THE EGYPTIAN STATISTICAL JOURNAL
ISSR, CAIRO UN1V., VOL., 44, NO. 1, 2000

Order Statistics from Non-identical Doubly-Truncated
Generalized Power Function Random Variables and
Applications ’

Mohamed E. Moshref

Dept. of Math., Faculty of Science,
Al-Azhar University,
Nasr City, Cairo 11884, EGYPT.

Key Words and Phrases: order statistics; outliers; single moments; product moments;
recurrence relations; double truncated generalized power function distribution; permanents .

Abstract: In this paper, we derive some recurrence relations for the single and product
moments of order statistics from n independent and non:identically distributed generalized
power function random variables. These recurrence relations are simple in nature and could
be used systematically in order to compute all the single and product moments of all order
staistics in a simple recursive manner. The results for order statistics from a multiple-outlier
model (with a slippage of p observations) from generalized power function distributions are
deduced as special cases. The results then generalized in the case of doubly truncated case.
Numerical example is also presented.

1 Introduction : r

Let X1, Xa,....X, be independent random variables having probability density functions
Hi(®) fa(z), ..., fa(z) and cumulative distribution functions Fy(z), Fy(z), ..., Fa(z), respec-
tively. Let X1, < Xop < ... € Xy denote the order statistics obtained by arranging the n
X|s in increasing order of magnitude. Then, the density function of Xrn(l €7 < n) can be
written as (David, 1981, p. 22).

r—1 n
fent®) = gy 5 [ Fu@fite) 1] (1~ Fato), (11)
K T p a=1 b=r+1

where Z:p denotes the summation over all n! permutations (1,72, ...,70) of (1,2,...,n). Simi-
larly, the joint density function of X,., and Xgn (1 €7 < s < n)can be written as
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1 r-1 s—1 |
fr,szn(x) = (T _ 1)!(8 e 1)!(n — s)! zp:gﬂo(x)fir(m)bﬂl{ﬂa(y) - Fls("')}
@ I 0-F@)h c<w. (1.2)

c=s+1

Vaughan and Venables (1972) gave alternative forms of the densities in (1.1) and (1.2) in
terms of permanents of matrices. .

Balakrishnan (1994a,b) have derived several recurrence relations for the single and prod-
uct moments from non-identical right-truncated exponential random variables. Also Bal:
akrishnan and Balasubramanian (1995) have studied the recurrence relations for the single
and the product moments of order statistics arising from n independent and non-identically
distributed power function random variables. Childs, Balakrishnan and Moshref (2000) have
derived some recurrence relations for the single and product moments of order statistics for
INID from right truncated Lomax distribution. ,

In this paper, we consider the case when X}s are independent the having generalized
power function distribution with density functions

{z + a}”"l, —a<z<P-q v;>0, - (1.3)

filz) = ﬁ,,;

and cumulative distribution functions

v

Fi(:z:)={$;a} , -a<z<f-a y;>0, (1.4)

for i =1,2,...,n. It is clear from (1.3) and (1.4) that the distributions satisfy the differ-
ential equations r

zfi(z) = viFi(z) — afi(z), i=1,2,...,n, v >0. . (1.5)

Let us denote the single moments E(X%,) by uﬁ",{ y1Sr<nandk=1,2,.. and the
product moments E(X;.n Xy.5) by fran for 1 <7 < s < n. Let us also use yﬂ(ﬂl and ui"],m_l
to denote the single and the product moments of order statistics arising from n — 1 variables
obtained by deleting X; from the original n variables X, Xs, ..., Xn.

By making use the differential equations in (1.5), we establish several recurrence relations
satisfied by the single and the product moments of order statistics. These relations will
enable one to compute all the single and the product moments of all order statistics in a
simple recursive manner. The results for the p-outlier model are deduced as special cases.
Also, the results for the doubly truncated case are found. The mean, variance and covariances

calculated up to sample size n = 5.
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2 Relations for single moments

In this section, we shall establish some recurrence relations satisfied by the single moments
of order statistics by making use of the differential equations in (1.5).
Result 2.1 for1<r<n-landk=12,...

1 - L i)k
) = m{ - kapliV + Zl: Vili,[-':]'(.-)1} (2.1)

Result 2.2 Forn>1and k=1,2,...

1 g n
ull = m{ — kapls D + g ; Vi}~ (22)

Remark 1: Results (2.1)-(2.2) will enable one to compute all the single moments of all order
statistics in a simple recursive way for any specific values of 14(i = 1,2,..,n).

Remark 2: Result 2.2, along with a general relation established by Balakrishnan (1988)
which expresses usk,l in terms of the k** moment of the largest order statistics in samples of
size up to n, will also enable one to compute all the single moments of all order statistics in
a simple recursive way.

Remark 3: For the case when the X}s are independent and identically distributed as gen-

eralized power function random variables (that is, 11 = v = ... = v, = 1), Results 2.1 and

2.2 reduce to
1
k; s k
W= o { e i, 23)
and
,
& = s nu{ ~ kapls 4 ﬂ"m/}_ (2.4)

Remark 4: At o =0 and § = 1, Results 2.1 and 2.2 reduce to
lil(k)

n
(k) 21 Vil
Hr:n k+ Ei‘ vi (25)
and
. Ty . 3
=i Eh.‘w (26)

These results were orginally drived by Balakrishnan and Balasubramanian (1995).
Remark 5:

For the cases when v; = 1 and 1; = 2, we obtain the same results for rectangular and
traingular distributions respectively (see Bhoj and Ahsanullah (1996)}.
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3 Relations for product moments

In this section, we shall establish some recurrence relations satisfied by the product moments
of order statistics using the differential equations in (1.5).
Result 3.1 Forn>3and 1<r<n-2

- Z"ll Vi#k]r+1:n—l (3 1)
Frreln = o0 ¥ ) + o i "

where 2(1 + @) + X7 v # 0.
Result 3.2For1<r<n-2

_B-a)Thudd)
Hrpin = 2(1 +a) +E? Vi ’ (32)

where 2(1 +a) + YT v #0,
Result 3.3 For n. > 2

(ﬁ a) 271‘ Vilug]—l-n—l
MHn—1nn = ; ’ 3.3
o 2(1 t a) Z’l1 vi ( )

where 2(1+a)+ YT v #0.
Result 34For1<r<s<n-lands—r>2

o E? Viﬂ'kls:n—l (3 4)
p’f'ys.ﬂ 2(1 + a) + Z;‘)_ Vi’ b

where 2(1+a)+ Y T v #0.
Remark 6: Results 3.1 — 3.4 will enakle one to compute all the product moments, and hence
the covariance of all order statistics in a simple recursive manner for any specified values of

l/l'(1. = 1, 2, ey n)
Remark 7: For the case when the variables are independent and identically distributed as
generalized power function (that is, 13 = ... = v, = v). Results 3.1 — 3.4 reduce to
Wiy r41:n—1
iy = e <r<n-2 3.5
Hrr+lin 2(1+a)+nu’ 1<r<n ( )
- n(ﬂ — Q)Vfirn-1
rnn T T AT N 2 2
Hrm: 21+ a)+nv n
(3.6)
n(B — a)vpn_1.n-1
n-—lnn = ) <r<n-— 2
Hinslyrn, nv+2(1+a) lsrsn

(3.7)
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NVl s:n—1

W < <n- -r>2 3
Hr,sin M ta) +mv’ 1<r<s<n-1,5-r>2, (3.8)

where 2(1 + a) + nv # 0.
Remark 8:
If a =0 and B =1 the above results concide with those of Balakrishnan and Balasubra-

manian (1995).

4 Results for the p-outlier model

In this section, we shall present the results for the p-outlier model. Under this model, we
assume that Xy, Xz, ..., Xn—p are independent generalized power function random variables
with parametr (v), while X,_p{1,..., X, are independent generalized power function random
variables with parameter (+*) (and independent of Xj, X, «.s Xn—p)(see Barnett and Lewis
(1994), pp. 66-68). In this case, let us denote the single moments by p,,(-k,Z[p] and the product
moments by fr,s:n[p]. Similarly, let us denote the single and product moments by y,(-k,z -1]
and iy s:n[p — 1), respectively, when a sample of size n ~ 1 consists of p ~ 1 outliers. Then,
from the results established in Sections 2 and 3, we deduce the following:

() Fr1<r<n-landk=1,2,..

—kaplts Vgl + (n = o)y o) + pr"u®)_p - 1)

#8lpl = S (4.1)
(b)forn>1and k=1,2,..
(k~1) k -
) 1 o —kepnnlp] + B*{(n — p)v + pv*}
/“n’fu[P] = k + (n P p)l/ +pu‘ H 7 (4'2)
(c)forl1<r<n-2
_' (n - P)Vﬂr,r+l:n—1[}7] +pu.l"r,r :n—l{P - 1]
rtnlp] = 20+ a)+ (mp)v £ por ’ (&)
(dyfor1<r<n-2
= (B=cH{(n - p)vptrnlp] + p* prin_1p — 1]}
Hrimnlp] = 2(1+a)+ (711 - P\ +pvt : ’ (44
(e)forn>2
Hin-1penlp] = (B-a){(n = P)Vpn-1:n-1[p) + v 11 fp ~ 1]} (4.5)

2l+a)+(n—pv+p !
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(flfor1<r<s<n-1,s-r>2

(n - p)V/"'r,a:n—l[P] + pV*[.Lr',;n._l[p - 1] .
2(1+a)+ (n—p)v + pv* b (4.6)

ﬂr,s:n[}’] =

where 2(1 +a) + (n —p)v +pv* #0

Remark 9: The recurrence relations in (4.1) — (4.6) will enable one to compute all the single
and the product moments (in particular, the means, variance and covariance) of all order
statistics from a p-outlier model in simple recursive manner.

5 Truncated generalized power function

Let us consider the case when X;s are independent having doubly truncated generalized
power function distributions with density functions

_vfz+ap!

fi(x) = B —a<L<z<T<P-0a v>0, (5.1)
and cumulative distribution funcations i
z+a}” - A%
F,-(a:):—q;‘—}_—Aw—, ~a<L<z<T<PB-a y;>0, (5.2)

where A=L+aand B=T+afori=1,2.,n. Itis clear from (5.1) and (5.2) that the
distributions satisfy the differential equations

2fi(z) = w{Fi(z) + 8} - afi(z), (5.3)
where S; = F-%T'T By proceeding on lines simliar to those in sections 2 and 3, we can

establish the following recurrence relations for the single moments of order statistics:
(a) forn>2,k=1,2,...

) _ —kauli D + T2 v Dyl - 5,4%)

= 5.4

Lin k+ 37w S
(b)for2<r<n-1k=1,2,..

(k) _ —ka“"('f"—l) +33 Vi{Dil-‘r(-’::r);-l _ Siﬂyl—(f:)n—l} (5.5)

Hron ‘ k + Z? Vi ) '
(c)forn>2k=1,2,..
k—1 k
(k) _ —kapﬁ,;,, ; +37 Vi{Din ~ Si”!:1—(l?n—l}’ (5.6)

Hnn = k + Z? v
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B

where Di = gotm -

The recurrence relations for the product moments can be similarly derived for the doubly

truncated case and are as given below
(d)forn>2and1<r<n-2

E’ll Vi{Df/'LE:]r-+1:n—l - Si”yl—l,r:n—l}

Hrrtlin = 2(1 +o) + E? v (5‘7)
(e)for2<r<n-1
]
1 VI{TDtllr n=1" S“Ll,[. 1n-lin— l}
Hron = 2(1 +a) +El v ) (5.8)
(f) forn>2
o = SEAT Dty = LSl ) (59)
L 2(l+a)+XTu '
(g) for2_<_'r<35n—1
- En VI{DHursn— - S‘”’E'l—l 31 n-l} : (5_10)

Forgpon 2 +a) Ftn

where D; = 520 and 2(1 4 @) + 71 #0.

From the above results (a — g), we deduce the following recurrence relations in p-outlier

case,
By ) ~1) {*) k
Hnlp] = P Py e ~ kapfly gl + (n - p)o [Dl’/‘l n—1[p] = SuA ]
b o Do 1 5], ,
n22 k=1,2,. (5.11)
u®p] _____l______{ kel Vlp] + (= pv [ Do) P
L E+(m-pwtpr = P | Duptyony[p] - v!‘r-l:n—l[l’]] :
+ 2 (Dol il - 1) - 5ol lp -]},
2<r<n~1, k=1,2,.. (5.12)
ul) I} -t ~ kayfs=D) k
£ KT | e e+ (n - pv [B*D, - 5,u®,.._,1r]]

+ [BkDU' = SH‘/-‘r(uk—)lzn—llp - 1]] }v

n>2,k=12. (5.13)
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1
2(1+a)+ (n—p)v+pv*
+ PV‘ [Du‘/lr,r+1:n—1[p - 1] - Su‘ﬂr—l,r:n—ll‘}7 - 1]] }»
n>21<r<n-2 (5.14)

/‘r."+1'n[l’] {(n —p [Duﬂr,r+lzn—l[P] - Sul‘r—l,r:n—l [P]]

1
2(lL+a)+(n—-p)v+pv*
+ pv [Du‘ﬂr,s:n—llp - 1] - Sv’#r—l,s—l:n—l[p - 1]] }:
1<r<s<n-1,s-7122, (5.15)

/lr,szn.[P] {(n —p)v [Du/lr,s:n—ll]’] - Suﬂr—l,s—l:n—l[]’]]‘

1
2(1 + ) + (n—p)v + pv*
+ Pl/‘ [TDu‘ﬂr:n—llp - 1] - S,,-/.L,-_l,n-l:n—l[p h 1]] },
g EpEm—T, (5.16)

Hrnen [T’] {(n -p) [TDuNr:n—l[P] - Suﬂ'r—l,n-l:n—l[P]]

I-‘l,n:n[Pl b 2(1 T Oz) T (i ” [))l/ o {(n = ]7)1’ [TDulilzn—l[]7] = LSuﬂr—l:n—l[p]]
+ pvt [TDU‘ﬂl:n—l[p - 1] = LSU'//'n—-I:n-l[p - 1” }) n2>2, (517)

where 2(1 + a) + (n — p)v + pv* # 0. Note that these recurrence relatiéns reduce (by setting
p=0,L=-a=0and T = f— a) to those derived in Sections 2 and 3 for independent and
identically distributed generalized power function random variables. Thus by starting with
the above equations for p = 0, all of the i.i.d. single and product moments can be determined.
These same relations could then be used again, this time with p = 1, to determine all of the
single and product moments of all order statistics from a sample containing a single outlier.
Continuing in this manner, the above relations could be used to compute all the single and
product moments (and hence covariances) of all order statistics from a p-outlier model in a
simple recursive manner.
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Table 1. Expected Values in the Presence of Multiple Outlier

i nipjpinlp] |iin]p]pinfpl [i]n]p [ mnlp] [3i]n]p] pinlp)
1[5[0[03608|1]5[1]03306|1]5]2[03016]1|5]3]0.2737
2]5]|0]o7s12 2|51 [06031)[2|5|2]04791[2]|5]3]03756
3[5]0]1.3651 (3] 5[1[09215([3[5(2/06173 |35 ]3| 04294
4]5]0[24254 |4 |51 |1.2974[[4[52]07143 4|53 ]05072
5[5[014589(5/5]1(13513[[5]5127]0736015]5]|3]0.5734

Table 2. Variances and Covariances

in the Presence of Multiple Qutlier

ililn|p|ounlp]{i|iln]p]oijmlp]
1]1]5[0]06572 (1(1]5]27 0.7245
12150707282 [1({2]5]2] 0.8277
13510 04479 (135271 0.4997
1[{4]|5{0(02587 |1[4([5]2] 0.2857
1/5(5|0| 01155 [1]5|5([2] 0.1267
2125008299 {212]5]2[ 009845
213]510[05091 2[3]5]2]( 05913
274[15{01 02036 [2]4]5]2] 0.3370
2(5(5(0] 01309 [2[5]5]2]0.1491
3[3|5]0] 05459 {33512 0.6460
314|5]01 03145 [3[4]512] 0.3675
3|5(510) 01402 [3[515( 2] 0.1624
414]|5/0] 03299 [4]4[5]2] 0.3807
4515001469 [4[5]5 2 01721
5165151001524 [5[{5]5[2]0.1798
1/1|5({1]06873 |1]1]5([3] 0.7650
112]5)1] 07738 [1[2[5]3] 0.8847
113]5[1]04708 |1{315]([3] 0.5345
114|5([1]02704 [1[4]5]3][0.3052
1/5{5f1[01203 [1|5]5[3][ 0.1351
212(511] 09042 (212053 1.0656
21315(1105479 [2]3]5[3][ 0.6388
2(4(5{1] 03139 {2453 0.3639
215]5]1] 01394 [215]5]3] 01607
33151105928 [3{3]5[310.7035
3[4]5(1]0332 (3453 04004
3{5]5[1{01505 |[3[5]53 0.1766
414]5]1] 03575 445 ]3] 04272
4551101585 [4]5]5 3] 0.1882
5[6515/1]01649 [5]5]5[3][0.1975
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Appendix

Proof of Result 2.1: From (1.1), let us consider for I <r <n-1,k=1,2,..

== = T [ @) TT (- R
b—r—H

= ZV-',/‘_ . IHFM(”) H {1 - Fy(z)}dz
P = b=r+1

- o% [T T @@ T 0-Fu@)es
p /-

a=] b=r+1

Upon using (1.5). Integrating now by parts (in the first term) treating z¥~! for integration
and the rest of integrand for differentiation, we get
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k(r = 1)i(n = r)! 18] + ops V)]

=Sul - X[ # @ R T - Rur
P

j=1 a=1 b=r+41
a#j
s > [ R@E T 0- R
J=r+1 a=1 i;;{]:l

(A1)

Upon splitting the second set of integrals (ones with postive sign) on the RHS of (A.1)
into two each through the term Fj (z) = 1 — (1 - F;_(z)), we obtain

K= 1)1 =)t [ + o)

=Sl - L[ @ IR 1] 0- A
P

&
- [ H Ry @ T1 - Fuyes]
j=r+1 e
i E / a* H F.(2)fiy(2) II{1 - F,b(f)}dr}
j=r+l Fo
b#j
(A2)
Result (2.1) is derived simply by rewritng Eq. (A.2) 7

Proof of Result 2.1: From (1.2), let us consider for 1 <r <n -2

(1‘ - l)l(n == I)IE((Xran'H n)
DY H (@) Sz

fienr(®) H {1 - F,(y)}dzdy

b=r+2

(r=-n-r- 1)ltrrstn

T S i) T1 0= Ry

b=r42
(A3)

where
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/—” mrﬁlFiu(x)fi,(x)dz
[ H iz a [ HFu 2)fo(

Upon using (1.5). Integrating by parts (the first term) now yields

J(y)

Iy = [yrzll ) - Z/ 25y @) [] P @)de] - /_yarH:Fia(m)fi,(m)dm-

a=1

a#j

Which, when substituted in (A.3), gives

(r=DYn—-r =11+ ) trri1in

| /” 2Han(y)f1,+1(y) IT - Ry

P b=r+2

a=]

a#j
firaa(¥) H {1 Flb(y)}dxdy]

b=r42
(A.4)
Next, from Eq.(1.2) let us writefor 1 <r <n -2

(r=DYn =7 = Wrr41n = (r=Din—-r— NE(XrnXri1:n)
B-a rf-a 71

= E, (z)fi.(z

[ ) wllAe@se

Fon@) T] {1~ Fy(y)}dyds

b=r42

> [ a1 H (@) fi (2)d,

I

(A5)

where
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—
I(z) = / v 11 (1= Fu)dy

b=r+2
B_
- / Firp(y) H {1—E,<y)}dy
T b=r+2
p._
- @ / fon TT 01 Ful)}dy.
z b=r+2

Upon using (1.5). Integrating by parts (the first term) now yields

10 = ] =P T 0= R~ [ v I 0- R
be=r+2 b=r+2
n B-a
+ 3 [T wne T10- R
j=r+2°T b—;}d
- a/gﬁafl}ﬂ H {1-Rb )}dy.
= b=r+2

Upon substituting this expression of I(z) in (A.5), we get

(r = Dn =7 = DL+ i = zu,»,“[— /"' H (&)o@ Fons(@) 1] (1= Fy
2 »

b=r+2

p-a f-a T=I1 n
- /; / IyH Fi(2) fir (@) fir g () H {1 - F,(y)}dyda
@ z b=r42
B—a —a -1
6 F‘z, ir i
_Z+ [ I RRCLACTACIAY
11 - A Jayda].
b;;-;z
(4.6)

On adding Egs. (A.4) and (A.6) and simplifying the resulting expression, we obtain,
n

(T - 1)'(”‘ -Tr-= 1)!(2 + 2a)/~’fr,r+1:n = (7' = 1) (77 == 1) (Z Vi),uvr,r+1:n
1

+ r=Dn-r=2n-r =) wull
1

Result. (3.1) is derived simply by rewriting the above equation.

z)}dx



