning objects with precession are 

𝐴 ≝ √𝛹𝜇𝛹𝜇 ,                                                    (90) 

and 

𝐴 ≝ √𝛹𝜇𝜈𝛹𝜇𝜈 ,                                                  (91) 

since, 𝛹𝜇𝜈(𝑠) is the deviation tensor. Thus, the system under consideration was unstable if 

𝐴 → ∞ and 𝐴 → ∞, otherwise it is stable. But if each of 𝐴& 𝐴 vanishes this is the indicator 

for strong stability.  

 In what follows, we will suggest a general formula which can be used to study the 

stability of spinning fluid being in strong gravitating systems geometrically. 

6.1. Cartan-Rund Approach  

We suggest that the condition of stability for spinning fluid using the spin density 

deviation tensor 𝛹𝜇𝜈𝛼(𝑠), as follows: 

                                                             𝐴̃ ≝ √𝛹𝜇𝜈𝛼𝛹𝜇𝜈𝛼 ,                                                  (92) 

In order to study stability for spinning fluid implies determining both quantities for 

each  𝐴&  𝐴̃.  Accordingly, the assigned gravitating system is becoming unstable if 𝐴 →

∞  𝑜𝑟  𝐴̃ → ∞, otherwise it is stable. While the condition of strong stability implies that  

                    √𝛹𝜇𝜈𝛼𝛹𝜇𝜈𝛼  = 0,           &                  √𝛹𝜇𝜈𝛹𝜇𝜈  = 0,                   

provided that                                           √𝛹𝜇𝛹𝜇  = 0. 

6.2. Finsler-Cartan Approach 

We suggest that the stability condition in this approach is connected to the 

magnitude of spin density deviation tensor horizontal and vertical coordinate, as follows: 

𝐴̃ ≝ √𝛹𝜇𝜈𝛼𝛹𝜇𝜈𝛼 ,                                                  (93) 

and 

𝐴̃ ≝ √𝛷𝑎𝑏𝑐𝛷𝑎𝑏𝑐 .                                                  (94) 

To study stability for spinning fluid implies determining both quantities 𝐴, 𝐴̃ 𝑎𝑛𝑑 𝐴̃.  The 

gravitating system is unstable if 𝐴 → ∞ 𝑜𝑟 𝐴̃ → ∞, otherwise the system is stable. Also, the 

condition of strong stability can be written as:  



 

15              MSA ENGINEERING JOURNAL 

Volume 2 Issue 2, E-ISSN 2812-4928, P-ISSN 28125339 (https://msaeng.journals.ekb.eg//) 

√𝛹𝜇𝜈𝛼𝛹𝜇𝜈𝛼  = 0,           &                  √𝛹𝜇𝜈𝛹𝜇𝜈  = 0, 

provided that                                         √𝛹𝜇𝛹𝜇  = 0. 

And the following conditions 

√𝛷𝑎𝑏𝑐𝛷𝑎𝑏𝑐  = 0           &                  √𝛷𝑎𝑏𝛷𝑎𝑏  = 0 

provided that                                         √𝛷𝑎𝛷𝑎  = 0. 

7. Concluding Remarks  

In the present article, we review briefly the main features of two different classes of 

Finsler geometry. This can be found by obtaining the problem of motion for objects defined 

in these presented classes.  Accordingly, we obtain the spinning and spinning deviation 

equations for both Finslerian approaches.  Such a vital result has been introduced by 

developing the equations of motion for a spinning fluid with a variable mass. These sets of 

equations have a vital role in studying dark matter, which may contribute as one of 

candidates of comprehending its meaning. Not only that but also in examining the mass 

production for particles nearby strong fields. 

 Such a tendency of work may through some light on the way to accumulate mass 

nearby strong fields of gravity, as well as becoming one of methods to explain the problem 

of dark matter within different geometries apart from the Riemannian ones. Such an issue is 

quite interesting to be examined in Finsler geometry.     

  Finally, we have extended the scheme of testing the stability problem of a fluid 

orbiting such a strong gravitational field. Such a type of work has been inspired by using the 

Wanas-Bakry method [21, 22] and discussed by Kahil in [6] and [23].  

Yet, it is very essential to implement the Finslerian geometry to define a specific 

theory of gravity able to describe strong fields. As we know that the orthodox general theory 

of relativity is uncapable to examine such regions. These conditions will lead us to solve the 

stability problem for different objects orbiting strong field by means of obtaining  their 

deviation vectors and tensors respectively. Such a process will be assigned in our future 

work.  

8. Recommendations 

The present work may be extended to examine different versions of bi-metric 

theories of gravity in the presence some classes of the Finslerian geometry to solve the 

problem of motion for different objects to get a better accuracy to reveal the possible 

discrepancies in the Universe. Such an approach will be considered in our future work.   
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