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FRACTIONAL CHEBYSHEV DIFFERENTIAL EQUATION AND

NEW FAMILY OF ORTHOGONAL POLYNOMIALS

Z. KAVOUSI KALASHAMI, H. MIRZAEI, K. GHANBARI

Abstract. In this paper we consider a typical Fractional Chebyshev Differ-

ential Equation (FCDE) and we investigate the solutions, their properties and
applications. For a positive real number α we prove that FCDE has solu-

tions of the form Tn,α(x) = (1+x)
α
2 Pn,α(x), where Pn,α(x) produce a family

of orthogonal polynomials with respect to weight function wα(x) = ( 1+x
1−x

)
α
2

on [−1, 1]. For integer case α = 1 we show that these polynomials coincide
with classical Chebyshev polynomials of third kind. Finally, we give some

applications of Tn,α(x) in determining the solutions of some fractional order
differential equations by defining a suitable integral transform.

1. Introduction

Developing classical integer order differential equations to the fractional order
has been beneficial in many applications. For example it has been shown that the
classical integer order oscillator circuits are only a special case of the more general
fractional oscillators [1, 26]. In the recent years, it has been proved that in some
applications modeling by fractional derivatives generate more accurate solutions
than modeling by integer order derivatives [3, 11, 19, 22, 25, 27, 30].

It is well known that orthogonal polynomials play a fundamental role in studying
ordinary and partial differential equation [9, 12, 29]. Important orthogonal polyno-
mials such as Chebyshev, Legendre, Hermite and Laguerre are the solutions of the
integer order Sturm-Lioville equation. In [13, 14, 15, 31] fractional Sturm-Liouville
problems are considered and some spectral properties such as orthogonality of eigen-
functions corresponding to distinct eigenvalues are studied. Numerical solutions for
fractional Sturm-Liouville problems are studied in [4, 10, 17]. Moreover, M. Klimek
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and O.P. Agrawal considered the fractional Legendre equation as a singular frac-
tional Sturm-Liouville problem and they presented some results on the applications
of Legendre polynomials in ordinary and partial differential equations [16].

The classical integer order Chebyshev equation is a second-order ordinary differ-
ential equation, where the solutions are Chebyshev polynomials of the first, second,
third, and fourth kinds. For more details see [8, 20]. Moreover, Chebyshev polyno-
mials are useful in obtaining numerical solutions of integral and differential equa-
tions by spectral method [2, 7, 18, 23]. Now the main motivation of the paper is to
find the orthogonal family of polynomials on [−1, 1] for fractional Sturm-Liouville
problems. In this paper, we define a FCDE of the following form[

cDα
1−(1− x2)

α
2 Dα

−1+ − λn,α(1− x2)
−α
2

]
y(x) = 0, (1)

where cDα
1− and Dα

−1+ are Caputo and Riemann-Liouville fractional derivatives,

respectively. Note that for α = 1 the equation (1) is a classical Chebyshev differen-
tial equation of first kind, where λn,1 = n2 for Chebyshev polynomials of first kind
[21]. In [5, 24] the authors applied fractional Chebyshev polynomials for solving
fractional differential equations. Here we introduce a different family of orthogo-
nal polynomials and we apply the family of orthogonal polynomials to solve some
fractional differential equations. Indeed we generalized the Sturm-Liouville form
of integer order Chebyshev equation to the fractional case. The paper is arranged
in the following manner: In section 2, we give preliminary materials on fractional
calculus. We find the solution of (1) in section 3. We prove that the solutions are
Tn,α(x) = (1+x)

α
2 Pn,α(x), where Pn,α(x) is a polynomial of degree n such that the

coefficient of the polynomial is computed by solving a system of algebraic equations
by a backward recursive formula. We prove the orthogonality of the polynomials
Pn,α(x) with a specific weight function. Moreover, we show that for α = 1 the poly-
nomials Pn,α(x) are indeed the classical Chebyshev polynomials of the third kind.
In section 4, we give some applications in solving fractional differential equations.

2. Preliminaries

In this section, we give some preliminary materials of fractional calculus.
Definition 1 Let α be a positive real number and f(x) ∈ L1(a, b). Left-sided and
right-sided Riemann-Liouville integrals of order α are defined as ([15])

Iαa+f(x) =
1

Γ(α)

∫ x

a

f(s)

(x− s)1−α
ds, x > a,

Iαb−f(x) =
1

Γ(α)

∫ b

x

f(s)

(s− x)1−α
ds, x < b.

Definition 2 Let α be a positive real number and m− 1 < α < m where m is an
integer. Then left-sided and right-sided Riemann-Liouville fractional derivatives of
order α are defined as ([15])

(Dα
a+f)(x) = Dm(Im−α

a+ f)(x), x > a,

(Dα
b−f)(x) = (−D)m(Im−α

b− f)(x), x < b,

Analogous formulas yield the left-sided and right-sided Caputo derivatives of order
α :

(cDα
a+f)(x) = (Im−α

a+ Dmf)(x), x > a,
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(cDα
b−f)(x) = (Im−α

b− (−D)mf)(x), x < b.

In our study of fractional Sturm–Liouville problems we shall apply the fractional
version of integration by parts formula presented below.
Lemma 1 The following properties are satisfied ([15])∫ b

a

f(x)Iαa+g(x)dx =

∫ b

a

g(x)Iαb−f(x)dx,

∫ b

a

f(x)Dα
b−g(x)dx =

∫ b

a

g(x)cDα
a+f(x)dx+

m−1∑
k=0

(−1)m−kf (k)(x)Dm−k−1Im−α
b− g(x)|bx=a, (2)

∫ b

a

f(x)Dα
a+g(x)dx =

∫ b

a

g(x)cDα
b−f(x)dx+

m−1∑
k=0

(−1)kf (k)(x)Dm−k−1Im−α
a+ g(x)|bx=a. (3)

Proof. The first property is easily proved by changing the order of integration. The
second property is proved by using the first property and the relation between
Caputo and Riemann-Liouville derivatives. The proof of the third property is
similar to the second property. □

Property 1 If m − 1 < α < m and β > α and f ∈ C[a, b], then the following
identities are hold ([15])

(i) Dα
a+Iαa+f(x) = f(x), Dα

b−I
α
b−f(x) = f(x),

(ii) Dα
a+I

β
a+ = Iβ−α

a+ f(x), Dα
b−I

β
b− = Iβ−α

b− f(x),

(iii) cDα
a+Iαa+f(x) = f(x), cDα

b−I
α
b−f(x) = f(x),

(iv) Iαa+I
β
a+f(x) = Iα+β

a+ f(x), Iαb−I
β
b−f(x) = Iα+β

b− f(x).

3. Fractional Chebyshev differential equation

In this section, we define FCDE and obtain main results of this paper. It is well
known that the Chebyshev polynomials of the first kind are the solutions of the
following second order classical differential equation:[

D(1− x2)
1
2D + n2(1− x2)−

1
2

]
y(x) = 0,

Extending this differential equation to fractional form we define the Fractional
Chebyshev differential equation of the form (1), where λn,α is a constant number
that will be computed. Here we use the following identity which is the result of
integration by parts (2) and (3),∫ 1

−1

[
g(x)cDα

1−(1− x2)
α
2 Dα

−1+f(x)− f(x)cDα
1−(1− x2)

α
2 Dα

−1+g(x)
]
dx = 0. (4)

Now we are ready to state one of the main results of this section.
Theorem 1 Let α be a positive real number. Then the Fractional Chebyshev
differential equation (1) has solutions of the form Tn,α(x) = (1 + x)

α
2 Pn,α(x), n =

0, 1, 2, · · · , where

λn,α =

[
Γ(n+ α

2 + 1)

Γ(n− α
2 + 1)

]2
, (5)
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and

Pn,α(x) =

n∑
k=0

ak(1 + x)k. (6)

The coefficients ak are computed by the following recursive formula

ak = − 1[
Γ(k+α

2 +1)

Γ(k−α
2 +1)

]2
− λα,n

n∑
i=k+1

2i−k

(
i

k

)[
Γ(i+ α

2 + 1)

Γ(i− α
2 + 1)

.
Γ(k + α

2 + 1)

Γ(k − α
2 + 1)

− λn,α

]
ai,

k = n− 1, n− 2, ..., 1, 0, (7)

and an = (2α)n.

Proof. First, we show that Tn,α(x) is a solution of FCDE (1). The second term in
the left-hand side of the equation is computed as follows

(1− x2)
−α
2 Tn,α(x) = (1− x)

−α
2

n∑
k=0

ak(1 + x)k

= (1− x)
−α
2

n∑
k=0

ak(2− (1− x))k

=

n∑
k=0

k∑
j=0

ak

(
k

j

)
(−1)j2k−j(1− x)j−

α
2 ,

and the first term in the left-hand side of the equation is computed as follows:

(1− x2)
α
2 Dα

−1+Tn,α(x) = (1− x2)
α
2 Dα

−1+

n∑
k=0

ak(1 + x)k+
α
2

= (1− x)
α
2

n∑
k=0

ak
Γ(k + α

2 + 1)

Γ(k − α
2 + 1)

(1 + x)k

= (1− x)
α
2

n∑
k=0

ak
Γ(k + α

2 + 1)

Γ(k − α
2 + 1)

(2− (1− x))k

=

n∑
k=0

k∑
j=0

ak

(
k

j

)
(−1)j2k−j Γ(k + α

2 + 1)

Γ(k − α
2 + 1)

(1− x)j+
α
2 ,(8)

By taking the right Caputo derivative of the equation (8) we find

cDα
1−(1− x2)

α
2 Dα

−1+Tn,α(x) = cDα
1−

n∑
k=0

k∑
j=0

ak

(
k

j

)
(−1)j2k−j Γ(k + α

2 + 1)

Γ(k − α
2 + 1)

(1− x)j+
α
2

=

n∑
k=0

k∑
j=0

ak

(
k

j

)
(−1)j2k−j Γ(k + α

2 + 1)

Γ(k − α
2 + 1)

Γ(j + α
2 + 1)

Γ(j − α
2 + 1)

(1− x)j−
α
2 .

Substituting in (1) we obtain:

n∑
k=0

k∑
j=0

ak

(
k

j

)
(−1)j2k−j Γ(k + α

2 + 1)

Γ(k − α
2 + 1)

Γ(j + α
2 + 1)

Γ(j − α
2 + 1)

(1− x)j−
α
2

−λn,α

n∑
k=0

k∑
j=0

ak

(
k

j

)
(−1)j2k−j(1− x)j−

α
2 = 0. (9)



JFCA-2023/14(2) FRACTIONAL CHEBYSHEV DIFFERENTIAL EQUATION 5

Expanding (9) we obtain an algebraic system to compute the coefficients ak as
follows

a0

(
Γ(1+α

2 )

Γ(1−α
2 )

Γ(1+α
2 )

Γ(1−α
2 ) − λn,α

)
+ 2a1

(
1
0

) (Γ(2+α
2 )

Γ(2−α
2 )

Γ(1+α
2 )

Γ(1−α
2 ) − λn,α

)
+a1(−1)1

(
1
1

) (Γ(2+α
2 )

Γ(2−α
2 )

Γ(2+α
2 )

Γ(2−α
2 ) − λn,α

)
(1− x) + 22a2

(
Γ(3+α

2 )

Γ(3−α
2 )

Γ(1+α
2 )

Γ(1−α
2 ) − λn,α

)
+2a2(−1)1

(
2
1

) (Γ(3+α
2 )

Γ(3−α
2 ) .

Γ(2+α
2 )

Γ(2−α
2 ) − λn,α

)
(1− x) + a2

(
2
2

) (Γ(3+α
2 )

Γ(3−α
2 ) .

Γ(3+α
2 )

Γ(3−α
2 ) − λn,α

)
(1− x)2

...

+2an(−1)n−1
(

n
n−1

) (Γ(n+1+α
2 )

Γ(n+1−α
2 ) .

Γ(n+α
2 )

Γ(n−α
2 ) − λn,α

)
(1− x)n−1

+an(−1)n
(
n
n

) (Γ(n+1+α
2 )

Γ(n+1−α
2 )

Γ(n+1+α
2 )

Γ(n+1−α
2 ) − λn,α

)
(1− x)n = 0,

Equating the coefficients of (1− x)n to zero and choosing an an arbitrary number
for example an = (2α)n we find

λn,α =

[
Γ(n+ α

2 + 1)

Γ(n− α
2 + 1)

]2
.

Similarly equating the coefficients of (1− x)n−1 to zero we find

an−1(−1)n−1

(
n− 1

n− 1

)(
Γ(n+ α

2 )

Γ(n− α
2 )

Γ(n+ α
2 )

Γ(n− α
2 )

− λn,α

)
(1− x)n−1

+2an(−1)n−1

(
n

n− 1

)(
Γ(n+ 1 + α

2 )

Γ(n+ 1− α
2 )

Γ(n+ α
2 )

Γ(n− α
2 )

− λn,α

)
(1− x)n−1 = 0,

⇒ an−1 = −
2
(

n
n−1

)[
Γ(n+α

2 )

Γ(n−α
2 )

]2
− λn,α

[
Γ(n+ 1 + α

2 )

Γ(n+ 1− α
2 )

.
Γ(n+ α

2 )

Γ(n− α
2 )

− λn,α

]
an.

Finally equating the coefficients of (1 − x)n−2 we compute an−2 in terms of an−1

and an as follows:

an−2(−1)n−2

(
n− 2

n− 2

)(
Γ(n− 1 + α

2 )

Γ(n− 1− α
2 )

.
Γ(n− 1 + α

2 )

Γ(n− 1− α
2 )

− λn,α

)
(1− x)n−2

+2an−1(−1)n−2

(
n− 1

n− 2

)(
Γ(n+ α

2 )

Γ(n− α
2 )

.
Γ(n− 1 + α

2 )

Γ(n− 1− α
2 )

− λn,α

)
(1− x)n−2

+22an(−1)n−2

(
n

n− 2

)(
Γ(n+ 1 + α

2 )

Γ(n+ 1− α
2 )

.
Γ(n− 1 + α

2 )

Γ(n− 1− α
2 )

− λn,α

)
(1− x)n−2 = 0,

⇒ an−2 = − 1[
Γ(n−1+α

2 )

Γ(n−1−α
2 )

]2
− λn,α

[
2

(
n− 1

n− 2

)(
Γ(n+ α

2 )

Γ(n− α
2 )

.
Γ(n− 1 + α

2 )

Γ(n− 1− α
2 )

− λn,α

)
an−1

+22
(

n

n− 2

)(
Γ(n+ 1 + α

2 )

Γ(n+ 1− α
2 )

.
Γ(n− 1 + α

2 )

Γ(n− 1− α
2 )

− λn,α

)
an.
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Continuing the same procedure we find the recursive formula (7). □

Now we investigate orthogonality property of Tn,α.
Theorem 2 If m and n are nonnegative distinct integers then Tm,α(x) and Tn,α(x)
are orthogonal in the following sense:∫ 1

−1

(
1− x2

)−α
2 Tm,α(x)Tn,α(x)dx = 0. (10)

Moreover, the polynomials Pm,α(x) and Pn,α(x) are orthogonal in the following
sense: ∫ 1

−1

(
1 + x

1− x

)α
2

Pm,α(x)Pn,α(x)dx = 0. (11)

Proof. We consider equation (1) for indices n and m as follows:[
cDα

1−(1− x2)
α
2 Dα

−1+ − λn,α(1− x2)
−α
2

]
Tn,α(x) = 0,[

cDα
1−(1− x2)

α
2 Dα

−1+ − λm,α(1− x2)
−α
2

]
Tm,α(x) = 0.

Multiplying the first equation by Tα,m and the second equation by Tα,n, then sub-
tracting the results we obtain:

Tm,α(x)
cDα

1−(1− x2)
α
2 Dα

−1+Tn,α(x)− Tn,α(x)
cDα

1−(1− x2)
α
2 Dα

−1+Tm,α(x)

= [λn,α − λm,α] (1− x2)
−α
2 Tn,α(x)Tm,α(x),

Now integrating over interval [−1, 1] and applying relation (4), we have

[λn,α − λm,α]

∫ 1

−1

(
1− x2

)−α
2 Tm,α(x)Tn,α(x)dx = 0,

Which leads to the orthogonality relation (10). By replacing Tn,α(x) = (1 +
x)

α
2 Pn,α(x) and Tm,α(x) = (1 + x)

α
2 Pm,α(x) in the last equation , relation (11)

is obtained. □

Definition 3 We define the Chebyshev norm of the function f(x) as follows

∥f∥C = (

∫ 1

−1

(1− x2)−
α
2 f(x)Tn,α(x)dx)

1
2 , (12)

Corollary 1 Orthogonal properties in (10) and (11) imply that∫ 1

−1

(
1− x2

)−α
2 Tm,α(x)Tn,α(x)dx = δmncn,α, (13)

and ∫ 1

−1

(
1 + x

1− x

)α
2

Pm,α(x)Pn,α(x)dx = δmncn,α, (14)

where cn,α = ∥Tn,α∥2C is given by

cn,α =

n∑
j=0

n∑
i=0

aiaj2
i+j+1

Γ(i+ j +
α

2
+ 1)Γ(1− α

2 )

Γ(i+ j + 2)
. (15)
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Table 1. The first six polynomials Pn,α for α = 0.7.

Pn,α(x) Roots of Pn,α(x)
P1 = 1.4x− 0.49 0.35

P2 = 1.96x2 − 0.686x− 0.5733 −0.3934, 0.7434
P3 = 2.744x3 − 0.9604x2 − 1.5119x+ 0.24826 −0.6714, 0.1557,

0.8657
P4 = 3.8416x4 − 1.3446x3 − 3.0911x2 + 0.68861x+ 0.28501 −0.7963,−0.2243

0.4526, 0.9179
P5 = 5.3782x5 − 1.8824x4 − 5.683x3 + 1.4385x2 + 1.1459x− 0.12263 −0.8619,−0.4531

0.0996, 0.6206
0.9448

P6 = 7.529x6 − 2.635x5 − 9.848x4 + 2.676x3 + 3.127x2 − 0.511x− 0.140 −0.9004,−0.5966
−0.1562, 0.3200
0.7229, 0.9603

Proof. By definition of Tn,α and change of variable 1 + x = 2u, we obtain:∫ 1

−1

(
1− x2

)−α
2 Tn,α(x)Tn,α(x)dx =

∫ 1

−1

(
1 + x

1− x

)α
2

(

n∑
j=0

aj(1 + x)j)(

n∑
i=0

ai(1 + x)i)dx

=

n∑
j=0

n∑
i=0

ajai

∫ 1

−1

(1 + x)i+j+α
2 (1− x)−

α
2 dx

=

n∑
j=0

n∑
i=0

ajai2
i+j+1

∫ 1

0

ui+j+α
2 (1− u)−

α
2 du.

Finally, using Beta function, relation (13) is obtained. Equation (14) is obtained
by setting Tn,α(x) = (1 + x)

α
2 Pn,α(x) in relation (13). □

Remark 1 We introduced new family of polynomials Pn,α that are orthogonal
with weight function wα(x) = ( 1+x

1−x )
α
2 on [−1, 1].

We computed Pn,α and the corresponding roots for α = 0.7, 0.9 and some values of
n in Tables 1 and 2. Now we show that for α = 1 the polynomials Pn,1 are identical
to the classical Chebyshev polynomials of third kind.
Theorem 3 For α = 1 we have Pn,1(x) = vn(x) where vn(x) is the classical
Chebyshev polynomials of third kind.

Proof. Using α = 1 in the FCDE (1) we have:[
D(1− x2)

1
2D + (n+

1

2
)2(1− x2)

−1
2

]
Tn,1 = 0. (16)

It is clear that Un+ 1
2
(x) = cos((n+ 1

2 ) arccosx) is also a solution of equation (16).

Due to definition of third order Chebyshev polynomials [8, 18] we have:

Un+ 1
2
(x) =

√
1 + x

2
vn(x). (17)

Using induction we show that 1√
2
Tn,1 = Un+ 1

2
. We have

1√
2
Tn,1 =

1√
2
(1 + x)

1
2Pn,1(x) , Un+ 1

2
=

1√
2
(1 + x)

1
2 vn(x).
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Table 2. The first six polynomials Pn,α for α = 0.9.

Pn,α(x) Roots of Pn,α(x)
P1 = 1.8x− 0.81 0.45

P2 = 3.24x2 − 1.458x− 0.8613 −0.3375, 0.7875
P3 = 5.832x3 − 2.6244x2 − 3.0268x+ 0.66441 −0.6397, 0.2002

0.8895
P4 = 10.498x4 − 4.7239x3 − 8.0869x2 + 2.3833x+ 0.70144 −0.7763,−0.1906

0.4843, 0.9326
P5 = 18.90x5 − 8.503x4 − 19.30x3 + 6.422x2 + 3.722x− 0.540 −0.8484,−0.4280

0.1281, 0.6435
0.8483

P6 = 34.01x6 − 15.31x5 − 43.25x4 + 15.39x3 + 13.26x2 − 2.906x− 0.569 −0.8905,−0.5776
−0.1324, 0.3431
0.7400, 0.9675

Indeed we have to show that for α = 1 the polynomials Pn,1(x) and vn(x) are
identical. For n = 0 we have P0,1 = v0 = 1. Now suppose for j < n we have
Pj,1 = vj . We can write Pn,1 in the following form

Pn,1 =

n∑
k=0

Bn
k vk = Bn

nvn +

n−1∑
k=0

Bn
kPk,1. (18)

Multiplying both sides of (18) by
(

1+x
1−x

) 1
2

Pj,1 and integrating over [−1, 1] and using

orthogonality of Pk,1 we find

0 =

∫ 1

−1

(
1 + x

1− x

) 1
2

Pn,1(x)Pj,1(x)dx = Bn
j cj,1.

Since cj,1 ̸= 0 we conclude Bn
j = 0 for j < n. Using (18) we find Pn,1 = Bn

nvn,
the leading coefficient in Pn,1 and vn is 2n. Thus, Bn

n = 1 and Pn,1 = vn. This
completes the proof. □

A new class of orthogonal functions may be defined by fractional derivative of
Tn,α as follows:
Corollary 2 The functions P+

n,α defined by

P+
n,α(x) = Dα

−1+Tn,α(x)

solve the fractional differential equation:[
Dα

−1+(1− x2)
α
2 cDα

1−(1− x2)
α
2 − λn,α

]
P+
n,α(x) = 0. (19)

Moreover, P+
n,α are orthogonal in the following sense∫ 1

−1

(1− x)
α
2 P+

n,α(x)P
+
m,α(x)dx = δmnλn,αcn,α (20)

Proof. Using relation (1) we have

(1− x2)
α
2 cDα

1−(1− x2)
α
2 Dα

−1+Tn,α(x)− λn,αTn,α(x) = 0.
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Taking left Riemann-Liouville derivative from both sides of the last equation implies
(19). To prove the second part, we use definition of P+

n,α(x), relations (3) and ( 1)
as follows∫ 1

−1

(1− x2)
α
2 P+

n,α(x)P
+
m,α(x)dx =

∫ 1

−1

(1− x2)
α
2 Dα

−1+Tn,α(x).D
α
−1+Tm,α(x)dx

=

∫ 1

−1

Tm,α(x)
cDα

1−(1− x2)
α
2 Dα

−1+Tn,α(x)dx

= λn,α

∫ 1

−1

(1− x2)
−α
2 Tm,α(x)Tn,α(x)dx.

Finally, by using relation(13), we obtain (20). □

Corollary 3 Since some functions can be represented as a series of Chebyshev
polynomials we have for

f(x) =

∞∑
n=0

anTn,α(x), g(x) =

∞∑
n=0

bnTn,α(x).

the following relations∫ 1

−1

(1− x2)
α
2 Dα

−1+f.D
α
−1+gdx =

∞∑
n=0

anbnλn,αcn,α.

Proof. The proof is immediate result of integration by parts, relations (13) and (
1). □

4. Integral transform and their applications

In this section, first we define a sequence of integral transforms corresponding
to Tn,α and the sequence of the corresponding inverse transforms. Then we find
the solution of some nonhomogeneous fractional differential equations as an infinite
series in terms of the sequence of inverse transforms.
Definition 4 The integral transform of a function f ∈ L2[−1, 1] in terms of Tn,α

is a sequence F (n) defined by

F (n) = T [f ](n) =

∫ 1

−1

(1− x2)
−α
2 f(x)Tn,α(x)dx. (21)

The corresponding inverse transform is a sequence defined by

T−1[F (n)](x) =

∞∑
n=0

1

cn,α
F (n)Tn,α(x). (22)

Lemma 2 Define the fractional operator Jα as follows

Jα =cDα
1−(1− x2)

α
2 Dα

−1+ . (23)

Then we have

T
[
(1− x2)

α
2 Jαf

]
= λn,αF (n). (24)
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Proof. Using (21), (23) and (4) we conclude

T
[
(1− x2)

α
2 Jαf(x)

]
=

∫ 1

−1

Jαf(x)Tn,α(x)dx =

∫ 1

−1

f(x)JαTn,α(x)dx

= λn,α

∫ 1

−1

(1− x2)
−α
2 f(x)Tn,α(x)dx = λn,αF (n).

□

Now we give some applications in finding the solutions of some special fractional
differential equations. We use Tn,α to solve typical fractional differential equations.
Indeed, we generate particular solution in the form of series in terms of Tn,α using
the integral transform (21).
Lemma 3 Assume λ ̸= λn,α for n ∈ N0 and g ∈ L2[−1, 1]. If the integral transform
of function g satisfies the condition |G(n)| ⩽ M

√
cn,αn

β for n = n0, n0 + 1, . . . and

α > 1+β
2 . Then the solution of fractional differential equation[

(1− x2)
α
2 Jα − λ

]
f = g, (25)

is given by the following infinite series

f(x) =

∞∑
n=0

1

cn,α

G(n)

λn,α − λ
Tn,α. (26)

Proof. The Tn,α integral transform of equation (25) implies

[λn,α − λ]F (n) = G(n),

from which we get the Chebyshev transform of solution f(x) as

F (n) =
G(n)

λn,α − λ
,

that yields the solution in the form of a series of Chebyshev polynomials

f(x) =

∞∑
n=0

1

cn,α

G(n)

λα,n − λ
Tn,α.

The convergence of this series is immediate consequence of boundedness assumption
of G(n). For n > n0 using (12) we have

∥ 1

cn,α

G(n)

λn,α − λ
Tn,α∥C ≤ 1

|λn,α − λ|
Mnβ .

Using asymptotic property of the eigenvalues [13] we find

λn,α
∼= (n+ 1)2α, n −→ ∞. (27)

If α > 1+β
2 , there exists p > 1 such that α ≥ p+β

2 . Comparing the resulting series

with the Dirichlet series
∑∞

n=1
1
np and using (27) we find

Mnβ 1
|λn,α−λ|
1
np

∼=
M

n2α−p−β
−→ 0.

Convergence of Dirichlet series for p > 1 implies uniform convergence of resulting
series in [−1, 1] which indicates that series (26) is continuous in the interval [−1, 1].

□
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Table 3. Results for Example 4 with λ = 2 in [−1, 1].

m ∥em,α∥∞ for α = 0.7 ∥em,α∥∞ for α = 0.8 ∥em,α∥∞ for α = 0.9
2 7.5× 10−16 3.8× 10−16 2.4× 10−15

4 6.1× 10−14 3.0× 10−14 1.4× 10−13

6 2.0× 10−13 6.7× 10−12 7.9× 10−12

Example 1 For fix m ∈ N we consider the following nonhomogeneous equation
in [−1, 1] [

(1− x2)
α
2 Jα − λ

]
f = Tm,α(x). (28)

The Tn,α integral transform of above equation gives,

F (m) = cm,α
1

λm,α − λ
,

and F (n) = 0 for n ̸= m. Using relation (22), the particular solution of nonhomo-
geneous fractional equation (28) is obtained as follows:

f(x) =
1

λm,α − λ
Tm,α(x).

We substitute f(x) in (28) and denote the difference of both sides by em,α. The
infinite norm of em,α computed in Table 3 for different values of m and α.

Lemma 4 Assume kα ∈ R−, α > 1+β
2 , λ ̸= λα,n and g ∈ L2[−1, 1]. Let the Tn,α

integral transform of function g satisfy: |G(n)| ⩽ M
√
cn,αn

β for n > n0. Then, the
partial fractional differential equation

kα(1− x2)
α
2 Jα,xu(x, t) =

∂u(x, t)

∂t
, x ∈ [−1, 1], t ⩾ 0, (29)

with the initial condition u(x, 0) = g(x) for t0 > 0 has a continuous solution in
[−1, 1]× [t0,∞] given by

u(x, t) =

∞∑
n=0

1

cn,α
G(n)ekαλn,αtTn,α(x).

Proof. The Tn,α integral transform of equation (29) with respect to x gives,

kαλn,αU(n, t) =
∂U(n, t)

∂t
.

Solving the last equation and applying the initial condition we find

U(n, t) = G(n)ekαλn,αt.

Thus, the solution of problem (29) is obtained by taking inverse Tn,α transform:

u(x, t) =

∞∑
n=0

1

cn,α
G(n)ekαλn,αtTn,α(x).

We prove the convergence of the series for ⩾ t0 > 0. Taking Chebyshev norm with
respect to x we have

∥ 1

cn,α
G(n)ekαλn,αtTn,α(x)∥C ≤ Mnβekαλn,αt0 .
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If α > 1+β
2 , there exists p > 1 such that α ≥ p+β

2 . Using asymptotic form (27), the
dominant series is convergent due to comparison test comparing with convergent
Dirichlet series

∑∞
n=1

1
np :

Mnβekαλn,αt0

1

np

∼= Mnβ+pekαλn,αt0 −→ 0,

Convergence of Dirichlet series for p > 1 implies that our series is uniformly conver-
gent in [−1, 1]× [t0,∞] which indicates that series (30) is continuous in the interval
[−1, 1]× [t0,∞]. □

5. Conclusions

In this paper we introduce a typical fractional Chebyshev differential equation
which leads to a family of orthogonal polynomials Pn,α(x), where α is a positive
real number. For α = 1 we prove that Pn,1(x) coincide with the classical Chebyshev
polynomials of third kind. Moreover, by defining an integral transform correspond-
ing to Tn,α(x) = (1 + x)

α
2 Pn,α(x), we find the series solutions of some fractional

differential equations. According to our knowledge, the orthogonality and the rel-
evant properties obtained in this paper are different from the others used in the
literature.
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