
Journal of Communication Sciences and  
Information Technology (JCSIT) 
An International Journal  

 

 

VOLUME 1, 2023 1 

Resource Allocation Strategy in Fog 
Computing: Task Scheduling in Fog Computing 
Systems 
 
Asmaa shoker1, Mohammed Amoon1, 2, Ayman M. Bahaa-Eldin3 and Nirmeen A. El-Bahnasawy.1 
 
asmaa.shoker82@gmail.com,  mamoon@ksu.edu.sa,   ayman.bahaa@eng.asu.edu.eg, and      nirmeenA.El-bahnasawy@el-
eng.menofia.edu.eg. 
 
1 Computer Science & Eng. Dept., Faculty of Electronic Eng., Menouf, Egypt. 
2 Dept. of Computer Science, CC, King Saud University, Riyadh 11437, Saudi Arabia. 
3Misr International University, on leave from Ain Shams University, Cairo, Egypt 
Corresponding author: Asmaa shoker  ahmed.r.master@gmail.com, asmaa.shoker82@gmail.com 

 

ABSTRACT The fog computing model has attracted considerable research attention, as it 
concentrates on making cloud-based services more effective and timely for the Internet of 
Things (IoT) users. The fog layer between the user and the cloud layers is aimed at 
minimizing transmission, processing time, and total costs. Nevertheless, the use of 
emerging virtualization technologies in fog planning and resource management was 
hampered by restricted resources and low-delayed services. This paper offers a new task 
scheduling algorithm called task priority dynamic implementation (TPDI) based on the 
priority level in the fog layer to help the rising number of IoT, intelligent devices and to 
optimize the performance of timely execution and minimize costs. Performance 
assessment indicates that the proposed algorithm decreases overall response time relative 
to current task scheduling algorithms. It is critical for emerging brownfield computing 
technology, which we feel is useful for the priority algorithm for a variety of applications. 

 

Keywords:  Fog Computing.  Execution Time.  Priority Levels.  Task Scheduling. Resource Allocation. 

I. INTRODUCTION 
In many domains, computing is 
extensively used. Even so, several issues 
with cloud computing have arisen with the 
growth of the so-called Internet of Things 
(IoT). The delay-sensitive and locational 
computing applications can only be 
completely compliant with cloud 
computing in view of the many IoT 
devices, while the high construction cost, 
on the other hand, makes cloud computing 

applications impossible. In the next few 
years, vast quantities of data will be moved 
to data centers for processing with the 
growing number of IoT devices (Cisco 
expects that by 2020 it will hit 50 billion 
connected devices and 1 trillion by 2025). 
When IoT also handles the vast number of 
devices and data using the existing cloud 
computing model, this can lead to high 
delay and network congestion [1]. 



Journal of Communication Sciences and  
Information Technology (JCSIT) 
An International Journal  

 

 

VOLUME 1, 2023 9 

Fog computing is a virtual network 
between IoT devices and cloud servers, 
providing computing and stocking services 
on the internet's edge. Fog computing 
consists of computers that have low 
performance and wide distribution, and are 
similar to terminal users as a distributed 
architecture. If the terminal computer of 
the network raises a request for service, fog 
computing initially performs data filtering, 
preprocessing, and analysis. The stored 
data is then moved to the operating system 
so that the cloud data center will be less 
burdensome. The number of mobile 
devices located at the border of the 
network is growing rapidly with the 
growth of IoT technologies. Huge data 
must also be stored and analyzed to fulfill 
different user requests. Cloud computing is 
well suited for data storage and processing, 
while the central servers are far from end-
users, which could lead to large delays. 
The quality of service will be greatly 
reduced, particularly in delay-sensitive 
applications [2]. 
Huge IoT applications demand the 
connection of a large range of intelligent 
equipment to be used in shipping 
environments, in intelligent homes, in 
intelligent societies, and in intelligent 
power systems, etcetera, requiring regular 
cloud updates that cost little in the end. In 
this area, the applications need low-cost, 
low-energy, extended coverage and highly 
scalable user equipment to ensure the 
successful deployment of large IoT 
applications, and critical IoT applications 
like remote healthcare, traffic control and 
industrial control (driven robotic vehicles). 
Generally speaking, the IoT's diverse 

applications provide endless possibilities 
and its fullest capacity is only achieved by 
guaranteeing that smarter devices are 
linked via the Internet [3]. 
 
Fog applications' resource-constrained and 
latency-sensitive design makes the control 
of resources one of the most critical tasks 
in Fog. The decision on the allocation and 
scheduling of resources is therefore 
extremely significant. Efficient job 
planning can provide fast, timely, and 
desirable responses in intelligent systems. 
An illustration, a patient's condition needs 
quick notification in an intelligent 
healthcare system in order that could save 
the life of a patient. Consequently, an 
effective work scheduling algorithm needs 
to be built to optimize the use of these 
heterogeneous Fog devices. The ultimate 
aim is to reduce response time and network 
usage without rising energy consumption 
[4]. 
 
A big difficulty in communication-wise 
scheduling is that processed tasks are not 
supposed to be sent from one queue to the 
next, as do conventional queuing networks. 
Timing decisions also decide how 
activities are routed across the network. It 
is therefore not clear whether the highest 
efficiency in these networks can be 
achieved and what policies are appropriate 
for their performance [5]. The conventional 
algorithms can therefore not reduce the 
time of response for latency-sensitive 
applications. A scheduling algorithm needs 
to be built that can reduce average 
response time and network use in latency-
sensitive applications and optimize energy 
use [4]. 
 



Journal of Communication Sciences and  
Information Technology (JCSIT) 
An International Journal  

 

 

VOLUME 1, 2023 9 

This paper presents an algorithm for fog 
computation based on priority tasks, which 
ensures that services for various types of 
applications are delivered in time. The goal 
is to enhance the use of Fog devices on the 
network edge and decrease the latency and 
delay of the application. The style is 
particularly suitable for very low latency 
tolerances applications. For efficient 
allocation of resources, fog nodes in the 
fog layer may cooperate amongst each 
other. First, the tasks in the fog layer are 
assessed depending on the level of priority.  
Once the fog layers full all of the micro 
datacenters, tasks are just distributed 
through the cloud layer. 

 
The content of this paper is organized as 
follows. Section II summarizes related 
work, section III presented task scheduling 
problem, section IV proposed Scheduling 
Algorithm, section V presented simulation 
results, section VI presented conclusion. 

 
II. RELATED WORK 
 
   We look at a few recent resource management 
techniques that have been advocated for enhancing 
fog computing performance. While some of these 
resource management techniques focus on 
scheduling jobs on these resource-constrained Fog 
devices, the majority deal with work allocation. 
The following objectives are shared by job 
allocation and scheduling: to improve service 
quality, to minimize make-span, network 
utilization, cost, loop delay, device energy 
consumption, and to maximize network 
availability, etc. The algorithms have so far only 
optimized one or two of the parameters of the 
aforementioned criterion. Here is a brief review of 
some of these recommended approaches to 
scheduling and resource allocation distribution. 
 
A dependent job allocation technique to Fog nodes 
was put out by [6]. Jobs that are dependent on one 
another require data connection with one another. 

Workflows or the Directed Acyclic Graph (DAG) 
are used to depict dependent jobs. By navigating a 
DAG, the authors determine which tasks are most 
important and then assign those tasks to Fog 
nodes. A work is forwarded to the cloud if the fog 
nodes are unable to complete it because of 
resource limitations. The authors fail to take into 
account crucial factors like the budget of the fog 
supplier and process execution deadline 
restrictions. 
 
A distributed architecture offered by fog 
computing at the network's edge enables low-
latency access and prompter handling of 
application requests. With this increased 
computational power, it will be possible to create 
new systems for managing and allocating 
resources that will make the most of the fog 
infrastructure. This study examines the issue of 
resource allocation while taking into account the 
hierarchical architecture made up of cloud data 
centers and edge capacity, examining application 
classes, and utilizing various scheduling policies. 
Where studied a number of scheduling algorithms 
(Concurrent, FCFS and the delay priority), that 
take user mobility and edge computing capability 
into account to overcome this difficulty. This 
study highlighted that the benefits of combining 
the application classes with scheduling regulations 
in scenarios that highlight different scheduling 
techniques, notably in the setting of user mobility. 
 It faced some difficulties prioritizing the delay of 
time-sensitive applications, so the scheduler 
should be informed of the application 
requirements by the application classification in 
order to prioritize cloudlet usage while achieving 
other objectives like optimizing network usage and 
cutting down on processing time [7]. 
 
Online gaming, smart health, video surveillance, 
and other real-time applications cannot tolerate the 
increased latency and bandwidth consumption. To 
combat the rise in latency and bandwidth 
consumption in cloud computing, fog computing 
has evolved. At the edge of a network, fog 
computing offers storage, processing, networking, 



Journal of Communication Sciences and  
Information Technology (JCSIT) 
An International Journal  

 

 

VOLUME 1, 2023 9 

and analytics services. Resource-allocation and 
job-scheduling challenges remain in the fog 
computing layer due to limited resources.  
Therefore, choosing the assignment and 
scheduling of a job on a Fog node is crucial. An 
effective job scheduling system can speed up 
application requests' responses while using less 
energy. To reduce the delays for latency-critical 
applications, proposed and implemented an 
efficient job scheduling algorithm (SJF) in [4]. 
The suggested approach decreases the typical loop 
time and network utilization by scheduling jobs on 
Fog devices based on length. Despite lowering the 
average waiting time, the suggested SJF algorithm 
can starve tuples with longer lengths. 
 
Our contributions in this paper, In order to 
improve the scheduling of huge tasks, this section 
introduced a new technique called Task Priority 
Dynamic Implementation (TPDI) that is based on 
application classifications and implementation 
priorities. The proposed algorithm aims to 
minimize the completion time needed to execute 
the task by virtue of the First-Fit allocation 
approach while maximizing use of the Fog devices 
that are accessible at a network's edge. , as the 
processor assigns the nearest memory partition, on 
the fog node devices as it seeks the nearest 
suitable server, the execution is very fast. This is 
done to ensure that the time and costs necessary 
for the complete fulfillment of the required task 
are met. This will be explained in detail in section 
v. 
 
III. Task scheduling problem 
 

Fog computing architecture: 
 
Fog computing is a versatile and cloud-based 
platform [8] since it links sensors at the end of 
the network and data center in the cloud. It is 
a distributed paradigm that supports the 
creation of cloud services. One such paradigm 
has the benefit of the features of near the edge 
from users, cloud resources, and its 
infrastructure. This approach would allow 

Internet data and applications to fulfill their 
wide storage, processing, management, 
communications and scalability needs locally 
from advanced user-friendly systems [9], 
[10]. 
 
The key aspect of foggy  is the wireless 
transfer of data to the computers, objects and 
their application services, which are 
distributed in the Internet cloud, on one cloud 
and on one side and on its routing devices, 
depending on the resource available [11]. 
The fog computing interface challenges the 
parties' response to each other between mobile 
devices and associated cloud, through flexible 
mobile cloudlets located at the edge of the 
network [12]. They are mobile mini-data 
centers with a set of connected computers that 
provide good Internet connectivity, are rich in 
resources and are available for use by nearby 
equipment. By means of which sufficient 
resources are provided at the edge to support 
interactive applications that require less 
transmission time. 
Therefore, fog computing is a three-layer 
structure [13], [14] where the fog  
intermediates with what it calls all the 
peripherals, that is called the fog nodes which 
can be used anywhere through a network 
connection [15]. 
As illustrated in [16, Fig 1] demonstrates a 
fog computing architecture in which three 
layers consist: the lower layer, which is 
regarded as a layer on the edge, consists of 
Internet nodes, including sensors and devices, 
etc. The middle layer is the switches, 
gateways, and access point or cloudlet layer 
[17]. The cloud layer for the top layer 
comprises servers and data centers. 
 

 
 
 



Journal of Communication Sciences and  
Information Technology (JCSIT) 
An International Journal  

 

 

VOLUME 1, 2023 9 

 
 

FIGURE 1: Fog computing model. 
 

System model: 
In a heterogeneous environment, applications fight 
for diverse devices' limited resources. At different 
Fog nodes, these workloads are assigned and 
carried out. When using the traditional techniques 
for simple FCFS algorithm task scheduling in fog 
computing, all jobs have equal priority, which 
lengthens response times for jobs with brief burst 
times. Additionally, by allocating jobs to Fog 
devices based on length, the recommended method 
reduces typical loop time and network usage. The 
suggested SJF technique can starve longer tuples 
despite reducing the average waiting time. The 
goal of the fog computing paradigm is to speed up 
responses and decrease network traffic. 
Consequently, a job scheduling algorithm for Fog 
must be created and implemented with the 
following goals: 
 
1. Reduce application loop lag; 
2. Limit the use of the network; 
3. Utilize the capabilities of Fog gadgets 
effectively. 

 

We used applied modules in the manner 
described below to create a case for the 
suggested approach: 
 All application units and IoT devices at 

the edge are connected to fog nodes on 
a low-level fog device. It gathers 
crucial information from application 
sensors and processes it to generate and 
show emergency notifications. 
Additionally, it accepts delay_ tolerant 
applications data and transfers it to the 
organizer unit. 

 
 On a high level fog device that receives 

data from fog nodes, the regulator unit 
is mounted. Creates a tailored schedule 
for tasks in response to appointment 
requests. The scheduler is handling this 
appointment setting. It sends crucial 
data for applications to the records 
database of the organizer. 

 
 Database of tasks (DT). This device is 

positioned on a cloud. It receives 
information from the regulator for 
long-term analysis and storage. 
Transmits to the organizer patterns for 
all necessary task states and their 
priority of execution. [18, Fig 2]  
illustrates the hierarchical, bi-
directional, distributed architecture of 
fog computing module, which is made 
up of several levels. 

 
 



Journal of Communication Sciences and  
Information Technology (JCSIT) 
An International Journal  

 

 

VOLUME 1, 2023 9 

 
 
 

FIGURE  2: Fog computing architecture. 
 

 
 
IV. Proposed Scheduling Algorithm: 
 
In order to improve the scheduling of huge tasks, 
this section introduced a new technique called 
Task Priority Dynamic Implementation (TPDI) 
that is based on application classifications and 
implementation priorities. The proposed algorithm 
aims to minimize the completion time needed to 
execute the task by virtue of the First-Fit 
allocation approach, as the processor assigns the 
nearest memory partition, on the fog node devices 
as it seeks the nearest suitable server, the 
execution is completed quickly. This is done to 
ensure that the time and costs necessary for the 
complete fulfillment of the required task are met. 
The algorithm is presented in the following in the 
form of pseudo code, followed by a thorough 
explanation of the method's steps. 

The Pseudo code shows the main processes of the 
proposed algorithm 
1. Start 
2. User submit all applications 
3. Set max= Max_priority, h= High_Priority, 

l=Low_Priority 

4. Set priority for each application according to its 
important 

5. Set delay for each application according to the 
arrival time 

6. Sort the applications by descending order according 
to the priority 

7. For each application 
8. If priority >h 
9. Allocate the application modules to the Fog devices 
10. Else if l<priority<h 
11. Allocate the large application modules to the fog 

devices and the rest modules to the cloud 
12. Else 
13. Allocate all application devices to the cloud data 

center 
14. End for 
15. Check if there are new submitted applications go to 

step 4 
16. Else end 
 
 

 
Symbol l refers to requests with lower priority, h 
to requests of higher priority, and Max to max 
requests with priority; this occurs in situations 
where high priority requests have arrived 
concurrently, a request is picked depending on the 
time of arrival. 
 
As seen in the suggested technique, the scheduler 
checks the implementation priority of the waiting 
list of tasks, when a fog node gets a group of 
incoming tasks from a sensor or another fog node. 
The scheduler allots processing resources to the 
incoming tuple and continues running if waiting 
list is empty. 
When an incoming task (Ti) is completed, it 
changes into a finished task (Tf), which is then 
added to the list of completed tasks as a whole. If 
the waiting list is not already full, Ti is added to it. 
The waiting list is then arranged according to  its 
significance. Then, based on the arrival time, the 
delay is modified for each application. . As a 
result, the applications were arranged according to 
priority in declining order. When a request's 
priority reaches the maximum priority level, fog 
node devices are assigned. 
Once the incoming requests have been assigned in 
order of priority to the nearest fog node, it is next 
determined whether all of the resources in the fog 



Journal of Communication Sciences and  
Information Technology (JCSIT) 
An International Journal  

 

 

VOLUME 1, 2023 9 

layer are sufficient to meet the amount of requests. 
Should this not be the case, allocate the major 
application modules to the fog devices and the 
remaining modules to the cloud. 
When the set is finished, the scheduler chooses the 
highest priority (Max) set from the top of the 
waiting list, giving the virtual machine time to 
finish. Tasks with the highest priority (Tmax) are 
finished and added to the list of finished full tuples 
after completion. 
 
V. Simulation Results 
 
Our scheduling strategy is predicated on the idea 
that there are two categories of applications: 
critical and delay-tolerant. The simulator 
continuously generates traffic needs from user 
devices. These traffic demands are realized and 
distributed to Vms in the fog nodes according to 
priority levels. This was achieved using 
performance indicators like the overall time spent 
allocating tasks to servers, the typical waiting 
time, and the typical end time. 
Assume that (t1, t2 … Tn) denote the number of 
tasks arranged in descending order, according to 
priority in a temporary queue (referred to as TQ). 
pri, i=1, 2, 3… n, as a priority of a process, the 
submitted processes are ordered in the ready queue 
(referred to as RQ). The processes arranged in a 
descending manner according to their priority. 
The tasks are distributed on VMs based on two 
conditions: 
• The first condition: It is the nearest or first 
server. 
• The second condition: that he must have 
sufficient space or resources according to the type 
of task. 
Set of tasks T= {t1, t2… tn}. 
Set of VMs P= {p1, p2... pm}. 
 
݇ݏܽݐ ℎܿܽ݁ ݎ݂ ݕݐ݅ݎ݅ݎ

= ൜
,(݅ܶ)ܿ݁ݔܧ 1 ≤ ݅ ≤ ݊ , .݁݉݅ݐ ݊݅ݐݑܿ݁ݔ௨݁݊݊

,(݅ܶ) ݈ܽݒ݅ݎܣ 1 ≤ ݅ ≤ ݊, .݁݉݅ݐ ݊݅ݐݑܿ݁ݔ݁ ݈ܽݑݍ݁  
 
For execution our proposed algorithm, which 
should be running when a new application request 

arrives in a fog layer, and decide where it should 
be running: on the fog or cloud. Therefore, the 
following details the steps to implement the 
proposed algorithm and the related working SJF 
algorithm. 
 
For our algorithm: 
1- Sort tasks by priority. 
2- Loop through sorted tasks. 
3- For every task: 
4- Check if there is Network Node has the 
resource equal to or big than the task resource 
required. 
5. If true: attach task on the server by first-fit. 
5.1 get first Network Node has the resource equal 
or big than task resource required. 
5.2 attach the task to the virtual machine. 
5.2.1 Set task as attached to network node. 
5.2.1 Reduce the available resource of network 
node. 
6- If false. 
6.1 Set task as waiting. 
6.2 Go to step 3. 
 
For SJF algorithm: 
1- Get tasks by types. 
2- Sort tasks by length. 
3- Loop through sorted tasks. 
4- for every task: 
5- Check if there is Network Node has the 
resource equal or big than task resource required. 
6. If true: attach task on server by best-fit. 
6.1 loop through network nodes. 
6.2 get best network node has available resource 
has the resource equal or big than task resource 
required. 
6.3 Attach the task to the network node. 
6.3.1 Set task as attached to network node. 
6.3.2 Reduce the available resource of network 
node. 
7- If false. 
7.1 Set task as Waiting. 
7.2 Go to step 4. 
 
Simulation results are presented in this section for 
evaluating the efficiency of the proposed 



Journal of Communication Sciences and  
Information Technology (JCSIT) 
An International Journal  

 

 

VOLUME 1, 2023 9 

algorithm. A simulator had been built using visual 
C# .NET 4.7 on a machine with Intel(R) 
Core(TM) i3 CPU M 350 @2.27GHz, RAM of 
8.00 GB, and the operating system is window 10, 
64-bit. With the framework asp.net mvc, database 
sql server, using visual studio 2020 and Microsoft 
sql server management studio 18.8. 
 
The results from the TPDI algorithm are compared 
to the SJF algorithm [4] based on the 
aforementioned metrics, by the software spawned 
that generates a large number of random tasks, by 
implementing up to 600 tasks. The performance 
distinctions of the total time of distribute tasks on 
servers, the average waiting time, and the average 
end time are shown in figures 3, 4, and 5, 
respectively, in the same order. 
 
 
 

 
 

FIGURE 3: the total time of distribute tasks on servers. 
 
 
 
 

 
FIGURE 4: the average waiting time. 

 
 
 

 
FIGURE 5: the average end execution time. 

 
Additionally, a new simulation has been added to 
demonstrate the efficiency of the proposed 
experimental TPDI algorithm, compared to the 
traditional FCFS algorithm. This was done by 
evaluating the output of the proposed algorithm 
based on the results of the ifogsim simulation [17]. 
The experimental analysis of the fog environment 

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600

T
ot

al
 T

im
e 

to
 D

is
tr

ib
ut

e 
T

as
ks

 (m
s)

 

Number of Tasks 

0

500

1000

1500

2000

2500

3000

3500

4000

0 200 400 600 800

A
ve

ra
ge

 w
at

in
g 

tim
e 

(m
s)

 

Number of Tasks 

0

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500 600

A
ve

ra
ge

 E
nd

 E
xe

cu
tio

n 
T

im
e 

(m
s)

 

Number of Tasks 



Journal of Communication Sciences and  
Information Technology (JCSIT) 
An International Journal  

 

 

VOLUME 1, 2023 9 

assists in evaluating and developing ideas, also in 
measuring the effectiveness of policy and 
technology on resources management in transition 
times, network congestion, energy consumption, 
and cost. The simulation of the computer 
environment is very useful since the actual 
implementation of the fog environment for 
analysis is very costly because there are many 
nodes of fog and data and Internet devices the 
enormous things all, in addition to the cloud data, 
also it offers mechanisms for the design and 
evaluation of a personalized experience 
environment, which also helps in the assessment 
of redundancy. Therefore, a comprehensive study 
was presented to evaluate through the use of 
performance metrics (energy consumption, total 
network usage, execution time, and cost of 
implementation time in the cloud). 
 
Below are results of the comparative, which show 
that prioritizing minor delays applications would 
increase application efficiency compared to 
standard resource sharing techniques such as  
FCFS, to describe how resource planning in fog 
computing can improve applications by taking into 
account geo-location and various classes of 
applications. We identify two classes of 
applications:  delay-sensitive such as 
electroencephalography (EEG) tractor beam game, 
and a delay-tolerant such as a video 
surveillance/object tracking application [7]. Each 
application of them contains a number of modules, 
which the same application modules shall be 
grouped to be placed on the same device. The 
EEGTBG application has 5 modules (EEG sensor, 
client display, concentration calculator, and 
coordinator), the video surveillance/object 
tracking application having 6 modules (camera, 
object detector, motion detector, object tracker, 
(PTZ) control and user interface. Therefore, a 
module processing loop must be completed for 
each application (the time it takes to implement 
the application loop) to display the results. 
Therefore, once the emulator produces frequent 
batches of traffic requests from the user's devices, 
both algorithms begin to be executed, and the 

results for the runtime are shown in Fig 6 by 
gradually increasing the number of requests. 

 
 

 
FIGURE 6: Execution time of the applications. 

 
 
The increased use of network services raises the 
number of devices, which contribute to network 
congestion. Ultimately, this congestion leads to 
poor results on a Cloud-based app. Fog computing 
helps to reduce network congestion by spreading 
the load on Fog nodes. The comparison between 
total network use of TPDI and FCFS algorithm is 
shown in Figure 7. The number of applications is 
displayed over x-axis, while an average network 
use is represented along y-axis for 120000 
simulation times. The result showed that the total 
network usage using TPDI algorithm can 
significantly reduce when the number of 
applications is below 4 and, but it gradually 
increases with the increase in the number of 
applications at the peak time compare to the FCFS 
algorithm. 
 
 

0
500

1000
1500

2000
2500
3000

3500
4000

4500
5000

0 2 4 6 8
E

xe
cu

tio
n 

tim
e 

(in
 m

ill
is

ec
on

ds
 

Number of Applications 



Journal of Communication Sciences and  
Information Technology (JCSIT) 
An International Journal  

 

 

VOLUME 1, 2023 9 

 
 

FIGURE 7: Total Network Usage. 
 

 
The computations in both the fog layer and the 
cloud layer, data forwarding that requires real-
time, and the low latency services, which are 
handled at the level of the fog computing, are 
among the factors responsible for energy 
consumption, figure 8 shows the average energy 
consumption of TPDI versus FCFS, finally figure 
9 shows the cost of task execution. 
 

 
 

 
FIGURE 8: energy consumed TPDI vs.  FCFS. 

 
 
 

 
FIGURE 9: cost of task execution. 

 
 
VI. Conclusion 
 
Fog computing is a valuable extension of cloud 
computing as cloud computing is unable to handle 
large data in real-time due to some limitations and 
challenges by smart devices, routers, and 

0

20000

40000

60000

80000

100000

120000

0 2 4 6 8

T
ot

al
 N

et
w

or
k 

U
sa

ge
 (M

B
) 

Applications 

1.30E+07

1.35E+07

1.40E+07

1.45E+07

1.50E+07

1.55E+07

0 2 4 6 8

E
ne

rg
y 

C
on

su
m

ed
 (J

) 

Applications 

0

500000

1000000

1500000

2000000

2500000

3000000

0 2 4 6 8

C
os

t O
f E

xe
cu

tio
n 

Applications 



Journal of Communication Sciences and  
Information Technology (JCSIT) 
An International Journal  

 

 

VOLUME 1, 2023 9 

actuators. Cisco, therefore, implemented 
computing fog. It concentrated on the issues and 
problems currently facing cloud computing. In this 
paper, we have highlighted cases of the use of fog 
in various applications with their classifications 
and differentiate them in processing speed from 
computer computing. Therefore, we suggested a 
new TPDI algorithm; its work is based on level 
priority and classifications of applications. The 
proposed algorithm has emphasized excellent 
performance in fog computing layers in terms of 
time reduction rates for task performance and 
compared to the advanced SJF algorithm. 
In addition, the findings of our algorithm have 
shown that the proposed algorithm is helpful in the 
successful management of the resources, as 
opposed to the traditional algorithms, where the 
rates showed that the average power consumption 
is much lower than conventional FCFS, and also 
improved performance in reducing execution time, 
network usage, and cost much lower when 
compared with FCFS. 

REFERENCES 
[1] L. Yin, J. Luo, and H. Luo, “Tasks Scheduling 

and Resource Allocation in Fog Computing 
Based on Containers for Smart Manufacturing,” 
IEEE Trans. Ind. Informatics, 2018, vol. 14, no. 
10, pp. 4712–4721, doi: 
10.1109/TII.2018.2851241. 

[2] G. Li, Y. Liu, J. Wu, D. Lin, and S. Zhao, 
“Methods of resource scheduling based on 
optimized fuzzy clustering in fog 
computing,” Sensors (Switzerland), 2019 
vol. 19, no. 9, doi: 10.3390/s19092122. 

[3] G. A. Akpakwu, B. J. Silva, G. P. Hancke, 
and A. M. Abu-Mahfouz, “A Survey on 5G 
Networks for the Internet of Things: 
Communication Technologies and 
Challenges,” IEEE Access, 2017, vol. 6, pp. 
3619–3647, doi: 
10.1109/ACCESS.2017.2779844. 

[4] B. Jamil, M. Shojafar, I. Ahmed, A. Ullah, 
K. Munir, and H. Ijaz, “A job scheduling 
algorithm for delay and performance 
optimization in fog computing,” Concurr. 
Comput. , 2020,  vol. 32, no. 7, pp. 1–13, 

doi: 10.1002/cpe.5581. 
[5] C. S. Yang, A. S. Avestimehr, and R. 

Pedarsani, “Communication-Aware 
Scheduling of Serial Tasks for Dispersed 
Computing,” IEEE Int. Symp. Inf. Theory - 
Proc., 2018, vol. 2018-June, pp. 1226–
1230,, doi: 10.1109/ISIT.2018.8437763. 

[6] X.-Q. Pham and E.-N. Huh, “Towards task 
scheduling in a cloud-fog computing 
system,” pp. 1–4. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/documen
t/7737240/authors#authors 

[7] L. F. Bittencourt, J. Diaz-Montes, R. 
Buyya, O. F. Rana, and M. Parashar, 
“Mobility-Aware Application Scheduling in 
Fog Computing,” IEEE Cloud Comput., 
2017 vol. 4, no. 2, pp. 26–35, doi: 
10.1109/MCC.2017.27. 

[8] S. Sarkar and S. Misra, “Theoretical 
modelling of fog computing: A green 
computing paradigm to support IoT 
applications,” IET Networks, 2016,  vol. 5, 
no. 2, pp. 23–29, doi: 10.1049/iet-
net.2015.0034. 

[9] A. V. Dastjerdi and R. Buyya, “Fog 
Computing: Helping the Internet of Things 
Realize Its Potential,” Computer (Long. 
Beach. Calif)., 2016, vol. 49, no. 8, pp. 
112–116, , doi: 10.1109/MC.2016.245. 

[10] M. Aazam and E. N. Huh, “Fog Computing: 
The Cloud-IoT/IoE Middleware Paradigm,” 
IEEE Potentials, 2016, vol. 35, no. 3, pp. 
40–44, , doi: 
10.1109/MPOT.2015.2456213. 

[11] K. C. Okafor, I. E. Achumba, G. A. 
Chukwudebe, and G. C. Ononiwu, 
“Leveraging Fog Computing for Scalable 
IoT Datacenter Using Spine-Leaf Network 
Topology,” J. Electr. Comput. Eng., 2017, 
vol., doi: 10.1155/2017/2363240. 

[12] Y. Ai, M. Peng, and K. Zhang, “Edge 
computing technologies for Internet of 
Things: a primer,” Digit. Commun. 
Networks, 2018,  vol. 4, no. 2, pp. 77–86, 
doi: 10.1016/j.dcan.2017.07.001. 

[13] S. Kabirzadeh, D. Rahbari, and M. Nickray, 



Journal of Communication Sciences and  
Information Technology (JCSIT) 
An International Journal  

 

 

VOLUME 1, 2023 9 

“A hyper heuristic algorithm for scheduling 
of fog networks,” Conf. Open Innov. Assoc. 
Fruct, 2018, pp. 148–155, doi: 
10.23919/FRUCT.2017.8250177. 

[14] P. Hall and H. Miller, “Sequential, bottom-
up variable selection for high-dimensional 
classification,” Aust. New Zeal. J. Stat.,  
2010, vol. 52, no. 4, pp. 403–421, , doi: 
10.1111/j.1467-842X.2010.00594.x. 

[15] H. F. Atlam, R. J. Walters, and G. B. Wills, 
“Fog computing and the internet of things: 
A review,” Big Data Cogn. Comput.,  2018, 
vol. 2, no. 2, pp. 1–18, , doi: 
10.3390/bdcc2020010. 

[16] L. Belli, S. Cirani, G. Ferrari, L. Melegari, 
and M. Picone, “A graph-based cloud 
architecture for big stream real-time 
applications in the internet of things,” 
Commun. Comput. Inf. Sci., vol. 508, no. 
September 2017, pp. 91–105, doi: 
10.1007/978-3-319-14886-1_10. 

[17] H. A. M. Name, F. O. Oladipo, and E. 
Ariwa, “User mobility and resource 
scheduling and management in fog 
computing to support IoT devices,” 7th Int. 
Conf. Innov. Comput. Technol. INTECH 
2017, pp. 191–196, doi: 
10.1109/INTECH.2017.8102447. 

[18] R. Neware and U. Shrawankar, “Fog 
Computing Architecture, Applications and 
Security Issues,” Int. J. Fog Comput., 2019, 
vol. 3, no. 1, pp. 75–105, doi: 
10.4018/ijfc.2020010105. 

 


