

IJCI V11-1(2024) 30–43
International Journal of Computers and Information

(IJCI)
Available online at https://ijci.journals.ekb.eg/

Comparative Study of Intelligent Scheduling
Algorithms for Heterogeneous Systems
Abla Saada, Osama Abdelraouf a, Mohy Hadhoud b, Ahmed Kafafy c

a Machine Intelligence Dept, Faculty of Artificial Intelligence, Menoufia University, Egypt.
b Information Technology Dept, Faculty of Computers and Information- Menoufia university, Menoufia, Egypt
c Data Science Dept, Faculty of Artificial Intelligence, Menoufia University, Egypt.
abla.saad@ci.menofia.edu.eg, osamaabd@ci.menofia.edu.eg, mmhadhoud@ci.menofia.edu.eg, ahmed.kafafi@ci.menofia.edu.eg

Abstract

Scheduling tasks in a heterogeneous computing environment can be a challenging problem due to the diverse range of
hardware and software resources available. In this comparative study different approaches are investigated for solving
multitask scheduling in the heterogeneous computing environment, reviewing the literature on the topic, highlighting the
strengths and weaknesses of different scheduling algorithms then, formulate a hypothesis about how multitask scheduling
can be optimized in a heterogeneous computing environment and design an experiment to test this hypothesis. This study
involves running a variety of scheduling algorithms as GRASP, Tabu Search, SA, GA, HEFT and FCFS on a heterogeneous
computing platform. This study yields valuable insights on the efficacy of various optimization algorithms for scheduling
problems and emphasizes the significance of selecting suitable algorithms based on the problem's specific features. The
result of this study indicates that the GRASP algorithm outperforms other scheduling algorithms as HEFT Ranked up, Tabu
Search, SA, GA, HEFT Ranked down, and FCFS on producing schedules with shorter completion times. This is a critical
factor when evaluating scheduling algorithms. The exceptional performance of GRASP can be credited to its effective
navigation of the solution space and its adept utilization of a blend of greedy constructive heuristics and randomized local
search methods, which enable it to achieve top-notch solutions.

Keywords: Task Scheduling, Heterogeneous Computing Environment, Metaheuristics;

I. Introduction
Task scheduling in a heterogeneous computing environment involves allocating tasks to available hardware

and software resources in a way that maximizes the overall efficiency and performance of the system. However,
this can be a complex problem due to the wide range of resources that may be available, including different
types of processors, memory, and storage. In addition, tasks may have different requirements in terms of their
resource needs and deadlines, further adding to the complexity of the scheduling problem. As a result, finding
an optimal schedule for tasks in a heterogeneous computing environment can be a challenging task. In this
study, heuristic and static scheduling algorithms are investigated for solving multitask scheduling in such
environments. This study also examines the factors that impact the performance of scheduling algorithms in
heterogeneous computing environments by understanding the strengths and weaknesses of different scheduling
approaches, this research hope to provide insights into how multitask scheduling can be optimized in such
environments [1], [2].

Traditional priority techniques and heuristic techniques are two different types of algorithms that can be used
for scheduling tasks in a heterogeneous computing environment. Traditional priority techniques involve
assigning a priority to each task and scheduling the tasks based on their priorities. These techniques are simple
and easy to implement, but they may not always produce an optimal schedule. Heuristic techniques, on the other
hand, are strategies that are designed to find a good, but not necessarily optimal, solution to a problem. Heuristic
techniques for scheduling tasks in a heterogeneous computing environment may use a variety of strategies, such

https://ijci.journals.ekb.eg/
mailto:abla.saad@ci.menofia.edu.eg
mailto:osamaabd@ci.menofia.edu.eg
mailto:mmhadhoud@ci.menofia.edu.eg

Abla Saad, Osama Abdel-Raouf, Mohy Hadhoud, Ahmed Kafafy 31

as simulating natural phenomena or using metaheuristics, to find a good schedule. Heuristic techniques may be
more computationally intensive than traditional priority techniques, but they can often find a better schedule in
a reasonable amount of time [3] [4].

In this comparative study, a series of novel scheduling algorithms are implemented to optimize the allocation
of tasks across different computing resources, considering factors like task characteristics, resource capabilities,
and system load. This study focuses on two distinct categories of scheduling algorithms, each aimed at
enhancing system performance and contributing to the advancement of high-performance computing. One
category comprises heuristic algorithms, which encompass metaheuristic approaches like Greedy Randomized
Adaptive Search Procedure (GRASP), Tabu Search, Genetic Algorithm (GA), and Simulated Annealing (SA).
The other category comprises static algorithms, including Heterogeneous Earliest Finishing Time (HEFT) and
First Come First Served (FCFS). By evaluating and comparing the performance of these algorithms in
heterogeneous computing environments, this research seeks to identify the most effective scheduling strategies
for optimizing system efficiency and resource utilization.

The subsequent sections of this paper are organized as follows: In Section 2, this study presents the task model.
In Section 3, illustrate the concepts of scheduling problem. Sections 4 provide concise explanations of the
implemented algorithms FCFS (First Come First Served), HEFT (Heterogeneous Earliest Finishing Time), GA
(Genetic Algorithm), Simulated Annealing (SA) and the greedy randomized adaptive search method (GRASP)
algorithms, respectively. The evaluation of performance and the associated parameters are discussed separately
in Sections 5. Finally, our conclusions and recommendations for future research are summarized in Section 6.

II. Task Model

In a parallel and distributed computing environment, an application can be divided into a set of tasks, which
are represented using a directed acyclic graph (𝐷𝐷𝐷𝐷𝐷𝐷) 𝐺𝐺 = (𝑁𝑁,𝐸𝐸). The set 𝑁𝑁 consists of 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, and each
node 𝑛𝑛𝑖𝑖 in 𝑁𝑁 represents a task in the application. The set 𝐸𝐸 is a set of 𝑒𝑒 directed edges that represent
dependencies between tasks. Each edge 𝑒𝑒 (𝑖𝑖,𝑗𝑗) in 𝐸𝐸 connects two nodes in the graph, with the first node being
the parent or protector node and the second node being the child node as in figure 1. The child node cannot be
executed until the parent node has completed [5]. The node with no children is known as the 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. When
two nodes are assigned to the same processor, the communication cost between them is minimal. The mapping
of nodes to processors and the optimization of execution time depends on ranking, which is a measure of the
importance or priority of a node.

The weight 𝑊𝑊𝑖𝑖 of each node 𝑛𝑛𝑖𝑖 reflects the processing expenses of the node, and the computation cost is the
estimated execution time (𝐸𝐸𝐸𝐸𝐸𝐸) for completing task 𝑛𝑛𝑖𝑖 on processor 𝑝𝑝𝑗𝑗 .The average execution cost of a task 𝑛𝑛𝑖𝑖
𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎(𝑛𝑛𝑖𝑖) is defined in equation (1)

𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎(𝑛𝑛𝑖𝑖) = ∑ 𝑊𝑊𝑖𝑖 𝑝𝑝𝑗𝑗�𝑗𝑗
𝑝𝑝=1 (1)

The average execution cost of a task 𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎(𝑛𝑛𝑖𝑖) is calculated as the sum of the execution costs on all processors
𝑊𝑊𝑖𝑖, divided by the total number of processors 𝑝𝑝𝑗𝑗 .

The transfer time of data between processors is stored in a matrix 𝐵𝐵 of size 𝑞𝑞 𝑥𝑥 𝑞𝑞, and the communication startup
time for each processor is given in a 𝑞𝑞-dimensional vector 𝐿𝐿 [1].The communication cost between two tasks 𝑛𝑛𝑖𝑖
and 𝑛𝑛𝑗𝑗 , which are scheduled on processors 𝑝𝑝𝑚𝑚 and 𝑝𝑝𝑛𝑛 , respectively, is represented by the edge between them.

Various predefined criteria such as upward ranks, downward ranks presented in [6], and others developed by
different researchers can be used to prioritize all the tasks in a given DAG. Once the tasks in the DAG have
been prioritized, Equations 2 and 3 can be utilized to determine the Earliest Start Time (EST) and Latest Finish
Time (LFT) attributes.

32 International Journal of Computers and Information, IJCI V11-1(2024) 30–43

Fig. 1. Molecular DAG with 50 nodes [7]

𝐸𝐸𝐸𝐸𝐸𝐸�𝑛𝑛𝑖𝑖 ,𝑝𝑝𝑗𝑗 � = �
0 𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
max�𝐸𝐸𝐸𝐸𝐸𝐸�𝑛𝑛𝑗𝑗�+ 𝐸𝐸𝐸𝐸𝐸𝐸�𝑛𝑛𝑗𝑗�+ 𝐶𝐶�𝑛𝑛𝑗𝑗,𝑖𝑖�� ,𝑛𝑛𝑗𝑗𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖(𝑛𝑛𝑖𝑖) , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒� (2)

Equation 2 defines the Earliest Start time 𝐸𝐸𝐸𝐸𝐸𝐸�𝑛𝑛𝑖𝑖 ,𝑝𝑝𝑗𝑗 � of a task 𝑛𝑛𝑖𝑖 at any processor 𝑝𝑝𝑗𝑗 . If 𝑛𝑛𝑖𝑖 is an entry task, its
EST will be zero. However, if it has immediate predecessor tasks represented by 𝑛𝑛𝑗𝑗 , the value of EST will be
determined using Equation 2. Here, 𝐸𝐸𝐸𝐸𝐸𝐸 (𝑛𝑛𝑗𝑗) represents the 𝐸𝐸𝐸𝐸𝐸𝐸 of predecessor tasks, 𝐸𝐸𝐸𝐸𝐸𝐸�𝑛𝑛𝑗𝑗� denotes their
execution times, and 𝐶𝐶�𝑛𝑛𝑗𝑗,𝑖𝑖� signifies the communication cost between the predecessor task and 𝑛𝑛𝑖𝑖.

𝐿𝐿𝐿𝐿𝐿𝐿�𝑛𝑛𝑖𝑖 ,𝑝𝑝𝑗𝑗 � = �
𝐷𝐷𝐷𝐷 𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
min�𝐿𝐿𝐿𝐿𝐿𝐿�𝑛𝑛𝑗𝑗� − 𝐸𝐸𝐸𝐸𝐸𝐸�𝑛𝑛𝑗𝑗� − 𝐶𝐶�𝑛𝑛𝑗𝑗,𝑖𝑖�� ,𝑛𝑛𝑗𝑗𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖(𝑛𝑛𝑖𝑖) , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒� (3)

Equation 3 defines the Latest Finish Time 𝐿𝐿𝐿𝐿𝐿𝐿�𝑛𝑛𝑖𝑖 ,𝑝𝑝𝑗𝑗 � of a task 𝑛𝑛𝑖𝑖 at any processor 𝑝𝑝𝑗𝑗 . If 𝑛𝑛𝑖𝑖 is an exit task, its
LFT will be equal to the Deadline (𝐷𝐷𝐷𝐷). However, if 𝑛𝑛𝑖𝑖 has immediate successor tasks represented by 𝑛𝑛𝑗𝑗 , the
values of 𝐿𝐿𝐿𝐿𝐿𝐿 will be determined using Equation 3. Here 𝐿𝐿𝐿𝐿𝐿𝐿 (𝑛𝑛𝑗𝑗) denotes the 𝐿𝐿𝐿𝐿𝐿𝐿 of successor tasks,
𝐸𝐸𝐸𝐸𝐸𝐸�𝑛𝑛𝑗𝑗�signifies their execution times, and 𝐶𝐶�𝑛𝑛𝑗𝑗,𝑖𝑖� represents the communication cost between task 𝑛𝑛𝑖𝑖.and the
successor task 𝑛𝑛𝑗𝑗 .

The Actual Start Time 𝐴𝐴𝐴𝐴𝐴𝐴(𝑛𝑛𝑖𝑖) of a task 𝑛𝑛𝑖𝑖 is determined by Equation 5, which specifies the start time of the
task. However, if 𝑛𝑛𝑖𝑖is the entry task 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, its AST is determined by Equation 4. It is important to note that
the value of 𝐴𝐴𝐴𝐴𝐴𝐴 depends on the task and the context in which it is being evaluated.

𝐴𝐴𝐴𝐴𝐴𝐴(𝑛𝑛𝑖𝑖) = 𝐸𝐸𝐸𝐸𝐸𝐸�𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒� = 0 (4)

𝐴𝐴𝐴𝐴𝐴𝐴(𝑛𝑛𝑖𝑖) = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸𝐸𝐸) (5)

Equation 6 provides the definition of the Actual Finished Time (𝐴𝐴𝐴𝐴𝐴𝐴) for a task 𝑛𝑛𝑖𝑖 (𝐴𝐴𝐴𝐴𝐴𝐴(𝑛𝑛𝑖𝑖)), which represents
the time when the task is finished. The value of 𝐴𝐴𝐴𝐴𝐴𝐴 is dependent on the specific task being evaluated 𝐸𝐸𝐸𝐸𝐸𝐸(𝑛𝑛𝑖𝑖)
and can be calculated using the equation.

𝐴𝐴𝐴𝐴𝐴𝐴(𝑛𝑛𝑖𝑖) = 𝐴𝐴𝐴𝐴𝐴𝐴(𝑛𝑛𝑖𝑖) + 𝐸𝐸𝐸𝐸𝐸𝐸(𝑛𝑛𝑖𝑖) (6)

The main goal of the objective function is to minimize the makespan 𝑀𝑀𝑀𝑀(𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ). It is determined
by Equation 7, which provides a definition of the time duration between the start of the earliest task and the
finish of the latest task.

Abla Saad, Osama Abdel-Raouf, Mohy Hadhoud, Ahmed Kafafy 33

𝑀𝑀𝑀𝑀(𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ) = 𝑚𝑚𝑚𝑚𝑚𝑚 𝐸𝐸𝐸𝐸𝐸𝐸(𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) (7)

III. Scheduling Problem
 The focus of this paper is on the static scheduling of a specific application in a heterogeneous computing

system There are two main approaches to task scheduling: one of them is static and the other is dynamic. Static
scheduling involves determining the task schedule before the tasks are executed, while dynamic scheduling is
suitable for situations where the computing system and task parameters are not known in advance. Where
dynamic scheduling algorithms are used when the workload and system status are only known at runtime, and
they make decisions about task assignment during execution [8] [9]. However, these algorithms often have
additional overhead compared to static scheduling methods. In contrast, static scheduling involves creating a
schedule before tasks are executed, and it does not incur any additional overhead during runtime. The goal of
task scheduling is to divide an application into different parts or nodes, and to determine the priority of these
nodes in order to minimize the overall execution time of the application. In this paper, we will discuss lists-
based scheduling heuristics (FCFS, HEFT, GA, SA, GRASP and Tabu Search) and their effectiveness in a
heterogeneous computing environment. We will also examine the impact of different scheduling parameters,
such as schedule length, speedup, and efficiency, on the performance of these algorithms.

IV. Implemented Algorithms

FCFS (First Come First Served)
The First Come First Served (FCFS) algorithm is a simple and intuitive approach for task scheduling in
heterogeneous computing platforms. The FCFS algorithm executes tasks in the order they arrive in the system
as in equation (8), regardless of their priority 𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(ni) or computing requirements [10].

𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(ni) = �
0 if 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑛𝑛𝑖𝑖) = ∅
1 + 𝑚𝑚𝑚𝑚𝑚𝑚 �𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑛𝑛𝑗𝑗�:𝑛𝑛𝑗𝑗 ∊ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑛𝑛𝑖𝑖)� , 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (8)

Where, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑛𝑛𝑖𝑖) is the predecessor task. This approach is easy to implement and provides a fair allocation of
resources to all tasks. However, the FCFS algorithm has some disadvantages. Firstly, it can lead to long waiting
times for tasks with higher priority or shorter computing requirements, as they are blocked by longer tasks.
Secondly, the FCFS algorithm does not take into account the resource availability, which can result in inefficient
resource utilization and low system performance. Despite its drawbacks, the FCFS algorithm can be suitable
for simple and low-priority tasks, where the goal is to achieve a fair allocation of resources to all tasks without

Alg.1: FCFS
Inputs:

𝑛𝑛𝑖𝑖: Number of Tasks
m: Number of processors
𝐶𝐶𝐶𝐶𝐶𝐶����: Avg communication cost
𝑊𝑊𝑊𝑊����: Avg computation time

Output: Makespan
Begin:

1. 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = Ø; //Schedule list
2. 𝐅𝐅𝐅𝐅𝐅𝐅 𝑖𝑖 ∈ {1, … ,𝑚𝑚} do:

3. 𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(ni) = �
0 if 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑛𝑛𝑖𝑖) = ∅

1 + 𝑚𝑚𝑚𝑚𝑚𝑚 �𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑛𝑛𝑗𝑗�: 𝑛𝑛𝑗𝑗 ∊ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑛𝑛𝑖𝑖)� , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

4. 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ← 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ∪ { 𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(ni)} .
5. End For
6. 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ←ArrangASce(𝒔𝒔𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) //arrange in Ascending order.
7. Assign(𝒔𝒔𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ,𝑚𝑚)
8. Return Makespan; //return the makespan.

End

34 International Journal of Computers and Information, IJCI V11-1(2024) 30–43

complicated scheduling algorithms. Overall, the choice of task scheduling algorithm for heterogeneous
computing platforms should be based on the specific requirements of the system and the tasks to be executed
[11]. The pseudo code for FCFS algorithm is mentioned in Alg.1 below.

HEFT (Heterogeneous Earliest Finish Time)
HEFT (Heterogeneous Earliest Finish Time) is a simple and effective scheduling technique for static task
scheduling in both heterogeneous and homogeneous computing environments with a limited number of
processors [6]. It consists of two stages: a prioritization phase and a processor selection stage. During the
prioritization phase, HEFT calculates the priority of each task using an 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢) method
and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) according equations 9,10 respectively.

𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘𝑢𝑢𝑢𝑢(𝑛𝑛𝑖𝑖) = 𝑊𝑊𝑊𝑊���� + max
𝑇𝑇𝑇𝑇∊𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑇𝑇𝑇𝑇)

�𝐶𝐶𝐶𝐶𝐶𝐶���� + 𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘𝑢𝑢𝑢𝑢(𝑛𝑛𝑖𝑖)� (9)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛𝑖𝑖) = max
𝑇𝑇𝑗𝑗∈𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑇𝑇𝑖𝑖)

�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑛𝑛𝑗𝑗�+ 𝑊𝑊𝑊𝑊���� + 𝐶𝐶𝐶𝐶𝐶𝐶����� (10)

This involves traversing the application graph in an upward direction and calculating the mean communication
𝐶𝐶𝐶𝐶𝐶𝐶���� and computation costs 𝑊𝑊𝑊𝑊���� for each node 𝑛𝑛𝑖𝑖. The resulting list of nodes is then sorted in decreasing order of
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 and increasing order of 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 . HEFT uses a tie-breaking policy to determine which node to select
when there are multiple nodes with the same 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 value: There are several advantages to using the HEFT
algorithm for solving scheduling problems in a heterogeneous computing platform. One advantage is that it is
a simple and effective technique for finding good schedules in a short amount of time. Another advantage is
that it is a static scheduling algorithm, which means that it does not require any runtime overhead and can be
used to pre-schedule tasks. A disadvantage of HEFT is that it may not always find the optimal solution due to
its reliance on mean values and the use of a Tie breaking policy. It may also be sensitive to changes in the
problem, such as changes in the processing times or communication costs of the tasks. In addition, HEFT may
not be suitable for dynamic scheduling scenarios, where the workload and resources are not known in advance.
The pseudo code for HEFT algorithm is mentioned in Alg.2 below.

Alg.2: HEFT
Inputs:

𝑛𝑛𝑖𝑖: Number of Tasks
m: Number of processors
𝐶𝐶𝐶𝐶𝐶𝐶����: Avg communication cost
𝑊𝑊𝑊𝑊����: Avg computation time

Output: Makespan
Begin:
 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = Ø; //Schedule list

1. 𝐈𝐈𝐈𝐈 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑢𝑢𝑢𝑢
2. 𝐅𝐅𝐅𝐅𝐅𝐅 𝑖𝑖 ∈ {1, … ,𝑚𝑚} do:
3. 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑢𝑢𝑢𝑢(𝑛𝑛𝑖𝑖) = 𝑊𝑊𝑊𝑊����+ max

𝑇𝑇𝑇𝑇∊𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑇𝑇𝑇𝑇)
{𝐶𝐶𝐶𝐶𝐶𝐶����+ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑢𝑢𝑢𝑢(𝑛𝑛𝑖𝑖)}

4. 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ← 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ∪ { 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑢𝑢𝑢𝑢(𝑛𝑛𝑖𝑖)} .
5. End For
6. 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ←ArrangDesc(𝒔𝒔𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) //arrange in descending order.
7. 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
8. 𝐅𝐅𝐅𝐅𝐅𝐅 𝑖𝑖 ∈ {1, … ,𝑚𝑚} do:
9. 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛𝑖𝑖) = max

𝑇𝑇𝑗𝑗∈𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑇𝑇𝑖𝑖)
�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑛𝑛𝑗𝑗� + 𝑊𝑊𝑊𝑊���� + 𝐶𝐶𝐶𝐶𝐶𝐶�����

10. 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ← 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ∪ � 𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛𝑖𝑖)�
11. End For
12. 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ←ArrangASce(𝒔𝒔𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) //arrange in Ascending order.
13. Assign(𝒔𝒔𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ,𝑚𝑚)
14. Return Makespan; //return the makespan.

End

Abla Saad, Osama Abdel-Raouf, Mohy Hadhoud, Ahmed Kafafy 35

GA (Genetic algorithms)
Genetic algorithms (GA) are a type of optimization technique that can be used to solve scheduling problems in
a heterogeneous computing platform [12]. They are inspired by the process of natural evolution and are used to
find the optimal solution to a problem by simulating the process of natural selection. In a genetic algorithm, a
population of schedules is initialized and is evolved through a series of generations. Each schedule is
represented as a chromosome, which is a set of genes that encode a potential solution to the problem. The
chromosomes are evaluated using an objective function, which measures the quality of the schedule.
The fittest chromosomes are then selected to be used in the next generation, and the less fit chromosomes are
discarded. The selected chromosomes are then subjected to genetic operations, such as crossover with
𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and mutation with 𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, to produce a new population of chromosomes. This
process is repeated until a satisfactory schedule is found 𝑆𝑆𝑆𝑆𝑆𝑆∗, or a predetermined stopping criterion is reached
as mentioned in figure 2 below. Genetic algorithms can be effective at finding good schedules, but they may
not always find the optimal solution due to the probabilistic nature of the algorithm [13] [14].

Alg.3: 𝐆𝐆𝐆𝐆
Inputs:
𝑛𝑛𝒊𝒊: number of tasks
𝑚𝑚: number of processors
𝑁𝑁: Pop Size.
𝑃𝑃𝑐𝑐: probability of Crossover
𝑃𝑃𝑚𝑚: Probability of Mutation.

Output: Archive: all improved solutions found over generations.
Begin:

1. 𝑃𝑃𝑃𝑃𝑃𝑃 ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝒔𝒔𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)
2. 𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖 Stopping criterion is not satisfied do:
3. 𝑟𝑟 ← 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(0,1);
4. 𝐈𝐈𝐈𝐈 (𝑟𝑟 < 𝑃𝑃𝑃𝑃) 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕: //apply crossover
5. 𝐗𝐗′ ,𝐘𝐘′ ← 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝐗𝐗,𝐘𝐘).
6. 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄
7. 𝑟𝑟 ← 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(0,1);
8. 𝐈𝐈𝐈𝐈 (𝑟𝑟 < 𝑃𝑃𝑃𝑃)𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕:
9. 𝐗𝐗′′ ← 𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌(𝐗𝐗′).
10. 𝐘𝐘′′ ← 𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌(𝐘𝐘′).
11. 𝐄𝐄𝐄𝐄𝐄𝐄 𝐈𝐈𝐈𝐈
12. 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ← 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁∪ {𝐗𝐗′′,𝐘𝐘′′}
13. 𝐄𝐄𝐄𝐄𝐄𝐄 𝐅𝐅𝐅𝐅𝐅𝐅
14. 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ← 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)
15. 𝑃𝑃𝑃𝑃𝑃𝑃 ← 𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔(𝑃𝑃𝑃𝑃𝑃𝑃,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁);
16. 𝐄𝐄𝐄𝐄𝐄𝐄 𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖
17. Sol∗ ← 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅(Pop)
18. 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 𝑆𝑆𝑆𝑆𝑆𝑆∗;

End

There are several advantages to using the genetic algorithm for solving scheduling problems in a heterogeneous
computing platform. One advantage is that it can find good solutions in a short amount of time by simulating
the process of natural selection. Another advantage is that it can handle problems with a large search space and
no known algorithm for finding the optimal solution. A disadvantage of the genetic algorithm is that it may not
always find the optimal solution due to its probabilistic nature, which can cause it to get stuck in local optima.
It may also require a large number of generations to find a satisfactory solution, which can increase the running
time. In addition, the performance of the genetic algorithm may be sensitive to the choice of parameters, such
as the crossover rate and the mutation rate, which can require fine-tuning to achieve good results.
The pseudo code for GA algorithm is mentioned in Alg.3 above.

36 International Journal of Computers and Information, IJCI V11-1(2024) 30–43

Fig. 2. GA evolutionary cycle

SA (Simulated annealing)
Simulated annealing (SA) is a heuristic optimization technique that can be used to solve scheduling problems
in a heterogeneous computing platform [15]. It is a randomized search algorithm that is inspired by the annealing
process used in metallurgy to harden and purify metals. In simulated annealing, a schedule is initialized 𝑆𝑆0 with
𝐹𝐹𝑆𝑆0 which 𝐹𝐹 is the objective function and is modified through a series of iterations, or "temperature" steps. At
each step, a new schedule 𝑆𝑆1 is generated by making a random change to the current schedule and evaluating
the resulting change in the objective function 𝐹𝐹𝑆𝑆1. The new schedule is accepted if it results in an improvement
in the objective function, or it is accepted with a certain probability if it results in a worsening of the objective
function. This probability is determined by a temperature parameter 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇, which is gradually decreased as
the algorithm progresses. The temperature determines the likelihood of accepting a worse solution, and it allows
the algorithm to escape from local optima and explore the search space more extensively as in (equation 11).
Simulated annealing can be effective at finding good schedules [16] [17].

𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �
1 𝑖𝑖𝑖𝑖 𝐹𝐹𝑆𝑆0 ≤ 𝐹𝐹𝑆𝑆1
𝑒𝑒𝑒𝑒𝑒𝑒 �𝐹𝐹𝑆𝑆0−𝐹𝐹𝑆𝑆1

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
� 𝑖𝑖𝑖𝑖 𝐹𝐹𝑆𝑆0 > 𝐹𝐹𝑆𝑆1

 (11)

Alg. 4: Simulated Annealing:

Begin:
1. 𝑆𝑆0 ← 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 .
2. 𝑇𝑇 ← 𝑇𝑇0 //initial temperature.
3. While termination conditions not satisfied do
4. 𝑆𝑆1 ← 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆1 .
5. If 𝐹𝐹(𝑆𝑆1) < 𝐹𝐹(𝑆𝑆0) 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭:
6. …..𝑆𝑆0 ← 𝑆𝑆1
7. . .𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄
8. 𝑆𝑆0 ← 𝑆𝑆1 with acceptance probability 𝑷𝑷(𝑇𝑇, 𝑆𝑆0 ,𝑆𝑆1)
9. 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄
10. Update (𝑇𝑇)
11. END While

Return 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

There are several advantages to using the simulated annealing algorithm for solving scheduling problems in a
heterogeneous computing platform. One advantage is that it can escape from local optima and explore the search
space more extensively. Another advantage is that it can handle problems with a large search space and no
known algorithm for finding the optimal solution. A disadvantage of simulated annealing is that it may be
slower than other optimization techniques due to the need to evaluate the objective function at each iteration. It
may also require a large number of iterations to find a satisfactory solution, which can increase the running
time. In addition, the performance of simulated annealing may be sensitive to the choice of parameters, such as

Abla Saad, Osama Abdel-Raouf, Mohy Hadhoud, Ahmed Kafafy 37

the initial temperature and the cooling schedule, which can require fine-tuning to achieve good results. The
pseudo code for SA algorithm is mentioned in Alg.4 above.

GRASP (Greedy Randomized Adaptive Search Procedure)

GRASP (Greedy Randomized Adaptive Search Procedure) is a heuristic optimization algorithm that can be
used to solve scheduling problems in a heterogeneous computing platform [18] [19] [20]. It is a randomized
search algorithm that combines elements of greedy and local search techniques. Here, we adopt two heuristic
functions 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑_𝑢𝑢𝑢𝑢(𝑛𝑛𝑖𝑖) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛𝑖𝑖) mentioned before in this article. In GRASP, a schedule is
constructed through a sequence of iterations, or "constructive phases," in which a subset of tasks, known as the
"candidate list, 𝐶𝐶𝐶𝐶 " is selected and added to the schedule. At each constructive phase, the candidate list 𝐶𝐶𝐶𝐶 is
modified by adding or removing tasks based on a set of rules, known as the "construction 𝑓𝑓 heuristic" according
to equation (12) below.

𝑓𝑓 ∈ [𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛼𝛼 × (𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚)] (12)

Alg.5: GRASP (α, 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻)
Inputs:

α: parameter controls greediness /randomness.
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻: The Heuristic function used in GRASP

Output: Sol*: best solution found after local search.
Begin: //begin construction phase

1. Sol ← Ø; CL←Ø; //initialize Sol & Candidate list
2. 𝐈𝐈𝐈𝐈 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑢𝑢𝑢𝑢 //in case of bottom level
3. 𝐅𝐅𝐅𝐅𝐅𝐅 𝑖𝑖 ∈ {1, … ,𝑚𝑚} do:
4. 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑢𝑢𝑢𝑢(𝑛𝑛𝑖𝑖) = 𝑊𝑊𝑊𝑊����+ max

𝑇𝑇𝑇𝑇∊𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑇𝑇𝑇𝑇)
�𝐶𝐶𝐶𝐶𝐶𝐶����+ 𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘𝑢𝑢𝑢𝑢(𝑛𝑛𝑖𝑖)�

5. 𝐶𝐶𝐶𝐶 ← CL ∪ {𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑢𝑢𝑢𝑢(𝑛𝑛𝑖𝑖)} . //construct candidate list
6. End For
7. 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 //in case of top level
8. 𝐅𝐅𝐅𝐅𝐅𝐅 𝑖𝑖 ∈ {1, … ,𝑚𝑚} do:
9. 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛𝑖𝑖) = max

𝑇𝑇𝑗𝑗∈𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑇𝑇𝑖𝑖)
�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑛𝑛𝑗𝑗� + 𝑊𝑊𝑊𝑊���� + 𝐶𝐶𝐶𝐶𝐶𝐶�����

10. 𝐶𝐶𝐶𝐶 ← CL ∪ {𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛𝑖𝑖)} . //construct candidate list
11. End For
12. 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄
13. 𝐶𝐶𝐶𝐶 ← ArrangDesc(CL)//arrange in descending order.
14. 𝑅𝑅𝑅𝑅𝑅𝑅 ← {the first α × |CL| elements of CL}.
15. For 𝑖𝑖 ∈ {1, … , |RCL|} do:
16. Randomly pick 𝑛𝑛𝑖𝑖 from RCL.
17. 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪𝑛𝑛𝑖𝑖. // put the task in the solution
18. 𝑅𝑅𝑅𝑅𝑅𝑅 ← 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑅𝑅𝑅𝑅𝑅𝑅)//replace item 𝑛𝑛𝑖𝑖 by new one
19. End For
20. For j ∈ {1, … , |𝑆𝑆𝑆𝑆𝑆𝑆|} //begin local search phase
21. Sol′ ← 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝑆𝑆𝑆𝑆𝑆𝑆,𝑛𝑛𝑗𝑗 ,𝑛𝑛𝑗𝑗−1�. //get new neighborhood sol
22. 𝑆𝑆𝑆𝑆𝑆𝑆′′ ← 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑆𝑆𝑆𝑆𝑆𝑆′) //validate swap
23. If 𝐹𝐹1(𝑆𝑆𝑆𝑆𝑆𝑆′′) < 𝐹𝐹1(𝑆𝑆𝑆𝑆𝑆𝑆∗) 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭:
24. 𝑆𝑆𝑆𝑆𝑆𝑆∗ ← 𝑆𝑆𝑆𝑆𝑆𝑆′′ //keep Sol with the best make-span
25. 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄
26. End For
27. End While
28. Return 𝑆𝑆𝑆𝑆𝑆𝑆∗; //return the improved solution
End

38 International Journal of Computers and Information, IJCI V11-1(2024) 30–43

Where, the parameter 𝛼𝛼 ∈ [0,1] is used to control the balance between greediness and randomness. The
candidate list 𝐶𝐶𝐶𝐶 is then sorted according to a "selection function," which measures the desirability of adding a
task to the schedule. The task with the highest score is added to the schedule, and the process is repeated until
the schedule is complete. After the constructive phase, GRASP performs a local search to further improve the
schedule. GRASP can be effective at finding good schedules, but it may not always find the optimal solution
due to the greedy nature of the construction heuristic [17].

There are several advantages to using the GRASP (Greedy Randomized Adaptive Search Procedure) algorithm
for solving scheduling problems in a heterogeneous computing platform. One advantage is that it can find good
solutions in a short amount of time due to its greedy construction heuristic, which allows it to focus on the most
promising tasks at each constructive phase. Another advantage is that it can adapt to changes in the problem by
updating the candidate list and the selection function at each constructive phase, which allows it to explore
different parts of the search space. A disadvantage of GRASP is that it may not always find the optimal solution
due to its local search nature, which can cause it to get stuck in local optima. It may also be sensitive to the
choice of the construction heuristic and the selection function, which can require fine-tuning to achieve good
results. In addition, GRASP may be slower than other optimization techniques due to the need to evaluate the
objective function at each iteration. The pseudo code for GRASP algorithm is mentioned in Alg.5 below.

Tabu Search

Tabu search is a heuristic optimization algorithm that can be used to solve scheduling problems in a
heterogeneous computing platform [21] [22] [23]. It is a metaheuristic algorithm that combines elements of
local search and memory-based search. In tabu search, a schedule 𝑆𝑆0is modified through a series of iterations,
or "tabu moves," in which a task is moved from its current position in the schedule to a new position. The new
schedule is evaluated using an objective function, and the move is accepted if it results in an improvement in
the objective function. If the move does not improve the objective function, it may still be accepted with a
certain probability, known as the "aspiration level." The acceptance of non-improving moves allows the
algorithm to escape from local optima and explore the search space more extensively. Tabu search also uses a
"tabu list 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿" to prevent the algorithm from revisiting previously visited solutions and getting stuck in a loop.
Tabu search can be effective at finding good schedules, but it may be slower than other optimization techniques
due to the need to evaluate the objective function at each iteration.

Alg. 6: Adaptive Tabu Search:
Begin:

1. 𝑆𝑆0 ← 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 .
2. 𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 .
3. 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ← ∅
4. While termination conditions not satisfied do
5. 𝑆𝑆1 ← 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆1 .
6. If (𝐹𝐹(𝑆𝑆1)− 𝐹𝐹(𝑆𝑆0) ! = 0)&& (!𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 .𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐹𝐹(𝑆𝑆1)) 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭:
7. …..𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ← 𝑆𝑆1 ∪ 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
8. If 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) > 𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭:
9. 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. Remove (Sol)
10. Update (𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)
11. . . 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄
12. .𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄
13. END While

Return 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

There are several advantages to using the tabu search algorithm for solving scheduling problems in a
heterogeneous computing platform. One advantage is that it can escape from local optima and explore the search
space more extensively, which allows it to find good solutions in a short amount of time. Another advantage is

Abla Saad, Osama Abdel-Raouf, Mohy Hadhoud, Ahmed Kafafy 39

that it uses a memory-based search, which allows it to remember previously visited solutions and avoid
revisiting them, which can reduce the risk of getting stuck in a loop. A disadvantage of tabu search is that it
may be slower than other optimization techniques due to the need to evaluate the objective function at each
iteration. It may also require a large amount of memory to store the tabu list, which can be a limiting factor for
large-scale scheduling problems. In addition, the performance of tabu search may be sensitive to the choice of
parameters, such as the tabu list size and the aspiration level, which can require fine-tuning to achieve good
results. The pseudo code for GRASP algorithm is mentioned in Alg.6 above.

V. Experimental Results and Analysis

The performance of the FCFS, HEFT, GA, SA, GRASP and Tabu Search algorithms was evaluated based on
three metrics: schedule length, speedup, and efficiency used in [24].
o Schedule length, also known as makespan in equation (7), refers to the total execution time of an

application or DAG.
o Speedup in equation (13) is calculated by dividing the 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ by the time it takes for the fastest

processor (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) to complete the task.
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢 = 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 (13)

o Efficiency in equation (14) is calculated by dividing the speedup (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢) by the number of processors
(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛) used in each run.

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢 × 100
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛

 (14)
This work evaluated the performance of the algorithms on acyclic molecular graph presented in [7] and
mentioned above in figure 1, using 3,5,7,8 sockets we observed an overall improvement in performance. The
comparison between the HEFT, FCFS, GA, SA, GRASP and Tabu Search algorithms was based on the metrics
schedule length, speedup, and efficiency presented in tables 2,3,4 respectively. All algorithms were
implemented using Java programming language on the NetBeans platform, and the simulation was conducted
on a computer with 1.80 GHz CPU and 3.89 GB RAM. To guarantee unbiased results, the experiment utilized
the maximum number of function evaluations as the stopping criterion. A table summarizing the other parameter
settings used in the experiment is provided below.

Table 1.parameter setting.

GRASP parameter:𝛼𝛼
Initial Temperature T
Crossover probability (pc):
Mutation probability (pm):
Tabu Search _tabu-Size
Maximum evaluations

0.4
200
0.۷
0.3
50

۲۰۰۰۰

Table 2. Average Schedule length with (ms) of Algorithms

No. of
Sockets GRASP HEFT Rank

up
Tabu

Search SA GA HEFT -
Rank down FCFS

3 158 172 166 166 172 168 171
5 119 131 129 129 135 132 132
7 109 120 118 118 124 123 124
8 106 116 116 116 118 122 124

40 International Journal of Computers and Information, IJCI V11-1(2024) 30–43

Table 3. Speed-Up of Algorithms

No. of
Sockets GRASP HEFT

Rank up
Tabu

Search SA GA HEFT
Rank down FCFS

3 2.6519 2.436 2.5241 2.5241 2.436 2.494 2.4503
5 3.521 3.1985 3.2481 3.2481 3.1037 3.1742 3.1742
7 3.844 3.4917 3.5508 3.5508 3.379 3.4065 3.379
8 3.9528 3.6121 3.6121 3.6121 3.5508 3.4344 3.379

Table 4. Efficiency (%) of Algorithms

No. of
Sockets GRASP HEFT

Rank up
Tabu

Search SA GA HEFT
Rank down FCFS

3 0.3315 0.3045 0.3155 0.3155 0.3045 0.3118 0.3063
5 0.4401 0.3998 0.406 0.406 0.388 0.3968 0.3968
7 0.4805 0.4365 0.4439 0.4439 0.4224 0.4258 0.4224
8 0.4941 0.4515 0.4515 0.4515 0.4439 0.4293 0.4224

This paper presents a set of algorithms recently published that demonstrate promising results in research. The
objective was to explore the distinctions among these algorithms, ultimately enabling efficient management of
heterogeneous computing environments and saving considerable time. Within the algorithms, HEFT Ranked
up, HEFT Ranked down, and FCFS are classified as Static algorithms, while GRASP, Tabu Search, SA, and
GA are categorized as heuristic algorithms. It is worth noting that the heuristic algorithms outperform the static
algorithms in terms of performance, making them adaptable to changes in the problem domain. Conversely, the
static algorithms handle the heterogeneous computing environment in a uniform manner, as they inherently
maintain a constant approach regardless of variable conditions. However, HEFT Ranked up, HEFT Ranked
down, and FCFS, as depicted in table 2, 3, and 4 respectively, exhibit subpar performance in generating high-
quality schedules within this heterogeneous computing environment. This can be attributed to their reliance on
specific task assignment orders, which restricts their effectiveness in this context.

Table 2 illustrates the superiority of the GRASP algorithm over various other optimization algorithms, HEFT
Ranked up, Tabu Search, SA, GA, HEFT Ranked down, and FCFS, in terms of the average schedule length.
The results demonstrate that the GRASP algorithm excels in generating schedules with shorter completion times
on average, which is a crucial performance metric for scheduling algorithms. The remarkable performance of
GRASP can be attributed to its efficient exploration of the solution space and its utilization of a combination of
greedy constructive heuristics and randomized local search techniques to obtain high-quality solutions.

It is noteworthy that the GA performs comparatively poorer than other heuristic algorithms due to its reliance
on crossover and mutation, which have already been demonstrated in the constructed solution. Moreover, both
tabu search and simulated annealing exhibit better performance than GA but fall short of matching the
effectiveness of GRASP. This can be attributed to the fact that GRASP applies local search techniques after
constructing the initial solution, unlike tabu search and simulated annealing. The same conclusions can be drawn
from figures 3, 4, 5, and 6, which further support the results. Additionally, this study indicates that as the number
of sockets increases, the scheduling algorithm becomes more efficient in task assignment and significantly
reduces the required completion time, as depicted in figure 7.

This study provides valuable insights into the effectiveness of different optimization algorithms for scheduling
problems and highlights the importance of selecting appropriate algorithms based on the specific characteristics

Abla Saad, Osama Abdel-Raouf, Mohy Hadhoud, Ahmed Kafafy 41

of the problem at hand. Further research can investigate the applicability of the GRASP algorithm to other
scheduling problems and explore ways to further enhance its performance. then, GRASP is more efficient than
Tabu Search, Simulated Annealing and GA. Table 4 represents GRASP is 33% better then HEFT Ranked up,
Tabu Search, SA, GA, HEFT Ranked down and FCFS in case of efficiency.

Fig. 3. Relation between numbers of sockets and schedule length

Fig. 4. Analysis of comparative algorithms with 3 sockets.

Fig. 5. Analysis of comparative algorithms with 5 sockets

0
20
40
60
80

100
120
140
160
180
200

3 Sockets 5 Sockets 7 Sockets 8 Sockets

Schedule length

GRASP

HEFT_Ranked_up

Tabu Search

SA

GA

HEFT_Ranked_down

FCFS

15
8

17
2

16
6

16
6

17
2

16
8 17

1

NO.SOCKETS = 3

Sc h e d u l e L e n g t h

GRASP HEFT_Ranked_up
Tabu Search SA
GA HEFT_Ranked_down
FCFS

2.
65

19

2.
43

6 2.
52

41

2.
52

41

2.
43

6 2.
49

4

2.
45

03

NO.SOCKETS = 3

Sp e e d _ u p

GRASP HEFT_Ranked_up
Tabu Search SA
GA HEFT_Ranked_down
FCFS

0.
33

15

0.
30

45 0.
31

55

0.
31

55

0.
30

45 0.
31

18

0.
30

63

NO.SOCKETS = 3

E f f i c i e n c y

GRASP HEFT_Ranked_up
Tabu Search SA
GA HEFT_Ranked_down
FCFS

11
9

13
1

12
9

12
9

13
5

13
2

13
2

NO.SOCKETS=5

Sc h e d u l e L e n g t h

GRASP HEFT_Ranked_up
Tabu Search SA
GA HEFT_Ranked_down
FCFS

3.
52

1

3.
19

85

3.
24

81

3.
24

81

3.
10

37

3.
17

42

3.
17

42

NO.SOCKETS = 5

Sp e e d _ u p

GRASP HEFT_Ranked_up
Tabu Search SA
GA HEFT_Ranked_down
FCFS

0.
44

01

0.
39

98

0.
40

6

0.
40

6

0.
38

8

0.
39

68

0.
39

68

NO.SOCKETS =5

E f f i c i e n c y

GRASP HEFT_Ranked_up
Tabu Search SA
GA HEFT_Ranked_down
FCFS

42 International Journal of Computers and Information, IJCI V11-1(2024) 30–43

Fig. 6. Analysis of comparative algorithms with 7 sockets

Fig. 7. Analysis of comparative algorithms with 8 sockets

VI. Conclusion and Future work

In this paper, we have explored six different algorithms, namely GRASP, Tabu Search, SA, GA, FCFS, and
HEFT, across several parameters such as Schedule Length, Speedup, and Efficiency. These algorithms were
applied to Molecular DAG in static task scheduling algorithms within a heterogeneous environment using three,
five, seven, and eight sockets. Our results indicate that GRASP outperforms HEFT Ranked up, Tabu Search,
SA, GA, HEFT Ranked down, and FCFS for all the parameters we considered. Additionally, increasing the
number of sockets leads to improved results across all parameters. Nonetheless, this study shows that there is
still considerable scope for improvement in all the algorithms in the existing literature. Although list scheduling
is a vast research area, our study highlights the need for developing a technique that can generate an efficient
priority list for tasks and an assignment-based algorithm to reduce the overall execution time (makespan). Future
studies can examine the suitability of the GRASP algorithm for other scheduling problems and explore methods
to further improve its performance.

References

[1] M. Homayun, N. T. Reza and H. S. Mirsaeid, “A hybrid meta-heuristic scheduler algorithm for optimization of workflow scheduling

in cloud heterogeneous computing environment,” Journal of Engineering, Design and Technology, 2022.

[2] B. V. J. and and V. Subrahmanyam, “Load and cost-aware min-min workflow scheduling algorithm for heterogeneous resources in
fog, cloud, and edge scenarios,” International Journal of Cloud Applications and Computing (IJCAC), 2022.

10
9

12
0

11
8

11
8

12
4

12
3

12
4

NO.SOCKETS = 7

Sc h e d u l e L e n g t h

GRASP HEFT_Ranked_up
Tabu Search SA
GA HEFT_Ranked_down
FCFS

3.
84

4

3.
49

17

3.
55

08

3.
55

08

3.
37

9

3.
40

65

3.
37

9

NO.SOCKETS = 7

Sp e e d _ u p

GRASP HEFT_Ranked_up
Tabu Search SA
GA HEFT_Ranked_down
FCFS

0.
48

05

0.
43

65

0.
44

39

0.
44

39

0.
42

24

0.
42

58

0.
42

24

NO.SOCKETS = 7

E f f i c i e n c y

GRASP HEFT_Ranked_up
Tabu Search SA
GA HEFT_Ranked_down
FCFS

10
6

11
6

11
6

11
6 11

8 12
2 12

4

NO.SOCKETS = 8

Sc h e d u l e L e n g t h

GRASP HEFT_Ranked_up
Tabu Search SA
GA HEFT_Ranked_down
FCFS

3.
95

28

3.
61

21

3.
61

21

3.
61

21

3.
55

08

3.
43

44

3.
37

9

NO.SOCKETS = 8

Sp e e d _ u p

GRASP HEFT_Ranked_up
Tabu Search SA
GA HEFT_Ranked_down
FCFS

0.
49

41

0.
45

15

0.
45

15

0.
45

15

0.
44

39

0.
42

93

0.
42

24

NO.SOCKETS = 8

E f f i c i e n c y

GRASP HEFT_Ranked_up
Tabu Search SA
GA HEFT_Ranked_down
FCFS

Abla Saad, Osama Abdel-Raouf, Mohy Hadhoud, Ahmed Kafafy 43

[3] R. Aron and A. Abraham, “Resource scheduling methods for cloud computing environment: The role of meta-heuristics and
artificial intelligence,” Engineering Applications of Artificial Intelligence Journal, 2022.

[4] S. Padhy, R. M. and and S. Kumari, “A novel algorithm for priority-based task scheduling on a multiprocessor heterogeneous
system,” Microprocessors and Microsystems Journal, 2022.

[5] W. A. Ahmed, S. Gulzar, N. M. Wasif, M. E. Ullah and N. Ramzan, “Energy Efficient Resource Allocation in Heterogeneous
Computing Environments,” IEEE Access, 2022.

[6] H. Topcuoglu, H. a. Salim, Wu and Min-You, “Performance-effective and low-complexity task scheduling for heterogeneous
computing,” IEEE transactions on parallel and distributed systems, 2002.

[7] G. Singh, G. Jasbir and a. Singh, “Improved Task Scheduling on Parallel System using Genetic Algorithm,” International Journal
of Computer Applications, vol. 39, pp. 17-22, 2012.

[8] A. &. Kumar and S. K. Bharti, “A review of static scheduling techniques for task allocation in heterogeneous distributed computing
systems.,” International Journal of Advanced Intelligence Paradigms, 2019.

[9] G. Li, Y. Li, W. Li and X. & Li, “Survey of dynamic task scheduling strategies in cloud computing.,” Journal of Network and
Computer Applications, 2018.

[10] D. K. Saxena, M. C. Govil and R. K. Gupta, “Performance Evaluation of FCFS and Priority Based Task Scheduling Algorithms for
Heterogeneous Computing Systems,” in the International Conference on Computational Intelligence and Communication
Networks, 2015.

[11] Z. Liu, Q. a. and Li, X. a. Chen and Y. Chen, “Performance evaluation of task scheduling algorithms in heterogeneous computing
systems: A comparative study,” Journal of Parallel and Distributed Computing, 2022.

[12] Hafidha, I. H. and W. K. Mahdi, “A Hybrid Genetic Algorithm for Task Scheduling in Heterogeneous Computing Systems,” Journal
of SN Computer Science, 2021.

[13] Zhang and &. L. H. Q., “Scheduling problems in heterogeneous computing platforms: a survey of optimization techniques.,” Journal
of Parallel and Distributed Computing, 2018.

[14] A. Saad, A. and Kafafy, a. A.-E.-R. Osama and N. and El-Hefnawy, “A GRASP-Genetic Metaheuristic Applied on Multi-Processor
Task Scheduling Systems,” in 2018 13th International Conference on Computer Engineering and Systems (ICCES), 2018.

[15] Kirkpatrick, J. S, .. a. G. Vecchi, C. D. and and M. P., “Optimization by Simulated Annealing,” Journal of Science, 1983.

[16] Z. Liu, K. and Li, X. and Zhang and X. and Yu, “Adaptive Simulated Annealing with Lévy Flights for Multimodal Optimization,”
Journal of Applied Soft Computing , 2021.

[17] S. Abla, K. Ahmed, A. E. R. Osama and N. El-Hefnawy, “A GRASP-Simulated Annealing approach applied to solve Multi-
Processor Task Scheduling problems,” in 2019 14th International Conference on Computer Engineering and Systems (ICCES),
2019.

[18] F. Herrera and C. and León, “On the Effectiveness of Variable Neighborhood Search and Greedy Randomized Adaptive Search
Procedures for Multi-objective Sustainable Supplier Selection,” Journal of Sustainability, 2021.

[19] G. Dávila and F. and Herrera, “Design of a GRASP metaheuristic for the university course timetabling problem,” Journal of
Combinatorial Optimization, 2020.

[20] S. Nabli, M. and Gharsalli and M. and Ayadi, “A hybrid metaheuristic algorithm based on GRASP and variable neighborhood
search for the flexible job-shop scheduling problem,” Journal of Engineering Applications of Artificial Intelligence, 2019.

[21] A. Rawan, S. and Alotaibi, a. Almazyad, Alqarni and A. Abdulmohsen, “A hybrid Tabu search algorithm with a new promising
neighborhood structure for solving the permutation flowshop scheduling problem,” Journal of Ambient Intelligence and Humanized
Computing, 2021.

[22] B. Ghomri, M. a. Moulaï, L. a. Abbas and M. a. Abdelhamid, “Multi-objective task scheduling using a Tabu Search algorithm in
heterogeneous computing systems,” Journal of Soft Computing, 2020.

[23] G. Jose, H. J. Ortega, J. a. Rico and Juan, “A Parallel Tabu Search Algorithm for Task Scheduling in Heterogeneous Computing
Systems,” Journal of Grid Computing, 2020.

[24] M. Tanha, M. H. Shirvani and A. M. Rahmani, “A hybrid meta-heuristic task scheduling algorithm based on genetic and
thermodynamic simulated annealing algorithms in cloud computing environments,” Journal of Neural Computing and Applications,
vol. 33, pp. 16951--16984, 2021.

[25] A. W. a. Ahmed, S. G. a. Nisar, M. W. a. Munir, E. U. a. Ramzan and Naeem, “Energy Efficient Resource Allocation in
Heterogeneous Computing Environments,” 2022.

	I. Introduction
	II. Task Model
	III. Scheduling Problem
	IV. Implemented Algorithms
	FCFS (First Come First Served)
	HEFT (Heterogeneous Earliest Finish Time)
	GA (Genetic algorithms)
	SA (Simulated annealing)
	GRASP (Greedy Randomized Adaptive Search Procedure)
	Tabu Search

	V. Experimental Results and Analysis
	VI. Conclusion and Future work
	References

