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Abstract 

Scheduling tasks in a heterogeneous computing environment can be a challenging problem due to the diverse range of 
hardware and software resources available. In this comparative study different approaches are investigated for solving 
multitask scheduling in the heterogeneous computing environment, reviewing the literature on the topic, highlighting the 
strengths and weaknesses of different scheduling algorithms then, formulate a hypothesis about how multitask scheduling 
can be optimized in a heterogeneous computing environment and design an experiment to test this hypothesis. This study 
involves running a variety of scheduling algorithms as GRASP, Tabu Search, SA, GA, HEFT and FCFS on a heterogeneous 
computing platform. This study yields valuable insights on the efficacy of various optimization algorithms for scheduling 
problems and emphasizes the significance of selecting suitable algorithms based on the problem's specific features. The 
result of this study indicates that the GRASP algorithm outperforms other scheduling algorithms as HEFT Ranked up, Tabu 
Search, SA, GA, HEFT Ranked down, and FCFS on producing schedules with shorter completion times. This is a critical 
factor when evaluating scheduling algorithms. The exceptional performance of GRASP can be credited to its effective 
navigation of the solution space and its adept utilization of a blend of greedy constructive heuristics and randomized local 
search methods, which enable it to achieve top-notch solutions.  

Keywords: Task Scheduling, Heterogeneous Computing Environment, Metaheuristics;  

I. Introduction  
Task scheduling in a heterogeneous computing environment involves allocating tasks to available hardware 

and software resources in a way that maximizes the overall efficiency and performance of the system. However, 
this can be a complex problem due to the wide range of resources that may be available, including different 
types of processors, memory, and storage. In addition, tasks may have different requirements in terms of their 
resource needs and deadlines, further adding to the complexity of the scheduling problem. As a result, finding 
an optimal schedule for tasks in a heterogeneous computing environment can be a challenging task. In this 
study, heuristic and static scheduling algorithms are investigated for solving multitask scheduling in such 
environments. This study also examines the factors that impact the performance of scheduling algorithms in 
heterogeneous computing environments by understanding the strengths and weaknesses of different scheduling 
approaches, this research hope to provide insights into how multitask scheduling can be optimized in such 
environments [1], [2]. 

Traditional priority techniques and heuristic techniques are two different types of algorithms that can be used 
for scheduling tasks in a heterogeneous computing environment. Traditional priority techniques involve 
assigning a priority to each task and scheduling the tasks based on their priorities. These techniques are simple 
and easy to implement, but they may not always produce an optimal schedule. Heuristic techniques, on the other 
hand, are strategies that are designed to find a good, but not necessarily optimal, solution to a problem. Heuristic 
techniques for scheduling tasks in a heterogeneous computing environment may use a variety of strategies, such 
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as simulating natural phenomena or using metaheuristics, to find a good schedule. Heuristic techniques may be 
more computationally intensive than traditional priority techniques, but they can often find a better schedule in 
a reasonable amount of time [3] [4]. 

In this comparative study, a series of novel scheduling algorithms are implemented to optimize the allocation 
of tasks across different computing resources, considering factors like task characteristics, resource capabilities, 
and system load. This study focuses on two distinct categories of scheduling algorithms, each aimed at 
enhancing system performance and contributing to the advancement of high-performance computing. One 
category comprises heuristic algorithms, which encompass metaheuristic approaches like Greedy Randomized 
Adaptive Search Procedure (GRASP), Tabu Search, Genetic Algorithm (GA), and Simulated Annealing (SA). 
The other category comprises static algorithms, including Heterogeneous Earliest Finishing Time (HEFT) and 
First Come First Served (FCFS). By evaluating and comparing the performance of these algorithms in 
heterogeneous computing environments, this research seeks to identify the most effective scheduling strategies 
for optimizing system efficiency and resource utilization.   

The subsequent sections of this paper are organized as follows: In Section 2, this study presents the task model. 
In Section 3, illustrate the concepts of scheduling problem. Sections 4 provide concise explanations of the 
implemented algorithms FCFS (First Come First Served), HEFT (Heterogeneous Earliest Finishing Time), GA 
(Genetic Algorithm), Simulated Annealing (SA) and the greedy randomized adaptive search method (GRASP) 
algorithms, respectively. The evaluation of performance and the associated parameters are discussed separately 
in Sections 5. Finally, our conclusions and recommendations for future research are summarized in Section 6. 

II. Task Model 
 

In a parallel and distributed computing environment, an application can be divided into a set of tasks, which 
are represented using a directed acyclic graph (𝐷𝐷𝐷𝐷𝐷𝐷) 𝐷𝐷 =  (𝑁𝑁,𝐸𝐸). The set 𝑁𝑁 consists of 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, and each 
node 𝑛𝑛𝑖𝑖  in 𝑁𝑁  represents a task in the application. The set 𝐸𝐸  is a set of 𝑛𝑛  directed edges that represent 
dependencies between tasks. Each edge 𝑛𝑛 (𝑖𝑖,𝑗𝑗) in 𝐸𝐸 connects two nodes in the graph, with the first node being 
the parent or protector node and the second node being the child node as in figure 1. The child node cannot be 
executed until the parent node has completed [5]. The node with no children is known as the 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. When 
two nodes are assigned to the same processor, the communication cost between them is minimal. The mapping 
of nodes to processors and the optimization of execution time depends on ranking, which is a measure of the 
importance or priority of a node.  

The weight 𝑊𝑊𝑖𝑖 of each node 𝑛𝑛𝑖𝑖  reflects the processing expenses of the node, and the computation cost is the 
estimated execution time (𝐸𝐸𝐸𝐸𝐸𝐸) for completing task 𝑛𝑛𝑖𝑖 on processor 𝑝𝑝𝑗𝑗 .The average execution cost of a task 𝑛𝑛𝑖𝑖 
𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎(𝑛𝑛𝑖𝑖) is defined in equation (1) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎(𝑛𝑛𝑖𝑖) = ∑ 𝑊𝑊𝑖𝑖 𝑝𝑝𝑗𝑗�𝑗𝑗
𝑝𝑝=1                                                                       (1) 

The average execution cost of a task 𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎(𝑛𝑛𝑖𝑖) is calculated as the sum of the execution costs on all processors 
𝑊𝑊𝑖𝑖, divided by the total number of processors 𝑝𝑝𝑗𝑗 .  

The transfer time of data between processors is stored in a matrix 𝐵𝐵 of size 𝑞𝑞 𝑒𝑒 𝑞𝑞, and the communication startup 
time for each processor is given in a 𝑞𝑞-dimensional vector 𝐿𝐿 [1].The communication cost between two tasks 𝑛𝑛𝑖𝑖 
and 𝑛𝑛𝑗𝑗 , which are scheduled on processors 𝑝𝑝𝑚𝑚 and 𝑝𝑝𝑛𝑛 , respectively, is represented by the edge between them. 

Various predefined criteria such as upward ranks, downward ranks presented in [6], and others developed by 
different researchers can be used to prioritize all the tasks in a given DAG. Once the tasks in the DAG have 
been prioritized, Equations 2 and 3 can be utilized to determine the Earliest Start Time (EST) and Latest Finish 
Time (LFT) attributes. 
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Fig. 1.  Molecular DAG with 50 nodes [7] 

𝐸𝐸𝐸𝐸𝐸𝐸�𝑛𝑛𝑖𝑖 ,𝑝𝑝𝑗𝑗  � = �
0                                                                                                    𝑒𝑒𝑖𝑖 𝑛𝑛𝑖𝑖 = 𝐸𝐸𝑛𝑛𝑒𝑒𝑛𝑛𝐸𝐸𝐸𝐸 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
max�𝐸𝐸𝐸𝐸𝐸𝐸�𝑛𝑛𝑗𝑗�+ 𝐸𝐸𝐸𝐸𝐸𝐸�𝑛𝑛𝑗𝑗�+ 𝐶𝐶�𝑛𝑛𝑗𝑗,𝑖𝑖�� ,𝑛𝑛𝑗𝑗𝜖𝜖𝑝𝑝𝜖𝜖𝜖𝜖𝜖𝜖(𝑛𝑛𝑖𝑖)                                , 𝑛𝑛𝑒𝑒ℎ𝑛𝑛𝐸𝐸𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛�          (2) 

Equation 2 defines the Earliest Start time 𝐸𝐸𝐸𝐸𝐸𝐸�𝑛𝑛𝑖𝑖 ,𝑝𝑝𝑗𝑗  � of a task 𝑛𝑛𝑖𝑖 at any processor 𝑝𝑝𝑗𝑗 . If 𝑛𝑛𝑖𝑖 is an entry task, its 
EST will be zero. However, if it has immediate predecessor tasks represented by 𝑛𝑛𝑗𝑗 , the value of EST will be 
determined using Equation 2. Here, 𝐸𝐸𝐸𝐸𝐸𝐸 (𝑛𝑛𝑗𝑗) represents the 𝐸𝐸𝐸𝐸𝐸𝐸 of predecessor tasks, 𝐸𝐸𝐸𝐸𝐸𝐸�𝑛𝑛𝑗𝑗� denotes their 
execution times, and 𝐶𝐶�𝑛𝑛𝑗𝑗,𝑖𝑖� signifies the communication cost between the predecessor task and 𝑛𝑛𝑖𝑖. 

𝐿𝐿𝐿𝐿𝐸𝐸�𝑛𝑛𝑖𝑖 ,𝑝𝑝𝑗𝑗  � = �
𝐷𝐷𝐿𝐿                                                                                                    𝑒𝑒𝑖𝑖 𝑛𝑛𝑖𝑖 = 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
min�𝐿𝐿𝐿𝐿𝐸𝐸�𝑛𝑛𝑗𝑗� − 𝐸𝐸𝐸𝐸𝐸𝐸�𝑛𝑛𝑗𝑗� − 𝐶𝐶�𝑛𝑛𝑗𝑗,𝑖𝑖�� ,𝑛𝑛𝑗𝑗𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖(𝑛𝑛𝑖𝑖)                                , 𝑛𝑛𝑒𝑒ℎ𝑛𝑛𝐸𝐸𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛�             (3) 

Equation 3 defines the Latest Finish Time 𝐿𝐿𝐿𝐿𝐸𝐸�𝑛𝑛𝑖𝑖 ,𝑝𝑝𝑗𝑗  � of a task 𝑛𝑛𝑖𝑖 at any processor 𝑝𝑝𝑗𝑗 . If 𝑛𝑛𝑖𝑖 is an exit task, its 
LFT will be equal to the Deadline (𝐷𝐷𝐿𝐿). However, if 𝑛𝑛𝑖𝑖 has immediate successor tasks represented by 𝑛𝑛𝑗𝑗 , the 
values of 𝐿𝐿𝐿𝐿𝐸𝐸  will be determined using Equation 3. Here 𝐿𝐿𝐿𝐿𝐸𝐸  (𝑛𝑛𝑗𝑗 ) denotes the 𝐿𝐿𝐿𝐿𝐸𝐸  of successor tasks, 
𝐸𝐸𝐸𝐸𝐸𝐸�𝑛𝑛𝑗𝑗�signifies their execution times, and 𝐶𝐶�𝑛𝑛𝑗𝑗,𝑖𝑖� represents the communication cost between task 𝑛𝑛𝑖𝑖.and the 
successor task 𝑛𝑛𝑗𝑗 . 

The Actual Start Time 𝐷𝐷𝐸𝐸𝐸𝐸(𝑛𝑛𝑖𝑖) of a task 𝑛𝑛𝑖𝑖  is determined by Equation 5, which specifies the start time of the 
task. However, if 𝑛𝑛𝑖𝑖is the entry task 𝑛𝑛𝜖𝜖𝑛𝑛𝑒𝑒𝜖𝜖𝜖𝜖𝑒𝑒, its AST is determined by Equation 4. It is important to note that 
the value of 𝐷𝐷𝐸𝐸𝐸𝐸 depends on the task and the context in which it is being evaluated. 

𝐷𝐷𝐸𝐸𝐸𝐸(𝑛𝑛𝑖𝑖) = 𝐸𝐸𝐸𝐸𝐸𝐸�𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒� = 0                                                                     (4) 

𝐷𝐷𝐸𝐸𝐸𝐸(𝑛𝑛𝑖𝑖) = 𝑚𝑚𝑒𝑒𝑛𝑛(𝐸𝐸𝐸𝐸𝐸𝐸)                                                                                (5) 

Equation 6 provides the definition of the Actual Finished Time (𝐷𝐷𝐿𝐿𝐸𝐸) for a task 𝑛𝑛𝑖𝑖  (𝐷𝐷𝐿𝐿𝐸𝐸(𝑛𝑛𝑖𝑖)), which represents 
the time when the task is finished. The value of 𝐷𝐷𝐿𝐿𝐸𝐸 is dependent on the specific task being evaluated 𝐸𝐸𝐸𝐸𝐸𝐸(𝑛𝑛𝑖𝑖) 
and can be calculated using the equation. 

𝐷𝐷𝐿𝐿𝐸𝐸(𝑛𝑛𝑖𝑖) =   𝐷𝐷𝐸𝐸𝐸𝐸(𝑛𝑛𝑖𝑖) +   𝐸𝐸𝐸𝐸𝐸𝐸(𝑛𝑛𝑖𝑖)                                                              (6) 

The main goal of the objective function is to minimize the makespan 𝑀𝑀𝐸𝐸(𝐸𝐸𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛 𝑒𝑒𝑛𝑛𝑛𝑛𝑙𝑙𝑒𝑒ℎ). It is determined 
by Equation 7, which provides a definition of the time duration between the start of the earliest task and the 
finish of the latest task. 
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𝑀𝑀𝐸𝐸(𝐸𝐸𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛 𝑒𝑒𝑛𝑛𝑛𝑛𝑙𝑙𝑒𝑒ℎ) =   𝑚𝑚𝑒𝑒𝑛𝑛  𝐸𝐸𝐿𝐿𝐸𝐸(𝑛𝑛𝐸𝐸𝐸𝐸𝑖𝑖𝑒𝑒)                                                       (7) 

III. Scheduling Problem 
 The focus of this paper is on the static scheduling of a specific application in a heterogeneous computing 

system There are two main approaches to task scheduling: one of them is static and the other is dynamic. Static 
scheduling involves determining the task schedule before the tasks are executed, while dynamic scheduling is 
suitable for situations where the computing system and task parameters are not known in advance. Where 
dynamic scheduling algorithms are used when the workload and system status are only known at runtime, and 
they make decisions about task assignment during execution [8] [9]. However, these algorithms often have 
additional overhead compared to static scheduling methods. In contrast, static scheduling involves creating a 
schedule before tasks are executed, and it does not incur any additional overhead during runtime. The goal of 
task scheduling is to divide an application into different parts or nodes, and to determine the priority of these 
nodes in order to minimize the overall execution time of the application. In this paper, we will discuss lists-
based scheduling heuristics (FCFS, HEFT, GA, SA, GRASP and Tabu Search) and their effectiveness in a 
heterogeneous computing environment. We will also examine the impact of different scheduling parameters, 
such as schedule length, speedup, and efficiency, on the performance of these algorithms. 

IV. Implemented Algorithms 
 
FCFS (First Come First Served) 
The First Come First Served (FCFS) algorithm is a simple and intuitive approach for task scheduling in 
heterogeneous computing platforms. The FCFS algorithm executes tasks in the order they arrive in the system 
as in equation (8), regardless of their priority 𝐿𝐿𝐶𝐶𝐿𝐿𝐸𝐸𝑅𝑅𝑎𝑎𝑛𝑛𝑅𝑅(ni) or computing requirements [10]. 
 

𝐿𝐿𝐶𝐶𝐿𝐿𝐸𝐸𝑅𝑅𝑎𝑎𝑛𝑛𝑅𝑅(ni) = �
0                                                                     if  𝑃𝑃𝑃𝑃𝐸𝐸𝐷𝐷(𝑛𝑛𝑖𝑖) = ∅
1 + 𝑚𝑚𝑚𝑚𝑒𝑒 �𝐿𝐿𝐶𝐶𝐿𝐿𝐸𝐸𝑅𝑅𝑎𝑎𝑛𝑛𝑅𝑅�𝑛𝑛𝑗𝑗�:𝑛𝑛𝑗𝑗 ∊  𝑃𝑃𝑃𝑃𝐸𝐸𝐷𝐷(𝑛𝑛𝑖𝑖)� ,    𝑂𝑂𝑒𝑒ℎ𝑛𝑛𝐸𝐸𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛                             (8) 

 

 
Where, 𝑃𝑃𝑃𝑃𝐸𝐸𝐷𝐷(𝑛𝑛𝑖𝑖) is the predecessor task. This approach is easy to implement and provides a fair allocation of 
resources to all tasks. However, the FCFS algorithm has some disadvantages. Firstly, it can lead to long waiting 
times for tasks with higher priority or shorter computing requirements, as they are blocked by longer tasks. 
Secondly, the FCFS algorithm does not take into account the resource availability, which can result in inefficient 
resource utilization and low system performance. Despite its drawbacks, the FCFS algorithm can be suitable 
for simple and low-priority tasks, where the goal is to achieve a fair allocation of resources to all tasks without 

Alg.1: FCFS 
Inputs: 

𝑛𝑛𝑖𝑖: Number of Tasks 
m: Number of processors 
𝐶𝐶𝐶𝐶𝐶𝐶����: Avg communication cost 
𝑊𝑊𝐶𝐶����: Avg computation time 

Output: Makespan  
Begin:                                 

1. 𝐸𝐸𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒 = Ø; //Schedule list 
2. 𝐅𝐅𝐅𝐅𝐅𝐅 𝑒𝑒 ∈ {1, … ,𝑚𝑚} do: 

3.  𝐿𝐿𝐶𝐶𝐿𝐿𝐸𝐸𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅(ni) = �
0                                                              if  𝑃𝑃𝑃𝑃𝐸𝐸𝐷𝐷(𝑛𝑛𝑒𝑒) = ∅

1 + 𝑚𝑚𝑚𝑚𝑒𝑒 �𝐿𝐿𝐶𝐶𝐿𝐿𝐸𝐸𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅�𝑛𝑛𝑗𝑗�: 𝑛𝑛𝑗𝑗 ∊  𝑃𝑃𝑃𝑃𝐸𝐸𝐷𝐷(𝑛𝑛𝑒𝑒)� ,    𝑛𝑛𝑒𝑒ℎ𝑛𝑛𝐸𝐸𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛
   

4.     𝐸𝐸𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒 ←   𝐸𝐸𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒  ∪  {   𝐿𝐿𝐶𝐶𝐿𝐿𝐸𝐸𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅(ni)} .  
5. End For 
6. 𝐸𝐸𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒 ←ArrangASce(𝒔𝒔𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒) //arrange in Ascending order. 
7. Assign( 𝒔𝒔𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒 ,𝑚𝑚) 
8. Return Makespan; //return the makespan. 

End 
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complicated scheduling algorithms. Overall, the choice of task scheduling algorithm for heterogeneous 
computing platforms should be based on the specific requirements of the system and the tasks to be executed 
[11]. The pseudo code for FCFS algorithm is mentioned in Alg.1 below. 
 
HEFT (Heterogeneous Earliest Finish Time) 
HEFT (Heterogeneous Earliest Finish Time) is a simple and effective scheduling technique for static task 
scheduling in both heterogeneous and homogeneous computing environments with a limited number of 
processors [6]. It consists of two stages: a prioritization phase and a processor selection stage. During the 
prioritization phase, HEFT calculates the priority of each task using an 𝑒𝑒𝑝𝑝𝑒𝑒𝑚𝑚𝐸𝐸𝑛𝑛 𝐸𝐸𝑚𝑚𝑛𝑛𝑅𝑅𝑒𝑒𝑛𝑛𝑙𝑙 (𝐸𝐸𝑚𝑚𝑛𝑛𝑅𝑅𝜖𝜖𝑝𝑝) method 
and 𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑚𝑚𝐸𝐸𝑛𝑛 𝐸𝐸𝑚𝑚𝑛𝑛𝑅𝑅𝑒𝑒𝑛𝑛𝑙𝑙 (𝐸𝐸𝑚𝑚𝑛𝑛𝑅𝑅𝜖𝜖𝑑𝑑𝑑𝑑𝑛𝑛) according equations 9,10 respectively. 
 

𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅𝜖𝜖𝑝𝑝(𝑛𝑛𝑖𝑖) = 𝑊𝑊𝐶𝐶���� + max
𝐸𝐸𝑗𝑗∊𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐸𝐸𝑖𝑖)

�𝐶𝐶𝐶𝐶𝐶𝐶���� +   𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅𝜖𝜖𝑝𝑝(𝑛𝑛𝑖𝑖)�                                                 (9) 

𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅𝑛𝑛𝑛𝑛_𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛(𝑛𝑛𝑖𝑖) = max
𝐸𝐸𝑗𝑗∈𝑃𝑃𝜖𝜖𝜖𝜖𝜖𝜖(𝐸𝐸𝑖𝑖)

�𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅𝑛𝑛𝑛𝑛_𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛�𝑛𝑛𝑗𝑗�+ 𝑊𝑊𝐶𝐶���� + 𝐶𝐶𝐶𝐶𝐶𝐶�����                               (10) 

This involves traversing the application graph in an upward direction and calculating the mean communication 
𝐶𝐶𝐶𝐶𝐶𝐶���� and computation costs 𝑊𝑊𝐶𝐶����  for each node 𝑛𝑛𝑖𝑖. The resulting list of nodes is then sorted in decreasing order of 
𝐸𝐸𝑚𝑚𝑛𝑛𝑅𝑅𝜖𝜖𝑝𝑝 and increasing order of 𝐸𝐸𝑚𝑚𝑛𝑛𝑅𝑅𝜖𝜖𝑑𝑑𝑑𝑑𝑛𝑛 . HEFT uses a tie-breaking policy to determine which node to select 
when there are multiple nodes with the same 𝐸𝐸𝑚𝑚𝑛𝑛𝑅𝑅𝜖𝜖𝑝𝑝  value: There are several advantages to using the HEFT 
algorithm for solving scheduling problems in a heterogeneous computing platform. One advantage is that it is 
a simple and effective technique for finding good schedules in a short amount of time. Another advantage is 
that it is a static scheduling algorithm, which means that it does not require any runtime overhead and can be 
used to pre-schedule tasks. A disadvantage of HEFT is that it may not always find the optimal solution due to 
its reliance on mean values and the use of a Tie breaking policy. It may also be sensitive to changes in the 
problem, such as changes in the processing times or communication costs of the tasks. In addition, HEFT may 
not be suitable for dynamic scheduling scenarios, where the workload and resources are not known in advance. 
The pseudo code for HEFT algorithm is mentioned in Alg.2 below. 
 

Alg.2: HEFT  
Inputs: 

𝑛𝑛𝑖𝑖: Number of Tasks 
m: Number of processors 
𝐶𝐶𝐶𝐶𝐶𝐶����: Avg communication cost 
𝑊𝑊𝐶𝐶����: Avg computation time 

Output: Makespan  
Begin: 
               𝐸𝐸𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒 = Ø; //Schedule list 

1. 𝐈𝐈𝐈𝐈 𝐿𝐿𝑒𝑒𝑛𝑛𝑆𝑆𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 = 𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅𝑛𝑛𝑛𝑛_𝑒𝑒𝑝𝑝  
2. 𝐅𝐅𝐅𝐅𝐅𝐅 𝑒𝑒 ∈ {1, … ,𝑚𝑚} do: 
3.   𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅_𝑒𝑒𝑝𝑝(𝑛𝑛𝑖𝑖) = 𝑊𝑊𝐶𝐶����+ max

𝐸𝐸𝑗𝑗∊𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐸𝐸𝑖𝑖)
{𝐶𝐶𝐶𝐶𝐶𝐶����+   𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅_𝑒𝑒𝑝𝑝(𝑛𝑛𝑖𝑖)} 

4.     𝐸𝐸𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒 ←   𝐸𝐸𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒  ∪  {   𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅_𝑒𝑒𝑝𝑝(𝑛𝑛𝑖𝑖)} .  
5. End For 
6. 𝐸𝐸𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒 ←ArrangDesc(𝒔𝒔𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒) //arrange in descending order. 
7. 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐈𝐈𝐈𝐈 𝐿𝐿𝑒𝑒𝑛𝑛𝑆𝑆𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 = 𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅𝑛𝑛𝑛𝑛_𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛  
8. 𝐅𝐅𝐅𝐅𝐅𝐅 𝑒𝑒 ∈ {1, … ,𝑚𝑚} do: 
9. 𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅𝑛𝑛𝑛𝑛_𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛(𝑛𝑛𝑖𝑖) = max

𝐸𝐸𝑗𝑗∈𝑃𝑃𝜖𝜖𝜖𝜖𝜖𝜖(𝐸𝐸𝑖𝑖)
�𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅𝑛𝑛𝑛𝑛_𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛�𝑛𝑛𝑗𝑗� + 𝑊𝑊𝐶𝐶���� + 𝐶𝐶𝐶𝐶𝐶𝐶����� 

10. 𝐸𝐸𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒 ←   𝐸𝐸𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒  ∪  �   𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅𝜖𝜖𝑑𝑑𝑑𝑑𝑛𝑛(𝑛𝑛𝑖𝑖)� 
11.  End For 
12. 𝐸𝐸𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒 ←ArrangASce(𝒔𝒔𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒) //arrange in Ascending order. 
13. Assign( 𝒔𝒔𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒 ,𝑚𝑚) 
14. Return Makespan; //return the makespan. 

End 
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GA (Genetic algorithms) 
Genetic algorithms (GA) are a type of optimization technique that can be used to solve scheduling problems in 
a heterogeneous computing platform [12]. They are inspired by the process of natural evolution and are used to 
find the optimal solution to a problem by simulating the process of natural selection. In a genetic algorithm, a 
population of schedules is initialized and is evolved through a series of generations. Each schedule is 
represented as a chromosome, which is a set of genes that encode a potential solution to the problem. The 
chromosomes are evaluated using an objective function, which measures the quality of the schedule.  
The fittest chromosomes are then selected to be used in the next generation, and the less fit chromosomes are 
discarded. The selected chromosomes are then subjected to genetic operations, such as crossover with 
𝑃𝑃𝑆𝑆 𝑝𝑝𝐸𝐸𝑛𝑛𝑝𝑝𝑚𝑚𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐸𝐸 and mutation with 𝑃𝑃𝑚𝑚 𝑝𝑝𝐸𝐸𝑛𝑛𝑝𝑝𝑚𝑚𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐸𝐸, to produce a new population of chromosomes. This 
process is repeated until a satisfactory schedule is found 𝐸𝐸𝑛𝑛𝑒𝑒∗, or a predetermined stopping criterion is reached 
as mentioned in figure 2 below. Genetic algorithms can be effective at finding good schedules, but they may 
not always find the optimal solution due to the probabilistic nature of the algorithm [13] [14]. 
 
Alg.3: 𝐆𝐆𝐆𝐆   
Inputs: 
𝑛𝑛𝒊𝒊: number of tasks 
𝑚𝑚: number of processors 
𝑁𝑁: Pop Size. 
𝑃𝑃𝜖𝜖: probability of Crossover  
𝑃𝑃𝑚𝑚: Probability of Mutation. 

Output: Archive: all improved solutions found over generations. 
Begin: 

1. 𝑃𝑃𝑛𝑛𝑝𝑝 ← 𝑃𝑃𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚 (𝒔𝒔𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒 ) 
2. 𝐖𝐖𝐖𝐖𝐖𝐖𝐄𝐄𝐄𝐄 Stopping criterion is not satisfied do: 
3. 𝐸𝐸 ← 𝐅𝐅𝐫𝐫𝐫𝐫𝐫𝐫𝐅𝐅𝐫𝐫(0,1); 
4. 𝐈𝐈𝐅𝐅 (𝐸𝐸 < 𝑃𝑃𝑆𝑆) 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕: //apply crossover 
5.  𝐗𝐗′ ,𝐘𝐘′ ←  𝐂𝐂𝐅𝐅𝐅𝐅𝐄𝐄𝐄𝐄𝐅𝐅𝐂𝐂𝐄𝐄𝐅𝐅(𝐗𝐗,𝐘𝐘). 
6. 𝐄𝐄𝐫𝐫𝐫𝐫𝐈𝐈𝐅𝐅 
7.  𝐸𝐸 ← 𝐅𝐅𝐫𝐫𝐫𝐫𝐫𝐫𝐅𝐅𝐫𝐫(0,1); 
8.  𝐈𝐈𝐅𝐅 (𝐸𝐸 < 𝑃𝑃𝑚𝑚)𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕: 
9.  𝐗𝐗′′ ←  𝐌𝐌𝐌𝐌𝐌𝐌𝐫𝐫𝐌𝐌𝐄𝐄(𝐗𝐗′). 
10.  𝐘𝐘′′ ←  𝐌𝐌𝐌𝐌𝐌𝐌𝐫𝐫𝐌𝐌𝐄𝐄(𝐘𝐘′). 
11.  𝐄𝐄𝐫𝐫𝐫𝐫 𝐈𝐈𝐅𝐅 
12. 𝑁𝑁𝑛𝑛𝑒𝑒𝑃𝑃𝑛𝑛𝑝𝑝 ← 𝑁𝑁𝑛𝑛𝑒𝑒𝑃𝑃𝑛𝑛𝑝𝑝∪ {𝐗𝐗′′,𝐘𝐘′′} 
13. 𝐄𝐄𝐫𝐫𝐫𝐫 𝐅𝐅𝐅𝐅𝐅𝐅 
14. 𝑁𝑁𝑛𝑛𝑒𝑒𝑃𝑃𝑛𝑛𝑝𝑝 ← 𝐄𝐄𝐂𝐂𝐫𝐫𝐄𝐄𝐌𝐌𝐫𝐫𝐌𝐌𝐄𝐄(𝑁𝑁𝑛𝑛𝑒𝑒𝑃𝑃𝑛𝑛𝑝𝑝) 
15. 𝑃𝑃𝑛𝑛𝑝𝑝 ← 𝐔𝐔𝐔𝐔𝐫𝐫𝐫𝐫𝐌𝐌𝐄𝐄𝐔𝐔𝐅𝐅𝐔𝐔(𝑃𝑃𝑛𝑛𝑝𝑝,𝑁𝑁𝑛𝑛𝑒𝑒𝑃𝑃𝑛𝑛𝑝𝑝); 
16. 𝐄𝐄𝐫𝐫𝐫𝐫 𝐖𝐖𝐖𝐖𝐖𝐖𝐄𝐄𝐄𝐄 
17. Sol∗ ← 𝐅𝐅𝐖𝐖𝐫𝐫𝐫𝐫𝐅𝐅𝐖𝐖𝐄𝐄𝐅𝐅𝐄𝐄𝐄𝐄𝐌𝐌(Pop) 
18. 𝐑𝐑𝐄𝐄𝐌𝐌𝐌𝐌𝐅𝐅𝐫𝐫 𝐸𝐸𝑛𝑛𝑒𝑒∗; 

End 
 
There are several advantages to using the genetic algorithm for solving scheduling problems in a heterogeneous 
computing platform. One advantage is that it can find good solutions in a short amount of time by simulating 
the process of natural selection. Another advantage is that it can handle problems with a large search space and 
no known algorithm for finding the optimal solution. A disadvantage of the genetic algorithm is that it may not 
always find the optimal solution due to its probabilistic nature, which can cause it to get stuck in local optima. 
It may also require a large number of generations to find a satisfactory solution, which can increase the running 
time. In addition, the performance of the genetic algorithm may be sensitive to the choice of parameters, such 
as the crossover rate and the mutation rate, which can require fine-tuning to achieve good results.  
The pseudo code for GA algorithm is mentioned in Alg.3 above. 
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Fig. 2. GA evolutionary cycle 
 
SA (Simulated annealing) 
Simulated annealing (SA) is a heuristic optimization technique that can be used to solve scheduling problems 
in a heterogeneous computing platform [15]. It is a randomized search algorithm that is inspired by the annealing 
process used in metallurgy to harden and purify metals. In simulated annealing, a schedule is initialized 𝐸𝐸0 with 
𝐿𝐿𝑆𝑆0 which 𝐿𝐿 is the objective function and is modified through a series of iterations, or "temperature" steps. At 
each step, a new schedule 𝐸𝐸1  is generated by making a random change to the current schedule and evaluating 
the resulting change in the objective function 𝐿𝐿𝑆𝑆1. The new schedule is accepted if it results in an improvement 
in the objective function, or it is accepted with a certain probability if it results in a worsening of the objective 
function. This probability is determined by a temperature parameter 𝐸𝐸𝑛𝑛𝑚𝑚𝑝𝑝 𝐸𝐸, which is gradually decreased as 
the algorithm progresses. The temperature determines the likelihood of accepting a worse solution, and it allows 
the algorithm to escape from local optima and explore the search space more extensively as in (equation 11). 
Simulated annealing can be effective at finding good schedules [16] [17]. 
 

𝑃𝑃𝐴𝐴𝜖𝜖𝜖𝜖𝜖𝜖𝑝𝑝𝑒𝑒 = �
1                           𝑒𝑒𝑖𝑖 𝐿𝐿𝑆𝑆0 ≤ 𝐿𝐿𝑆𝑆1
𝑛𝑛𝑒𝑒𝑝𝑝 �𝐸𝐸𝑆𝑆0−𝐸𝐸𝑆𝑆1

𝐸𝐸𝜖𝜖𝑚𝑚𝑝𝑝
�  𝑒𝑒𝑖𝑖 𝐿𝐿𝑆𝑆0 > 𝐿𝐿𝑆𝑆1

                                                          (11) 

 
Alg. 4: Simulated Annealing: 

Begin:  
1. 𝐸𝐸0 ← 𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒 𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 .  
2. 𝐸𝐸 ← 𝐸𝐸0  //initial temperature. 
3. While termination conditions not satisfied do 
4.    𝐸𝐸1 ← 𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛𝐸𝐸𝑚𝑚𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝐸𝐸1 .  
5.    If 𝐿𝐿(𝐸𝐸1)  < 𝐿𝐿(𝐸𝐸0) 𝐌𝐌𝐖𝐖𝐄𝐄𝐫𝐫:  
6. …..𝐸𝐸0  ← 𝐸𝐸1    
7. . .𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄  
8.  𝐸𝐸0  ← 𝐸𝐸1 with acceptance probability 𝑷𝑷(𝐸𝐸, 𝐸𝐸0 ,𝐸𝐸1) 
9.    𝐄𝐄𝐫𝐫𝐫𝐫𝐈𝐈𝐈𝐈 
10. Update (𝐸𝐸) 
11. END While 

Return 𝑒𝑒ℎ𝑛𝑛 𝑝𝑝𝑛𝑛𝑛𝑛𝑒𝑒 𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 
 

There are several advantages to using the simulated annealing algorithm for solving scheduling problems in a 
heterogeneous computing platform. One advantage is that it can escape from local optima and explore the search 
space more extensively. Another advantage is that it can handle problems with a large search space and no 
known algorithm for finding the optimal solution. A disadvantage of simulated annealing is that it may be 
slower than other optimization techniques due to the need to evaluate the objective function at each iteration. It 
may also require a large number of iterations to find a satisfactory solution, which can increase the running 
time. In addition, the performance of simulated annealing may be sensitive to the choice of parameters, such as 
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the initial temperature and the cooling schedule, which can require fine-tuning to achieve good results. The 
pseudo code for SA algorithm is mentioned in Alg.4 above. 
 
GRASP (Greedy Randomized Adaptive Search Procedure) 
 
GRASP (Greedy Randomized Adaptive Search Procedure) is a heuristic optimization algorithm that can be 
used to solve scheduling problems in a heterogeneous computing platform [18] [19] [20]. It is a randomized 
search algorithm that combines elements of greedy and local search techniques. Here, we adopt two heuristic 
functions  𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅𝑛𝑛𝑛𝑛_𝑒𝑒𝑝𝑝(𝑛𝑛𝑖𝑖) 𝑚𝑚𝑛𝑛𝑛𝑛 𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅𝑛𝑛𝑛𝑛_𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛(𝑛𝑛𝑖𝑖) mentioned before in this article. In GRASP, a schedule is 
constructed through a sequence of iterations, or "constructive phases," in which a subset of tasks, known as the 
"candidate list, 𝐶𝐶𝐿𝐿 " is selected and added to the schedule. At each constructive phase, the candidate list 𝐶𝐶𝐿𝐿 is 
modified by adding or removing tasks based on a set of rules, known as the "construction 𝑖𝑖 heuristic" according 
to equation (12) below. 

𝑖𝑖 ∈ [ 𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛼𝛼 × ( 𝑖𝑖𝑚𝑚𝑎𝑎𝐸𝐸 −  𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛)]                                                      (12) 

 

Alg.5: GRASP (α, 𝐻𝐻𝑛𝑛𝑒𝑒𝐸𝐸𝐿𝐿𝑒𝑒𝑛𝑛) 
Inputs: 

α: parameter controls greediness /randomness. 
𝐻𝐻𝑛𝑛𝑒𝑒𝐸𝐸𝐿𝐿𝑒𝑒𝑛𝑛: The Heuristic function used in GRASP 

Output: Sol*: best solution found after local search. 
Begin:                                //begin construction phase 

1. Sol ← Ø; CL←Ø; //initialize Sol & Candidate list 
2. 𝐈𝐈𝐈𝐈 𝐻𝐻𝑛𝑛𝑒𝑒𝐸𝐸𝐿𝐿𝑒𝑒𝑛𝑛 = 𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅_𝑒𝑒𝑝𝑝 //in case of bottom level 
3. 𝐅𝐅𝐅𝐅𝐅𝐅 𝑒𝑒 ∈ {1, … ,𝑚𝑚} do: 
4.    𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅_𝑒𝑒𝑝𝑝(𝑛𝑛𝑖𝑖) = 𝑊𝑊𝐶𝐶����+ max

𝐸𝐸𝑗𝑗∊𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐸𝐸𝑖𝑖)
�𝐶𝐶𝐶𝐶𝐶𝐶����+   𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅𝜖𝜖𝑝𝑝(𝑛𝑛𝑖𝑖)� 

5.    𝐶𝐶𝐿𝐿 ←  CL ∪  {𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅_𝑒𝑒𝑝𝑝(𝑛𝑛𝑖𝑖)} . //construct candidate list 
6. End For 
7. 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐈𝐈𝐈𝐈 𝐻𝐻𝑛𝑛𝑒𝑒𝐸𝐸𝐿𝐿𝑒𝑒𝑛𝑛 = 𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅_𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 //in case of top level 
8. 𝐅𝐅𝐅𝐅𝐅𝐅 𝑒𝑒 ∈ {1, … ,𝑚𝑚} do: 
9. 𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅𝑛𝑛𝑛𝑛_𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛(𝑛𝑛𝑖𝑖) = max

𝐸𝐸𝑗𝑗∈𝑃𝑃𝜖𝜖𝜖𝜖𝜖𝜖(𝐸𝐸𝑖𝑖)
�𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅𝑛𝑛𝑛𝑛_𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛�𝑛𝑛𝑗𝑗� + 𝑊𝑊𝐶𝐶���� + 𝐶𝐶𝐶𝐶𝐶𝐶����� 

10. 𝐶𝐶𝐿𝐿 ←  CL ∪  {𝑃𝑃𝑚𝑚𝑛𝑛𝑅𝑅𝑛𝑛𝑛𝑛_𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛(𝑛𝑛𝑒𝑒)} . //construct candidate list 
11. End For 
12. 𝐄𝐄𝐫𝐫𝐫𝐫𝐈𝐈𝐈𝐈 
13. 𝐶𝐶𝐿𝐿 ← ArrangDesc(CL)//arrange in descending order. 
14. 𝑃𝑃𝐶𝐶𝐿𝐿 ← {the first α × |CL| elements of CL}. 
15. For 𝑒𝑒 ∈ {1, … , |RCL|}  do: 
16. Randomly pick 𝑛𝑛𝑖𝑖 from RCL. 
17. 𝐸𝐸𝑛𝑛𝑒𝑒 ← 𝐸𝐸𝑛𝑛𝑒𝑒 ∪𝑛𝑛𝑖𝑖. // put the task in the solution 
18. 𝑃𝑃𝐶𝐶𝐿𝐿 ← 𝑈𝑈𝑝𝑝𝑛𝑛𝑚𝑚𝑒𝑒𝑛𝑛𝑃𝑃𝐶𝐶𝐿𝐿(𝑃𝑃𝐶𝐶𝐿𝐿)//replace item 𝑛𝑛𝑖𝑖 by new one 
19. End For 
20. For j ∈ {1, … , |𝐸𝐸𝑛𝑛𝑒𝑒|}           //begin local search phase 
21. Sol′ ← 𝐸𝐸𝑒𝑒𝑚𝑚𝑝𝑝�𝐸𝐸𝑛𝑛𝑒𝑒,𝑛𝑛𝑗𝑗 ,𝑛𝑛𝑗𝑗−1�. //get new neighborhood sol  
22. 𝐸𝐸𝑛𝑛𝑒𝑒′′ ← 𝑉𝑉𝑚𝑚𝑒𝑒𝑒𝑒𝑛𝑛𝑚𝑚𝑒𝑒𝑛𝑛(𝐸𝐸𝑛𝑛𝑒𝑒′)        //validate swap 
23. If 𝐿𝐿1(𝐸𝐸𝑛𝑛𝑒𝑒′′)  < 𝐿𝐿1(𝐸𝐸𝑛𝑛𝑒𝑒∗) 𝐌𝐌𝐖𝐖𝐄𝐄𝐫𝐫:  
24. 𝐸𝐸𝑛𝑛𝑒𝑒∗  ← 𝐸𝐸𝑛𝑛𝑒𝑒′′      //keep Sol with the best make-span 
25. 𝐄𝐄𝐫𝐫𝐫𝐫𝐈𝐈𝐈𝐈 
26. End For 
27. End While 
28. Return 𝐸𝐸𝑛𝑛𝑒𝑒∗; //return the improved solution 
End 
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Where, the parameter 𝛼𝛼 ∈ [0,1]  is used to control the balance between greediness and randomness. The 
candidate list 𝐶𝐶𝐿𝐿 is then sorted according to a "selection function," which measures the desirability of adding a 
task to the schedule. The task with the highest score is added to the schedule, and the process is repeated until 
the schedule is complete. After the constructive phase, GRASP performs a local search to further improve the 
schedule. GRASP can be effective at finding good schedules, but it may not always find the optimal solution 
due to the greedy nature of the construction heuristic [17]. 
 
There are several advantages to using the GRASP (Greedy Randomized Adaptive Search Procedure) algorithm 
for solving scheduling problems in a heterogeneous computing platform. One advantage is that it can find good 
solutions in a short amount of time due to its greedy construction heuristic, which allows it to focus on the most 
promising tasks at each constructive phase. Another advantage is that it can adapt to changes in the problem by 
updating the candidate list and the selection function at each constructive phase, which allows it to explore 
different parts of the search space. A disadvantage of GRASP is that it may not always find the optimal solution 
due to its local search nature, which can cause it to get stuck in local optima. It may also be sensitive to the 
choice of the construction heuristic and the selection function, which can require fine-tuning to achieve good 
results. In addition, GRASP may be slower than other optimization techniques due to the need to evaluate the 
objective function at each iteration. The pseudo code for GRASP algorithm is mentioned in Alg.5 below. 
 
Tabu Search 
 
Tabu search is a heuristic optimization algorithm that can be used to solve scheduling problems in a 
heterogeneous computing platform [21] [22] [23]. It is a metaheuristic algorithm that combines elements of 
local search and memory-based search. In tabu search, a schedule  𝐸𝐸0is modified through a series of iterations, 
or "tabu moves," in which a task is moved from its current position in the schedule to a new position. The new 
schedule is evaluated using an objective function, and the move is accepted if it results in an improvement in 
the objective function. If the move does not improve the objective function, it may still be accepted with a 
certain probability, known as the "aspiration level." The acceptance of non-improving moves allows the 
algorithm to escape from local optima and explore the search space more extensively. Tabu search also uses a 
"tabu list 𝐸𝐸𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒" to prevent the algorithm from revisiting previously visited solutions and getting stuck in a loop. 
Tabu search can be effective at finding good schedules, but it may be slower than other optimization techniques 
due to the need to evaluate the objective function at each iteration. 
 

Alg. 6: Adaptive Tabu Search: 
Begin:  

1. 𝐸𝐸0 ← 𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒 𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 .  
2. 𝐸𝐸𝑆𝑆𝑖𝑖𝑆𝑆𝜖𝜖   ← 𝐸𝐸𝑚𝑚𝑝𝑝𝑒𝑒𝑆𝑆𝑖𝑖𝑆𝑆𝜖𝜖 . 
3. 𝐸𝐸𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒   ← ∅ 
4. While termination conditions not satisfied do 
5.    𝐸𝐸1 ← 𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛𝐸𝐸𝑚𝑚𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝐸𝐸1 .  
6.    If (𝐿𝐿(𝐸𝐸1)− 𝐿𝐿(𝐸𝐸0) ! = 0 )&& (!𝐸𝐸𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒 .𝑆𝑆𝑛𝑛𝑛𝑛𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑛𝑛 𝐿𝐿(𝐸𝐸1)) 𝐌𝐌𝐖𝐖𝐄𝐄𝐫𝐫:  
7. …..𝐸𝐸𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒  ← 𝐸𝐸1 ∪  𝐸𝐸𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒    
8.      If 𝑒𝑒𝑛𝑛𝑛𝑛𝑙𝑙𝑒𝑒ℎ(𝐸𝐸𝐿𝐿𝑖𝑖𝜖𝜖𝑒𝑒) >  𝐸𝐸𝑆𝑆𝑖𝑖𝑆𝑆𝜖𝜖    ) 𝐌𝐌𝐖𝐖𝐄𝐄𝐫𝐫:   
9.           𝐸𝐸𝑙𝑙𝑖𝑖𝜖𝜖𝑒𝑒. Remove (Sol)    
10.           Update ( 𝐸𝐸𝑙𝑙𝑖𝑖𝜖𝜖𝑒𝑒) 
11. . .   𝐄𝐄𝐫𝐫𝐫𝐫𝐈𝐈𝐈𝐈 
12. .𝐄𝐄𝐫𝐫𝐫𝐫𝐈𝐈𝐈𝐈 
13. END While 

Return 𝑒𝑒ℎ𝑛𝑛 𝑝𝑝𝑛𝑛𝑛𝑛𝑒𝑒 𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 
 
There are several advantages to using the tabu search algorithm for solving scheduling problems in a 
heterogeneous computing platform. One advantage is that it can escape from local optima and explore the search 
space more extensively, which allows it to find good solutions in a short amount of time. Another advantage is 
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that it uses a memory-based search, which allows it to remember previously visited solutions and avoid 
revisiting them, which can reduce the risk of getting stuck in a loop. A disadvantage of tabu search is that it 
may be slower than other optimization techniques due to the need to evaluate the objective function at each 
iteration. It may also require a large amount of memory to store the tabu list, which can be a limiting factor for 
large-scale scheduling problems. In addition, the performance of tabu search may be sensitive to the choice of 
parameters, such as the tabu list size and the aspiration level, which can require fine-tuning to achieve good 
results. The pseudo code for GRASP algorithm is mentioned in Alg.6 above. 
 

V. Experimental Results and Analysis 
 
The performance of the FCFS, HEFT, GA, SA, GRASP and Tabu Search algorithms was evaluated based on 
three metrics: schedule length, speedup, and efficiency used in [24]. 
o Schedule length, also known as makespan in equation (7), refers to the total execution time of an 

application or DAG. 
o  Speedup in equation (13) is calculated by dividing the 𝑛𝑛𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛 𝑒𝑒𝑛𝑛𝑛𝑛𝑙𝑙𝑒𝑒ℎ by the time it takes for the fastest 

processor (𝐸𝐸𝑛𝑛𝑆𝑆𝑅𝑅𝑛𝑛𝑒𝑒𝑓𝑓𝑎𝑎𝜖𝜖𝑒𝑒𝜖𝜖𝜖𝜖𝑒𝑒) to complete the task. 
𝐸𝐸𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝜖𝜖𝑝𝑝 = 𝜖𝜖𝜖𝜖ℎ𝜖𝜖𝜖𝜖𝜖𝜖𝑙𝑙𝜖𝜖 𝑙𝑙𝜖𝜖𝑛𝑛𝑎𝑎𝑒𝑒ℎ

𝑆𝑆𝑑𝑑𝜖𝜖𝑅𝑅𝜖𝜖𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑓𝑓𝑒𝑒
                                                              (13) 

o  Efficiency in equation (14) is calculated by dividing the speedup (𝐸𝐸𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝜖𝜖𝑝𝑝) by the number of processors 
(𝑛𝑛𝑛𝑛𝑆𝑆𝑅𝑅𝑛𝑛𝑒𝑒𝑛𝑛𝑛𝑛𝜖𝜖𝑚𝑚) used in each run.  

𝐸𝐸𝑖𝑖𝑖𝑖𝑒𝑒𝑆𝑆𝑒𝑒𝑛𝑛𝑛𝑛𝑆𝑆𝐸𝐸 = 𝐸𝐸𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝜖𝜖𝑝𝑝 × 100
𝜖𝜖𝑑𝑑𝜖𝜖𝑅𝑅𝜖𝜖𝑒𝑒𝜖𝜖𝑒𝑒𝑛𝑛𝑛𝑛

                                                     (14) 
This work evaluated the performance of the algorithms on acyclic molecular graph presented in [7] and 
mentioned above in figure 1, using 3,5,7,8 sockets we observed an overall improvement in performance. The 
comparison between the HEFT, FCFS, GA, SA, GRASP and Tabu Search algorithms was based on the metrics 
schedule length, speedup, and efficiency presented in tables 2,3,4 respectively. All algorithms were 
implemented using Java programming language on the NetBeans platform, and the simulation was conducted 
on a computer with 1.80 GHz CPU and 3.89 GB RAM. To guarantee unbiased results, the experiment utilized 
the maximum number of function evaluations as the stopping criterion. A table summarizing the other parameter 
settings used in the experiment is provided below. 

Table 1.parameter setting. 

GRASP parameter:𝛼𝛼 
Initial Temperature T 
Crossover probability (pc): 
Mutation probability (pm): 
Tabu Search _tabu-Size 
Maximum evaluations 

0.4 
200 
0.۷ 
0.3 
50  

۲۰۰۰۰ 

 

Table 2. Average Schedule length with (ms) of Algorithms 

No. of 
Sockets GRASP HEFT Rank 

up 
Tabu 

Search SA GA HEFT -
Rank down FCFS 

3 158 172 166 166 172 168 171 
5 119 131 129 129 135 132 132 
7 109 120 118 118 124 123 124 
8 106 116 116 116 118 122 124 
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Table 3.  Speed-Up of Algorithms 

No. of 
Sockets GRASP HEFT 

Rank up 
Tabu 

Search SA GA HEFT 
Rank down FCFS 

3 2.6519 2.436 2.5241 2.5241 2.436 2.494 2.4503 
5 3.521 3.1985 3.2481 3.2481 3.1037 3.1742 3.1742 
7 3.844 3.4917 3.5508 3.5508 3.379 3.4065 3.379 
8 3.9528 3.6121 3.6121 3.6121 3.5508 3.4344 3.379 

 

Table 4. Efficiency (%) of Algorithms 

No. of 
Sockets GRASP HEFT 

Rank up 
Tabu 

Search SA GA HEFT 
Rank down FCFS 

3 0.3315 0.3045 0.3155 0.3155 0.3045 0.3118 0.3063 
5 0.4401 0.3998 0.406 0.406 0.388 0.3968 0.3968 
7 0.4805 0.4365 0.4439 0.4439 0.4224 0.4258 0.4224 
8 0.4941 0.4515 0.4515 0.4515 0.4439 0.4293 0.4224 

 

This paper presents a set of algorithms recently published that demonstrate promising results in research. The 
objective was to explore the distinctions among these algorithms, ultimately enabling efficient management of 
heterogeneous computing environments and saving considerable time. Within the algorithms, HEFT Ranked 
up, HEFT Ranked down, and FCFS are classified as Static algorithms, while GRASP, Tabu Search, SA, and 
GA are categorized as heuristic algorithms. It is worth noting that the heuristic algorithms outperform the static 
algorithms in terms of performance, making them adaptable to changes in the problem domain. Conversely, the 
static algorithms handle the heterogeneous computing environment in a uniform manner, as they inherently 
maintain a constant approach regardless of variable conditions. However, HEFT Ranked up, HEFT Ranked 
down, and FCFS, as depicted in table 2, 3, and 4 respectively, exhibit subpar performance in generating high-
quality schedules within this heterogeneous computing environment. This can be attributed to their reliance on 
specific task assignment orders, which restricts their effectiveness in this context. 
 
Table 2 illustrates the superiority of the GRASP algorithm over various other optimization algorithms, HEFT 
Ranked up, Tabu Search, SA, GA, HEFT Ranked down, and FCFS, in terms of the average schedule length. 
The results demonstrate that the GRASP algorithm excels in generating schedules with shorter completion times 
on average, which is a crucial performance metric for scheduling algorithms. The remarkable performance of 
GRASP can be attributed to its efficient exploration of the solution space and its utilization of a combination of 
greedy constructive heuristics and randomized local search techniques to obtain high-quality solutions. 
 
It is noteworthy that the GA performs comparatively poorer than other heuristic algorithms due to its reliance 
on crossover and mutation, which have already been demonstrated in the constructed solution. Moreover, both 
tabu search and simulated annealing exhibit better performance than GA but fall short of matching the 
effectiveness of GRASP. This can be attributed to the fact that GRASP applies local search techniques after 
constructing the initial solution, unlike tabu search and simulated annealing. The same conclusions can be drawn 
from figures 3, 4, 5, and 6, which further support the results. Additionally, this study indicates that as the number 
of sockets increases, the scheduling algorithm becomes more efficient in task assignment and significantly 
reduces the required completion time, as depicted in figure 7.   
 
This study provides valuable insights into the effectiveness of different optimization algorithms for scheduling 
problems and highlights the importance of selecting appropriate algorithms based on the specific characteristics 
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of the problem at hand. Further research can investigate the applicability of the GRASP algorithm to other 
scheduling problems and explore ways to further enhance its performance. then, GRASP is more efficient than 
Tabu Search, Simulated Annealing and GA. Table 4 represents GRASP is 33% better then HEFT Ranked up, 
Tabu Search, SA, GA, HEFT Ranked down and FCFS in case of efficiency. 
 

 
 

Fig. 3. Relation between numbers of sockets and schedule length 
 
 

   
Fig. 4. Analysis of comparative algorithms with 3 sockets. 

 

   
Fig. 5. Analysis of comparative algorithms with 5 sockets 
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Fig. 6. Analysis of comparative algorithms with 7 sockets 

 

   
Fig. 7.  Analysis of comparative algorithms with 8 sockets 

 

VI.  Conclusion and Future work 
 
In this paper, we have explored six different algorithms, namely GRASP, Tabu Search, SA, GA, FCFS, and 
HEFT, across several parameters such as Schedule Length, Speedup, and Efficiency. These algorithms were 
applied to Molecular DAG in static task scheduling algorithms within a heterogeneous environment using three, 
five, seven, and eight sockets. Our results indicate that GRASP outperforms HEFT Ranked up, Tabu Search, 
SA, GA, HEFT Ranked down, and FCFS for all the parameters we considered. Additionally, increasing the 
number of sockets leads to improved results across all parameters. Nonetheless, this study shows that there is 
still considerable scope for improvement in all the algorithms in the existing literature. Although list scheduling 
is a vast research area, our study highlights the need for developing a technique that can generate an efficient 
priority list for tasks and an assignment-based algorithm to reduce the overall execution time (makespan). Future 
studies can examine the suitability of the GRASP algorithm for other scheduling problems and explore methods 
to further improve its performance. 
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