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Abstract

The General theory of relativity is one of the most successful theories of
gravity. Despite its successful applications, it has some difficulties in examining
the behaviour of particles precisely in strong gravitational fields. Bi-metric type
theories of gravity are classified as alternative theories of gravity that describing
such strong gravitational fields, such as the gravitational field formed at the core
of our galaxy. In order to obtain the equations of motion for spinning fluids, we
use the Weyssenhoff tensor to express the spin fluid. The equations of motion for
spinning fluids are derived using Euler-Lagrange equation. We present the
equations of motion for spinning fluids and their corresponding spin deviation
equations in some classes of Bi-metric type theories. Also, we obtain equations
of motion for spinning fluids and their corresponding spin deviation for a
variable mass. Moreover, we extend our study to examine the status of motion
for spinning charged fluids and their corresponding spin deviation equations.
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1. Introduction

Einstein’s theory of gravitation (GR), has, so far, been considered to be one of the
great achievements of the last century [1]. This is because of its confirmation with respect to
a degree of accuracy to all gravitational observations and experiments, detected during that
epoch [2]. In addition to its predictions [3], this revealed new phenomena that were detected
recently in the current century, such as gravitational waves [4]. This theory has been
established in the context of pseudo-Riemannian geometry depending on two principles: the
general covariance and the equivalence principles. At the end of the 20th century, standard
cosmology had problems due to its inability to examine the behaviour of particles in strong
gravitational fields.

On one hand this prompted some authors to construct alternative theories of gravity
to conceive and interpret tests of gravity [5, 6]. There are numerous attempts to formulate
other theories of gravity, in this article, we devoted on one of these. One of the streams that
took constructive theory of gravity alternative to GR was started by Fierz and Pauli 1939 [7].
This stream is known in the literature as Bi-metric type theories of gravity (for a review see
[8]). These theories of gravity are considered promising theories to interpreting phenomena
in strong field.

The importance of the bi-metric type theories of gravity stems from its ability to
examine the behavior of particles in strong gravitational fields. Additionally, bi-metric type
theories are considered as gauge field theories. It has numerous versions. A Class of these
theories respects Lorentz invariance. While some of its versions break Lorentz invariant.
Lorentz-breaking theories for massive gravity has the same progress as that of Lorentz-
invariant theories, based on the experience summarized from recent developments in such
theories. In what follows, we are going to display briefly some approaches of this type of
theories:

(2)The Rosen Approach

In 1940, Rosen [9] proposed bi-metric theory of gravitation is, satisfying the
covariance and equivalence principles. In his approach, he introduced a second metric tensor
Yeo COrresponding to flat space, besides the metric tensor g.,. The theory's fundamental
concept is that any point on the manifold is represented by two reference frames, the first of
which is expressed in a flat space and the second of which is curved.

(b)The Moffat Approach
In this approach, Moffat [10] has merged the above two metrics, producing a new
one defined as:

Jeo & Geo + B0, 0, ey
where, B and ¢ represents a bi-scalar field. This version of bi-metric theory breaks the
Lorentz invariance in the very early universe, supposing that the speed of light undergoes a
first or second order phase transition in this epoch. This modification has interpreted the
problem of dark energy [11], due to his proposal that speed of light is not constant in space-
time or what is called a variable of the speed of light (VSL).

(c) The Milgrom Approach
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According to this version it is proposed to involve two metrics as independent
degrees of freedom [12], the MOND metric g.,which is responsible for the ordinary matter
and an auxiliary metric y,, proposed to express twin matter.

The basic idea depends on the fact that we may create tensors from the difference
between the Levi-Civita connections of the two metrics having the following form
C"I‘W ot F";W - F‘}‘W. 2)
The above third order tensor act like gravitational accelerations of the two sectors.
The importance of BIMOND is that its ability to interpret phenomena subject to
strong gravitational fields as the core of black holes [13] and describing the behaviour of
galactic dark matter and dark energy. Also, it plays the role of measuring the gravitational

lensing in an accurate way.

(d) The Hassan - Rosen Approach

Hossenfelder has formulated another version for bi-metric theories by proposing
two different metrics one is defined on the tangent space TM while the other is in its
cotangent space T*M on a manifold M [13, 14]. Each metric has its own Levi-Cevita
connection and curvature tensor. Then, two different fields are taken into account, each of
which moves in accordance with a certain metric and its connection.

(e) The Verozub Approach

The bi-metric theory of gravity [15] has been extended to an alternate version by
Verozub by the addition of geodesic mappings. This made it possible to describe gravity in
two different geometries, one of them Riemannian space as a co-moving reference frame,
and the other a Minkowski space, an inertial reference frame. Consequently, a point mass
moving in a co-moving reference frame (Riemannian space) may observed to moving along
a geodesic line, but in reality it is actually moving under a force field as viewed from an
inertial reference frame.

In this modification, the geodesic mapping acts as gauge transformations [16]. Such
a tendency makes it possible to examine the behaviour of trajectories in very strong
gravitational fields such as Sgr A* [17]. As a result, this kind of description can tackle
problems with strong gravity and stability problems surrounding supermassive black holes.

On the other hand, the arising notion of examining intrinsic property of matter that
becomes essential in the presence of strong fields of gravity in their studies [18]. One of
such staggering features is the problem of the intrinsic spin which plays a dominant role in
the early stages of the universe, excluding the possibility of a cosmic singularity [19, 20].

Also, some authors have focused on studying the spinning motion because it is
considered to be one of the true elements of the characteristic behaviour of objects in nature.
Therefore, various attempts had been done in the domain of the theory of general relativity,
beginning with Mathisson [21], and continuing with Papapetrou [22]. Mathisson-
Papapetrou provides the following equations for the dynamics of spinning particles

pp* 1 P
Dr =§R upa SO UH, 3)
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DS*F
5 Dt
while, P* =mU* + Ug % defines the momentum of the particle, S*#is the spin density

tensor, and U*denotes the 4-velocity of the particle. Moreover, such a type of an approach
has been expanding to study spinning charged objects by Dixon [23] by means to include
other non-gravitational forces such as electromagnetic. Accordingly, Equations (3) and (4)
may be extended to include magnetic moments as known as the Dixon-Souriau equations in
the following way has developed a method to incorporate spinning motion and (cf. [24])

= PeUF — PPy, 4)

DP® 1 a PO TTU ajgre 1 apf€ec
= 5 Ry SPTUM + q FLUS + 5 g™ M g, (5)
DS“ﬁ arrB Brra a B B a
— = PUF — Py — (M@ EF + MPPF2), (6)
Dq
— =0 7
Dt 7)

where, M€?gives electromagnetic moment and q denotes the electric charge of the particle.
The problem of motion of spinning particles has been tackled in other non-Riemannian
geometries such as Absolute Parallelism and Finslerian geometries [25, 26]. These works
have been extended to examine the problem of spinning fluids in the context of Riemannian
geometry [27].

In the present work, our main aim is to study equations of motion for spinning fluid
in the context of some versions of Bi-metric theories of gravity. Accordingly, the article is
arranged as follows. In Section 2 we introduce the Weyssenhoff spin tensor needed for the
current application. Equations of motion for spinning fluids and their corresponding spin
deviation are obtained in Section 3. In Sect. 4, we derive equations of motion for spinning
fluids and their corresponding spin deviation for a variable mass. In Sect. 5, we investigate
equations of motion for spinning charged fluids and their corresponding spin deviation. In
Sect.6 we give some comments about the obtained equations and their forthcoming
applications.

2. Weyssenhoff Spin Fluid

Through the article, we are going to derive the equations of motion for spinning
fluid using the Weyssenhoff spin tensor.

On microscopic scales, the spin of the matter fields acts as a characteristic of the
continuous Weyssenhoff fluid, since the Weyssenhoff fluid is a perfect fluid that has
intrinsic spin. For which the spin (angular momentum) density of the matter fields can be
described by the second-order skew tensor

S = _gha, (8)
It is a good candidate to describe particles having pole-dipole moments. To describe the
motion of a spinning fluid the second-order tensor S*# must be extended to another one that
can describe multi-pole moments for extended objects. Accordingly, we use the
Weyssenhoff tensor for spinning fluid which is postulated to be (cf. [28])
SOk = shyoe, 9
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where, $7%F s a third-order skew-tensor in the last two indices which is chosen to represent
the spin density of the fluid, U? = ddiT IS the unit tangent vector and t is a parameter
varying along the curve. In the case of the spinning fluid motion having a precession the
Weyssenhoff tensor can be written as
sS04k = s2bpo, (10)
where, P?is the momentum of the particle and is defined as:
D560'

P? € mU° + U, De
While for variable mass, the Weyssenhoff tensor is expressed as
$9%B = m(r)s*PUy°, (12)
where, m(7) is a function of the parameter 7 representing variable mass.

(11)

3. Equations of Motion for Spinning Fluids and its Corresponding Spin
Deviation
In this section, we will derive the equations of motion for spinning fluids and their
corresponding spin deviation in the bi-metric type theories. However, it is worth to mention
that the equation of spinning motion for spinning particle for these versions of Bi-metric
type theories have been obtained in [29].

3.1. Rosen Approach

Equations of motion in the context of Rosen's approach in the case of P€ = mU¢€can
be derived using the following Lagrangian function [29]
[1]0' VIIUEG

L= (ges — Yea)U = Ve =+ Se¢ 50— Ve +2RuveaSwUW‘UM (13)

where, g., and y., are the metric tensors of the curved space and the flat space respectively,
and R,,¢¢ is the curvature tensor formed from the metric tensor g.,. While, y., having a

vanishing curvature tensor. And , iS an operator that characterizes covariant derivative,

such that for an arbitrary vector A“ the covariant derivative is defined as:
ZA“ da” + A%, A*UY, 14

as, A%, = 'Yy —I%, where T'%, and [‘,‘w are the affine connection of the curved and flat
space, respectlvely. To obtain the path equations one have to apply the following Euler-
Lagrange equation with respect to deviation vector ¥ *and to the spin deviation tensor ¥ *#

which have the forms:

d JL oL

_——— =0, 15
dSoye oy« (15)
and,
d oL oL B 16
asoyes oweB (16)
One gets,
we _1, oo
ve =3 R%pos SPOUH, 17)
and,
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vSsah
= =0. 18
v (18)
Consequently, using the Weyssenhoff tensor (9), the equation of spinning motion

for the spinning fluid will have the form

AR
. 7 R%uesS SPYyk, (19)
To obtain the equation of spinning density deviation, one has to apply the condition [30]
SV w8 = w8, (20)
which implies using the following commutation relation
afy apy S11P — al 8
(%7 5, — STV 5 ) WOUP = SIBYRL . S o, (21)
Accordingly; we can obtain the equation of spinning density deviation to have the form:
v2ypaBy ,x 1
= — 1
oo = SPPYR Y USWT  o |(Ryeq U 5% 5PY)

+(R% e UM S€° sﬁy)la] ps, 22)

where, the semicolon (;) and stroke (|) are used as infix operators characterize tensor
derivatives using connections of curved and flat spaces, respectively.

While in the case of motion with precession, i.e. P¢ = mU€ + U, %, the
Lagrangian of spinning motion written as B

vye vyeo
L= (gea - VEJ)PE_

s + Seo _Vr + ERWEJ SCOUFPY + 2P Uy W€, (23)
By applying the variation to the Lagrangian (23) with respect to ¥¢ and ¥€?, one obtains
vrPe 1
_VT - ERaﬂpa SPeU¥, (24)
and,
AR
=—— = 2pPleyhl, 25
T (25)
Using equations (24) and (25), then the equation of spinning motion can be written as
AN 1
= 2P*pIBYY] 4 > RueaS SPYy*, (26)

Applying (21) and the condition (20), then the equation of spinning density deviation
becomes

v2y by plBy p@ 1€ wo aplB vl aplB vl )
G = SR e U +2|(PePlPy )+ (PePPU )la]sv
1
+E [(Rauea UH* S€0 S,BV);S + (R%yey UH S0 SBV)la] ps (27)

3.2. Moffat's Approach

The Lagrangian representing spinning motion according to Moffat’s approach in
case of P¢ = mU¢€, have the form:
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W' WEU 1
I = geaueW + Seo 5 E Lyves SEPUVWH, (28)

where,
Ta ef o fa fe fTa fe fTa
L uvo =T uo,v —T uv,o +T uar ev r uvr €a’

defines the curvature tensor, and the operator % defines the covariant derivative w.r.to the
parameter 7 such that for any arbitrary vector A%, we have
VA% dA®

= — 4+ T2 AHUY,
\VAs dr e

By operating the Euler-Largrange equations (15) and (16) to (28), one obtains

vu* 1 .
o, —2 upa SPOUH, (29)
and
vsaB
5= 0. (30)

T
Meanwhile, from Weyssenhoff tensor (9), the equation of motion for spinning fluid can be
written as

VseBr 1
57 = 7S SPYUH, (31)
In the context of Moffat's approach the condition (20), can be rewritten as:
aBy 5 _ wabY 16
_ BRI Sl I (32)
and the commutation relation will have the form
afy  _ caBy S11p — ce[ByTal 8 wp
(5 16p =S W)w UP = seBri o us e, (33)

Accordingly, by using the relation (33) and the condition (32), we can obtain the equation of
spin density deviation as
v2ypaBy

. 1,
= sPBYEY U we + 5 (L ueg UK S S7) WO, (34)

T
where, the double-stroke (||) is an infix operator used to characterize tensor derivatives using
connection ['%,,,.

While in case of P€ = mU*€ + Ug 5 the Lagrangian of spinning can be written as
~ € /V\(PU ﬁqjed 1. €EoyrVv €0
L= gesP 5=+ Sec 5+ 5 Luves SV PH + 2P Uy ¥ (35)

By operating the variation for the Lagrangian (35) with respect to ¥ and ¥ %#, one gets
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VP* 1.

5 = L% eo SECUL, (36)
and
AR
5= 2pleyhl, (37)

Following the same technique mentioned above we can derive the equation of motion and
the spin density deviation equation as follow

vsaBy 1.
s— = 2PaplByY] 4 5 LueaS< SPYyH, (38)
and
v2paby ~a] 1.
s =S ey UV + (ZP“P[ﬁUVJ + 5 ¥ es UH S Sﬁy)WS ¥9.(39)

3.3. BIMOND Type Theories

The Lagrangian function for spinning motion in case of P€ = mU€ in the context
of BIMOND type theories, can be written as

_ EV’PG A | _ -
L=geU Ve + Seo Ve +Z(R;wea_N;wea)S VAR Lo (40)

where,
o ot S —a —€ —a —€ —=a
Nuva =T uoy —T uv,o +T uar ev_r yvr €0

By taking the variation with respect to ¢ and ¥%#, to the Lagrangian (40), then one can
obtain the path equations as:

v 1, . _ i
= = E(R Yoo — N%po) SPEUH. (41)
and
vsab
= = 0. (42)

Accordingly, we can obtain the equation of motion for spinning fluid using the Weyssenhoff
tensor (9) in the form:

vseBr 1 _
=—=3 (R%es — N%es)SE7 SPYUH, (43)

Using the condition (20), and
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Saﬁylslp6 — W“B}’lsué‘ (4_4)
together with the commutation relation (21) and the following one
(Saﬁy 5o = Saﬂy )‘P‘SUP = Se[ﬁyNa] U‘S we, (45)

++ |++

We can derive the spin density deviation tensor to become
vewaly pIBy p] plBY N cwo 4 L(pa 1 geo oBy 8
— :(5 R%ep = SPPYN ) U W + 5 (R UM SE SPY) 0
+= (N eo UM S0 sﬁy)lﬁw. (46)

While, the double- stroke ()i togethe_r with the (+) sign are infix operators used to represent
tensor derivatives using connectionl'},,,

But, in case of motion with precession, i.e.P¢ = mU*€ + UG _T the Lagrangian will
have the form:

vl]/" leea eEcrrIVwHu D €o
?+Sea — += (R,WE,, Nyves) SETUVWH + 2P U, WE. (47)

L=g.,U¢
Yeo Vo

Taking variation to (47) with respect to ¥« and ¥ “# the path equations can be written as:

VP“

(R Lo — N%eo) SETUM, (48)

and,
ARG
—— = 2pleyhl, (49)
T
Using the Weyssenhoff tensor (10), then we obtain the equation of motion for spinning fluid
as follow:

vsaBy —
——= =paplByvl 4 = (R o N‘fzea) S€o SBryH, (50)

Using relations (21) and (45) together Wlth conditions (20) and (44), we can obtain the
equation of spin density deviation as

vzpaby
V12

_ (Sp[BYR“LEU _ SP[B"Nap].ea) UEWo 42 [(P"‘F[BU”);(S + (P“p[BUV])g] o

[(Raﬂe Uk < SPY) 4 (Noep UM S SBV)li] wo, (51)

3.4. Hassan-Rosen Approach: Bi-gravity type theories

According to this version, the two suggested metrics g.,and h., are chosen to
define two distinct field equations one describe the matter while the second for the twin
matter.

9 MSA ENGINEERING JOURNAL
Volume 2 Issue 2, E-ISSN 2812-4928, P-ISSN 28125339 (https://msaeng.journals.ekb.eg//)



The corresponding Lagrangian of spinning motion in case of P€ = mU€ and P¢ = mU¢
can be expressed as:

L= geoUSWOoLU® + hegVEDT,VE + Sey WO, U + Sey D0, V4

N| -

1 - ~
+§RWEJSE"UV'P“ + - Ruyea SV OH . (52)
WhereV ¥, d%and S€° characterizing the twin unit tangent vector, the twin deviation vector
and the twin spinning tensor, respectively. And ﬁww defines the curvature tensor formed
by the metrich,,.

Accordingly, the path equations can be obtained by applying variation with respect to the
deviation vector ®% and W%, to the Lagrangian (52), one gets:

pU® 1

o = 5 Rupe SPTUR. (53)
Ve 1. .

o = 5 Rups SPTVE. (54)

While the variation with respect to the deviation tensor ®*# & W# | gives rise to the
following equations

DSap
o =0. (55)
And,
DSah
= 0. (56)

From the Weyssenhoff tensor, by using equations (53-56) then we can obtain the equations
of motion for spinning fluid, to become

DSahY 1
5= ER“HEUS“ SPryk, (57)
pSeby 1 _
D—/l == ERO',HEO-SEU SBYV#. (58)

Consequently, by using the relation (21) and the condition (20), we can obtain the equation
of spin density deviation as
D2y by
D72

1
— aj s
= SPIBYR® , US W7 + 3 (R%,cq UH SE0 SBV); s

Using the condition
1s®° = 0, (U8, (59)
and following commutation relation
aBy aBy S11p — pal )
(5“5 =S 1ps) @7UP = SUYR U2 @0, (60)

we can obtain the spin density deviation tensor to become
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D2paBY

= §PIBYRY Ve @7 + = (R“#E Vi §e€o SBY) (61)

|II5

Incase of P€ =mU® + UUD;—T and P€ = mVe + V, DDS—A, the Lagrangian function can
be written as

L =g UV, U* +h,VE¢ ”|aV“ + See PEoLUY + Seo |||aVa + 2P Uy P
1 eEcrIVwHn 1 eEocyVHU €0
5 Ruvea SOUYPH + 5 Ryye oSEVY D! 4 2P V@ (62)

By operating the variation to the Lagrangian (62) with respect to ®%, ¥* . &*Fand W*#, one
can obtain the following set of equation

DpP% 1

— = upa SPOH, -
DP@ 1 o
D =2 ﬂp(,S VE. (63)
Dsh B
= 2pleyhl,
Dt
DS§*E
——__ —pplayhl -
DA
We obtain the equation of spinning motion for spinning motion, to have the form
DS*BY 1
5= 2PeplBYY] + 3 R%,., S€7 SPYUH, (64)
pS*kr 1. L
Sy 2pplAyYl 3 R4, €7 SPYVE, (65)

Following the same technique mentioned in the previous section to derive the equation of
spin density deviation, we get

D2y aby a 1
57 = splBy p peaUS WO + (2pap[BUV] + ERaum UH €0 SBy) w9, (66)
;6
D2y al s 1 ceo &
SYE R splByp peaUS P+ (zpap[ﬁyy] + ERauea VK Geo Sﬂy) 8. (67)
16

3.5. The Verozub Approach: Bi-metric invariant-gravitation theory

In case of P€ = mU¢€, the Lagrangian of spinning motion will have the following
form:
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EQWJ 2"1]60 ETTIIV
L= Yeg (DU T+ Sey =5+ 5 Ky SUVWH. (68)

where, Y., (¥) is the combined metric under the effect of a given field ¥, and its
corresponding curvature is defined as

a def T ra e a € Ta
Kuva =T uoyy —T uv,o +T pLO'F (2% -T vaF €o"

Similarly, the path equations can be obtained by operating the variation with respect to ¥¢
and ¥ *# | to the Lagrangian (71) as follow:

DU* 1 .
F = EKIWEU Sp U”, (69)
and,
DS*F
=0 (70)

Accordingly, by using the equations (69) and (70) and Weyssenhoff tensor (9), we get:

DS*r 1
57 = 5 Ko S SPYyk, (71)

From the condition (20), which can be rewritten as

ST WO =W U8, (72)

1%

together with the following relation

(SaBV _ S‘ZBY 06

Sp
||++ ||++

)WUP = selbrgel, udwe.  (73)

We get,

D2y By
Dr?

1
= sPlbrKe) U wo + 5 (K UHSE0 SPY) (0. (740)

Moreover, the Lagrangian of spinning motion in case of P¢ = mU€ + U, % can be expressed
as:
[I/O‘ D[I/EO‘

D -
L=Y,,()U¢ _D‘L' + Seo Do + EKWEU SCOUVYH + 2P Uy P, (75)
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Accordingly, by taking the variation with respect to ¢ and ¥*#, one obtains

Qpa 1 a €0
—DT = EK ueo S U”; (76)
and,
DS*hB _
- = 2playhl, (77)

Following the same methods mentioned above we can derive the equation of motion and the
spin density deviation equation as follow

Ds«fy 1
57 = 2p*plByY] + ZK",QG,, 5€9 SBYE, (78)
D*WRY _ sotprgal paplb ) 4 X B 8
— — € g a a €0
be? = SPLBYK® JUEW +[2P PUUT 4+ 2 Kyeg UM S SPY| W°.(79)

%

4. Equations of Motion for Spinning Fluids and its corresponding spin deviation:
Variable Mass

In this section, we are going to derive spinning and spinning deviation equation in
case of motion without precession recalling that in case of P€ = mU€ implies that mass is
constant [31].

4.1. Rosen's Approach

We suggest the Lagrangian in the context of Rosen's approach in case of variable
mass having the following form:

g

\Y%
L =m(7t)(gesc — Vea)U =

yyeo 1
e+ Sep =+ (m(r),ﬂ + = Ryves svw) wi (80)

2

By varying the above Lagrangian with respect to %% and ¥ %% we get the following path
equation

YU“ _ m(T),U (( ac _ aa) _ UaUG) n lRa supo (81)
Vt m(t) & ¥ 2 HPO ’
and,
vs*B
= = 0. 82
v (82)
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Using equations (81) and (82), therefore, the equation of spinning motion will take
the form

vsehy (m(T),a
Vt

1
aoc __ Qa0 _ J7QJ]0 _R« upa) By_ 83

Therefore, we can get the equation of spin density deviation by applying the relation
(21) together with the condition (20)

v2yabBy
Vr?

m(1) s
m(t)

1
= SPPYR ey U7 + (( (€% = Y™) = USU) + 5 R%p5 57 Sﬁy> wo

;8

()"7 aoc aoc arjo 1 a o
+<<T:ln;) ((g* —y*®) —U*U )+5R ! oo SHP )Sﬂy>wl{'5 (84)

4.2. Moffat’s Approach

The Lagrangian of a spinning motion in case of variable mass, has been suggested
to take the form

L e vpeo 1_ vaB
L= m(r)gEJU ? + SEJ ? + (m(r),# + E Mavaﬁ S )l{lﬂ (85)

By varying the above Lagrangian with respect to ¥ and ¥ %% we get

=

vue — m(T)'O' ~ao ayjjo 1Ma SHpo 36
vT - m(r) (g - U )+§ upo . ( )
and,
ARS
=—=0. (87)

Using the Weyssenhoff tensor (12), then the equation of motion for spinning fluid can be
obtained to have the form:

vsaBy _ (m(r),a

1_
s o) (§% —U*U%) + EM"jm SW"’) Sh . (88)

Applying (45) and the condition (44) accordingly, we can get the equation of
spinning density deviation to become

V2 aBy
V12

m(t) s

m(7)

= sPIY gl Ue o + <( G* -U*U°) + L e supa) 53V> ¥9.(89)
pec 2" mpo .
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4.3. BIMOND Type Theories

We suggest the following Lagrangian to drive equation of motion for spinning fluid in
case of variable mass to be written as

vwo val/{34

~ vy 1’4 1 _
L=m(1)g.,U¢ = +S., = + [m(‘r)_u + E(Rma — NWE(,)SV“] PH (90)

The path equations can be obtained by applying variation with respect
toW* and W*#, to (90), as follow:

VU® m(7) _
T = ey U 5 (R = ) 5977, o1

and,
Vs“ﬁ
— = 0. (92)
Using (91) and (92), also, by taking in con3|derat|on the Weyssenhoff tensor (12), then the
equation of motion can be written as

VSY  tm(1)
Vi Lm@)

(§%€ — USU) + = (R o Nf;;p(,)w”]sﬁy. (93)

Following the same rules mentioned above using (20), (21), (44)and (45) to derive
the spin density deviation equation, we get

v2wpaBy
V2

= (SP[ﬁVR"‘;)EU — SP[BV]V“] ) UE yo

m(t —
+ ( mDe (g* —U*U®) + 5 (R Yoo — N%po) S“P"] SBV) po
m(7) 6

+ <[m(z-))f( g€ — U*U¢) + % (Raﬂpa Mpd) S#PU] Sﬁy> ws (94)
H

4.4. Bi-metric Theories

We proposed a Lagrangian able to describe the motion for matter and twin matter in
case of variable mass having the following form:

L =m(1)gecUWqU* + M(DhegVEDPT 1oV + Se WEoqUT + Seg D)1,V

1
+ (m(r),(, + ——— Roag swﬂ) ph 4 (m(z) o +5 Rovap swﬂ) oL, (95)

1
2m(1)
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Taking the variation with respect to W%, &%, W5 and &%F | to (95), we obtain the

following set of equations:
DU _ m(1)y Wv _ Jrajre 1na vpo -
br = mey (@ —USUS) +5RG g SV

DV® m(A 1. ~
— ( ),E (hae _ VaVe) + ER%/)G' Svpo

DA~ #i(d)
p—
DSk
=0. 96
De (96)
DSak
DA -

Using the Weyssenhoff tensor (12), then the equations of motion can be written as

(97)

DSaBY _ (m(‘f),e( ae _ yayey 4 lR“ Svpo') sBy
Dt m(1) g 25 HPO '

(98)

DSehy M(A),e ae aye 1 Do cv ¢
= : — Z po | SBY
- (ﬁl(/l) (he€ = VV) + 2R, § )5 .
Applying relations (21) and (59) together with conditions (20) and (60), we get the
following set of equations of spin density deviation
1
m(T),e( ae _ U(ZU(':') + ERaﬂpO' Svpa) SB)/) SU‘?. (99)

DZ(paBy " al
= SPIPYR UsWPo + || —=
D2 pea ( m(t) g 5

DXy o 4 () 1. . .
YE = SPIBYR®, , VE D7 + 7%63{h%>-Vﬂﬁ)+zRﬁm05WG SEv ] ®%.(100)

s

4.5. Bi-metric invariant-gravitation theory: Verozub Approach

The Lagrangian function for a spinning motion in case of variable mass in this

version can be expressed as:

a €0

D
L= m(T)Yea(lp)Ue _QT + Seo _F

1
+ (m(r),g + EK,WEJ SV“) yH, (101)

By operating the Euler-Lagrangian equations (15) and (15) to (101), we get:

DU m(7), 1
o= (Y = UU) + 5Ky S, (102)

Dz m(7)

and,
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DS*B
Dt

Using equations (102) and (103), accordingly, the equation of spinning motion can be
written as

= 0. (103)

DS By (m(T),e

1
STk (Y€ — U%U€) + EK"{,EU SV“) Shr, (104)

m(t)

The equation of spin density deviation can be derived using relation (74)
together with condition (73), as

D2waBy
D72

m(7),e

m(t)

= SPIBYRY U WO + ( (Y€ — Uye) 4= K® svw) sﬁy> w9, (105)
peo 7 vea :

)
%

5. Equations of Motion for Spinning Charged Fluids and its corresponding spin
deviation

In this Section, we are going to demonstrate the equation of motion for spinning
charged fluids in case of P€ = mU€.

5.1. Rosen's Approach

The Lagrangian function for charged spinning fluid can be suggested to have the
form

€ quo- Z[IUEO' €0 v €0
L= (gea - VEG)P ? + Seo ? + ER;wea SCOURPY + ZP[EUO']LP

1 1
+q F.,USWO + EME"FEJ;U‘P“ + EME"FEUW‘P“ — (MpF, + M, ,FP,)We°. (106)

Operating the Euler- Lagrangian equations (15) and (16), to the Lagrangian (106), we get:

YP“ 1a PO TTU agye 1au €o lau €o
= =R%py SPTUH + q FEUS + = g M F, 5 + =y ™M Foy,, (107)
Ve 2 2 2
and,
vs*
v _ g
= 2Pleyfl — (MR 4 mPepe). (108)

Meanwhile, from Weyssenhoff tensor (10), we can obtain the equation of motion for
a charged spinning fluid as follow:

vsehy 1
= — 14 B
=P |2PEun — (MEPE) + MYoFF)| + [ER“M,G SPIUK 4 q FLUE
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1 1
+ 3 g*MF g + Ey“HMEGle i ] a4 (109)

Accordingly, we can obtain the equation of spin density deviation by
applying the relation (21) and the condition taking the following form

v2yaby
Vr?

_ a] 14 B )
= SPIBYR®  Ue WO + ((ZP[BUVJ - (Mﬁpﬁ) + MYPF, )) P“) @
;8

+ <<2p[l3UV] - (Mﬁpppy + Mypppﬁ)> pa) wd
|5

+

1 1 1
((ER“”EU UKS +qFUS + +5 M Fegq + EME"FGGW)SM).&

1 1 1
+ ((ER“MEJ U*S€7 + q FLU€ + EME‘TFEUW +§M60Fea;a)sﬁ’y) ] S (110)
|8

5.2. Moffat’s Approach

We suggest the Lagrangian representing charged spinning fluid to have the form

P € ﬁl;ﬂf ﬁlpea 1. eEoyrv €o
L=§.P s+ Seo s + = Luves STUYWH + 2P Uy ¥
1
+q F.,USWO + EME"FEJHU‘P“ — (MpF¥ + My, FP ) We. (111)

By taking the variation with respect to W* and W*#, to the Lagrangian (111), we obtain:

ﬁpa 1 ~a eTTIU arr€eE 1 AAUNJET
5= = 5 L uea STUL + q FLU + 5§ M Feg (112)
and
vsaB
B B
= = 2PleyP) — (MW ESF + MPPF ). (113)

Therefore, using the Weyssenhoff tensor (10), the equation of spinning motion for a
charged spinning fluid will have the form

vsaBy

1.
= = 2paplByyl — (MBprV + MVPFPB) +§L“MGSE" Shryr

1
+q FEU€SPY + > GHMEFe 1, SPY. (114)
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The equation of spin density deviation can be obtained using relation (45)
together with conditions (44), as follow

vl 6y 1] Y Byl BrRY B
— € Wwo a _
5,2 = SPIPY], pEJU +(2P PP Y (M ”Fl') +M7’pr )
1 Ta €a cByTun ajrecBy 1 ~QUNJET By )
+5 L%egS< SPYUM + q FLUSSPY + 2 g M Feg),S )”64/ .(115)

5.3. BIMOND Type Theories

The Lagrangian of charged spinning fluid, can be suggested to have the form
_ vye vyer 1 _ _
L= gEGUE? +S.s < *3 (Ruves — Nyveg) SEPUYWH + 2P Uy WE0

1 1
+q F.,USW + EME"FE,,;V‘P“ + EME"FEGm WU — (M, F¥ 4+ My, F2) W€, (116)

The path equations can be obtained by applying variation with respect to ¥* and W*#, to
the Lagrangian (121), we get:

VP 1 _ 1_ 1_
= =5 (R = N%es) SEPUH + q FLUS + S GHM S Fegyy + 5 GHMF yu. (117)

and,

vsab

_ 8
—— = 2pleyfl - (M EF + MPPR ). (118)

Meanwhile, the equation of motion for a charged spinning fluid using the Weyssenhoff
tensor (10), can be expressed as.

VsaBy

1 _
——=2pP"PIFUY - p° (MPPEY + MveF f) + 5 (R%cor = Ncy) 57 SPYU

1 1
+q F% UESPY + Eg_aﬂMeaFea;uSBy + EgaﬂMeaFealfSBy' (119)

Using the same rules mentioned above using (20), (21), (44) and (45) to derive the
spin density deviation equation, we obtain
v2waBy
V12
+ (ZP“P[BUﬂ — P (MPPE) + MVPFPB)) ps
)

= (SP[BV R, — SPLBY ,vagw) Ue wo
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+ (213“15[/3 v — P (MPPEY + MVPFPB)) ps
)

I

1 1
+ <<§R“,m UK S +q FeU +5 G M gy

1 1o !
+EQ_WMEGFEG|‘;SM> S/’)V)S o+ <(§Nayea UKS +qFLU® + +§9_WMGJFEG:M

1 5
+1gemmeer, . Sﬁy) Sﬂy) LY (120)

1%

5.4. Bi-metric Theories

It has been proposed that the Lagrangian of charged spinning fluid describing matter
and twin matter has the form:

L= gegPEWoqU* + hegPED?) 1V + Seq WU® + Sep 1oV E + 2P Uy WE°

[l

1 1. ~ - 1
+ ERIWEUSEO—lezuu + ERIWEGSEJVVCD” + ZP[EVG]CDGU + q FEGUGLPJ + EMEJFEO-:UWU

1
—(MpF:) + My, F2)WE + q FpVEDT + = M Fegp®”
— (McpF, + My, FP) @7 (121)
By operating the variation with respect to ¥ and ®* ¥*F and ®*#, to the Lagrangian
(121), we get the following set of equations

DP¥ 1,4 poTTU ayre o 1 aupeo
D—‘L'_ERﬂpo-S U +CIF6U +Eg M FEG;M' -

DP? _ LR, Seovi 4 q Faye 4 - panyery,

DA _ 2 Heo QreV+35 eolllw

DS
Dt

= 2PlyP — (MPEF + MPPF ), (122)

DS*E
2 _oplayBl _ (pmarp P Bor a
= 2PV — (MPES + MPOF ). .

Using the Weyssenhoff tensor (10), then we get the equations of motion for spinning fluid
as follow:

DS*hY 8 1
= Pe (2PPU") — (MPPE) + MYPF, )) + (ER"‘“EU SETUH 4 q FLUE
1
+5 g“”ME"Fm;u) Sh, (123)
DSy _
= pa(2pByvl — (MPPEY voR B
= = P(2PUyN — (MPPE) + M Fp))
1 1 .
+ (E R SOVH +q FV e + 5 h M Fog u) SAY. (124)
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Applying relations (21) and (60) together with conditions (20) and (59), we can get
equations of spin density deviation

D2y by [By p?l ) BIB17Y] Bpr?V B
€ (e a
De? = SPIPYR pEGU yo 4+ [P (2P Vvl — M pP;) MVpr )

1 1
+ (ERa”E" SETUH + q FLUC + Eg““ME"FEG;u) Sﬁy] ) pé
DZPFY al s '
— 14 B
= SR U @7 + |Pe(2P1PvY] — (MPPEY + MYPF, ))

@,  (125)

1. . 1 -
+ (— Rueq SO VH +q FV*© +§h““M“Fea|||u)5M s

2
5.5. Bi-metric invariant-gravitation theory: Verozub Approach

We propose the Lagrangian of charged spinning fluid according to this version, to
take the form

"e—qja QIPEO- 1 ECTIVWHU D [
L =Yeg )P ==+ Seo =5 + 5 Kuveo SCOUYWH + 2P Uy ¥
1
+q F.,USW + EME"FEJ”K WY — (M, F¥ + Mg, FP)We0.  (126)
Varying the above Lagrangian with respect to ¥ and ¥ %#, we get
Dﬁa 1 «a ETITU agye 1 aupjec
5 = 5 Ko SETUK + q FEUS + Y UM Fegy, (127)
and,
DS*F
=— = 2PleyP) — (MPEf + MPPF,?). (128)

Dt
Consequently, we can get the equation of motion for spinning fluid using the Weyssenhoff

tensor (10) as follow:
DSy S8 11Y] oY P
— — a

—— = PU(2PPuM — (MPPEY + MYPF, ))

1 1
+ (—KO;M S€OUH + q FLUS + EY““M“FEC,;M) SPY.
Applying (74) and the condition (73) consequently, it is easy to derive the equation
of spinning density deviation, as follow

(129)

—DZ} “py [By @l 5 58711v] BprY B
—_ € o a
D2 = SPIPYK pwU 4 +[P (ZP uvy (M PFp +MVPFp ))
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6. Discussion

Equations of motion for spinning fluids in different versions of bi-metric theories
are obtained. The basic idea for developing such a type of equations is the ability to examine
several cases for particles orbiting strong fields. The problem of motion is vital to test the
behaviour of different particles starting from microscopic to macroscopic objects.

Due to this wide spectrum, the usual notation of finding test particle as a probe to
examine the viability of any gravitational field theory becomes irrelevant. Accordingly, the
demand to find equations of motion for objects having some intrinsic properties such
spinning, charged and spinning charged ones led authors to replace it for examining the
stability problem for objects orbing strong gravitational fields [32].

Moreover, in order to examine through an insightful vision the behaviour of
particles in strong fields, it becomes mandatory to obtain equations of motion for spinning
fluids as they act an active role in the accretion disk orbiting the active galactic nucleic like
the supermassive black hole SgrA*. From this perspective we have obtain equations of
spinning fluids in different types of Bi-metric theories of gravity as in equations (19), (26),
(31), (38), (43), (50), (57), (58), (64), (65), (71) and (78) as well as their corresponding
deviation equations. We also have extended this work to study some intrinsic properties of
the fluid like the case of variable mass which may give an account to reveal the puzzle of
dark matter nearby strong fields of gravity. Not only this but also, we have obtained the
equations of charged spinning fluids in strong gravitational fields of gravity for different
versions of bi metric theories as explained in Equations (109), (114), (123), (124) and (129)
as well as their corresponding deviation equations (110), (115), (120), (125) and (130).

Such a finding will be become a glimpse to examine the behaviour of plasma
physics in strong gravitational fields which will be studied in our future work.
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