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Abstract

This study approaches the Bayesian identification of seasonal moving average
processes using an approximate likelihood function and a normal gamma prior
density. The marginal posterior probability mass function of the model orders is
developed in a convenient form. Then one may investigate the posterior probabilities
over the grid of the orders and choose the orders combination with the highest
probability to solve the identification problem. A comprehensive simulation study is
carried out to demonstrate the performance of the proposed procedure and check its
adequacy in handling the identification problem. In addition, the proposed Bayesian
procedure is compared with the AIC automatic technigue. The numerical results
support the adequacy of using the proposed procedure in solving the identification
problem of seasonal moving average processes.

Keywords: Identification, seasonal moving average processes, automatic techniques, normal
gamma density, posterior probability mass function.

1. Introduction

The seasonal moving average models are very useful in modeling seasonal
time series data that arise in many areas of scientific endeavor such as
engineering, physics, business, marketing, and economics. In such cases, the time
series repeats its behavior over a certain period of time, usually, a year. In
practice, the seasonal moving average model orders q and Q are usually
unknown and should be identified or estimated. Identifying the orders of seasonal

moving average models is the first and one of the most important phases in time
series analysis.

It is well known that the solution of the identification problem depends on
subjective opinions as well as statistical argument. The most popular non
Bayesian approach to identify the orders of ARMA(p,q) and seasonal
ARMA(p,q)(P,Q) models is developed by Box and Jenkins (1970). Their
methodology is based on matching the sample autocorrelation and partial
autocorrelation functions with their theoretical counterparts. Their technique is
cxplained in many references such as Chatfield (1980), Priestley (1981), Tong
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(1990), Harvey(1993),Wei (2005), Box et al (2008) and Liu (2009). Another non
Bayesian approach, known as the automatic approach, is based on fitting all
possible models and computing a certain criterion for each model and choosing
the model which minimizes the proposed criterion. For more details about the
automatic approach, the reader is referred to Akaike (1973, 1974), Hannan and
Quinn (1979), Mills and Prasad (1992) and Beveridge and Oickle ( 1994).

On the other hand, the Bayesian identification of time series is being
developed and the Bayesian literature devoted to the identification of ARMA and
seasonal ARMA (SARMA) models is sparse. Diaz and Farah (1981) developed a
direct Bayesian method to identify the autoregressive models. Monahan (1983)
made an important contribution to the analysis of low-order ARMA models by
developing a numerical technique which implements the identification,
estimation, and forecasting phases of an ARMA process. Broemeling and
Shaarawy (1988) have developed an approximate procedure to identify the orders
of ARMA processes. Their technique is somewhat indirect and based on
approximating the posterior distribution of the maximum number of coefficients
by a multivariate t distribution, then the significance of coefficients is checked by
a series of univariate t tests in a similar fashion to the backward elimination
procedure used in linear regression analysis.

Recently, Daif et al. (2003) studied the efficiency of Diaz and Farah
technique and compared it with Broemeling and Shaarawy technique for
autoregressive models. Moreover, Shaarawy and Ali (2003) developed a direct
Bayesian technique to identify the orders of seasonal autoregressive models. This
last technique has been extended to non seasonal moving average models by
Shaarawy et al. (2007). Furthermore, the direct technique was used to identify
multivariate AR models by Shaarawy and Ali (2008).

For well-known reasons, the direct Bayesian procedure to identify the
moving average models and consequently seasonal moving average models is
difficult. The direct Bayesiun procedure to identify the seasonal moving average
models has not been explored yet. The current article extends the direct Bayesian
technique, introduced by Shaarawy et al (2007), to the case of the seasonal moving
average models. The main difficulty in dealing with the exact Bayesian analysis of
SMA models is that the likelihood function is very complicated and analytically
intractable. Therefore, the posterior distributions of the parameters are not standard.
This problem arises because the errors of these models are nonlinear in their
coefficients. Hence, the errors’ sum of squares is not quadratic in the coefficients.
Among different solutions for this problem, the use of analytical approximations
appears to be a reasonable one (see Broemeling and Shaarawy (1988)). The use of
analytical approximations simplifies the analysis since it approximates the errors’ sum
of squares as a quadratic function in the coefficients. Thus, the resulting approximate
posterior distribution will be standard, namely, t distribution. The efficiency of the
proposed identification procedure is assessed via a comprehensive simulation study.
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In addition, a comparison between the proposed technique and some non-Bayesian
automatic techniques is conducted.

2. Scasonal Moving Average Processes

Let y= [v(l) y(2) ... y(n)] be a vector of n observations generated from
the seasonal moving average process of orders q and Q, denoted by SMA(q,Q),, where s

is the seasonal period, i.e. the number of seasons in the year. The model has the form (see
Box and Jenkins (1970)),

Y()=6(B)O(B )e(t) @1
Where,
B is the backward shift operator defined as Bry(t) =y(t-r), r=1,2,...

y(t) denotes the time series observations, t=1,....,n.
-1
&(t) denotes the random errors assumed to be iid N(0,t ),7>0 is the precision
parameter. Moreover,
2 q

6(B)=1-6,B-0,B -...-6,B

and
s s 25 Os
©(B)=1-0,B -0,B -...-@QB

The model is always stationary and is invertible if the roots of both 8(B)=0 and
@(BS) =0 lie outside the unit circle. The model can be written explicitly in the form,

Q y
)= em—ie,e(t —i)=).0,8(t - js) +Zf:ﬁ,,e(z —i—Js) (2.2)
i=l J=! i=] j=1
Where, ,B’.j=0'.@j ,i=1,...q,j=1,...,0.

The seasonal moving average class of models (2.1) is quite important in
modeling seasonal time series data, see for instance Box and Jenkins (1970). In
practice, the orders q and Q are unknown and one has to determine a value for

each of them using n observations y= [V(l) y2) ... y(n)]' . Thus the statistical

question is: “Given n-observations generated from a seasonal moving average
process, what are the values of q and Q?” The direct Bayesian answer of this
question is to find the marginal posterior probability mass function of the orders
and this has not been done yet for seasonal moving average process because of the
complexity of the likelihood function. However, the indirect approach introduced
by Broemeling and Shaarawy (1988) can be developed to choose initial adequate
values for the orders q and Q. These values will be used later by our proposed
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direct approach in order to develop an approximate posterior probability mass
function for the model orders in a convenient form.

3. Direct Bayesian Identification of Seasonal Moving Average Processes

Except for some special cases, it is very hard to work with time series
models including moving average parts. In order to avoid this difficulty,
Broemeling and Shaarawy (1988) developed an indirect Bayesian procedure to
identify the orders of mixed ARMA models. However, their procedure can be
modified to identify initial values for the orders q and Q of seasonal moving
average process. These values will be used later in this section to develop our
proposed direct approach. Instead of working with the joint posterior probability
mass function of q and Q, their indirect approach is proposed to focus on the
posterior distribution of the coefficients vector

k-+m-+k '
7™ <[, 6,...6, €, 0,..0, By - Brm] (3.1)
Where, k is the maximum value of q and m is the maximum value of Q.

The indirect Bayesian technique is based on approximating the conditional
likelihood function by a normal-gamma density on the parameter space. Then, |
one would expect a normal-gamma posterior analysis when the approximate
likelihood function is combined, via Bayes theorem, with a normal-gamma prior
density or with a Jeffreys’ vague prior. When the approximate conditional

likelihood function is combined with such prior, the marginal posterior of

plem+km) is a (k+m+km) dimensional multivariate t distribution. Thus, any single

component of this vector has a univariate t distribution and the conditional
distribution of any component given any other component has also a univariatc t
distribution. For a discussion of these distributional results see DeGroot (1970,
pp. 59—62). Then one can do a backward elimination procedure to identify initial
values for the orders q and Q as follows:

l. TestH,:@ _ =0 versus H,:0, #0 using the marginal posterior
distribution of @ _ which is a univariate t distribution.

2.  Ifthe above Hy is not rejected, test Hy : @, _; =0 Versus H, : @ ,_; # 0
using the conditional distribution of @ __, given @ =0 whichisalsoa

univariate t distribution.
3.  Ifthe above Hj is not rejected, test H 0:0,_,=0VersusH,:0, _, #0 '

using the conditional distributionof ® ,_, given®, =@ _,_, =0.
4.  The procedure is continued in this way until the hypothesis g 0. =0 is rejected
for some Q, whereg < Q , < m . The value Q, is then the initial selected order for

the seasonal part of the model.
The Egyptian Statistical Journal Vol.55, No.1, 2011
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5. The previous steps are repeated for the non seasonal part of the model starting with
lesting H, : 0, = 0 versus H, : 8, = 0 until one of the hypothesis is rcjccted

for some q, whereg < q, < k . The value q, is then the initial selected order for

the non scasonal part.

Given the initial values q, and Q,» estimated above, this section is devoted to
develop the proposed direct Bayesian identification for seasonal moving average
processes. Unlike the indirect technique, the orders q and Q are assumed to be
random variables and the problem is how to find the joint posterior probability
mass function of q and Q in a convenient farm, In order to do that, let
y= b}(l) y(2) ... y(n)I be a vector of n observations generated from a
seasonal moving average process of orders q and Q having the form (2.2) where
the orders q and Q are non negative unknown integers. Conditioning on €y = £_;
= .e. = €1.k-ms, the likelihood function is

L4 Q.0.Qy)<(32 | \

i=1 i=1=l

2 |
exp— Zl{y(t)+2 is(t—1)+Z®Qf(t—Js) ZZBqug(t—l—js)]
(3.2)

(k+m+km) -

Where, ¥
=1,2,...,m

is the coefficients vector deﬁned in(3.1),T>0,q=1,2,....,kand Q

The likclihood function (3.2) is anulyticully intractablc since the errors &rj's
arc nonlinear [unctions in the model coellicients
Q1o 301k s@m1 5+ 9@ s Brmag oeee 5 Bumkm - Many suggestions have been

done in order to simplify the likelihood function such as Shaarawy and
Broemeling (1984), Newbold (1973), and Zellner and Reynolds (1978). All these
simplifications and others are based on knowing the values of the modcl orders q
and Q. Thus, one must use an adequate technique, preferably a Baycsian onc, to
determine or identily initial values for the unknown orders q and Q that can be
uscd later to simplify the likelihood function. Here, following Shaarawy et al
(2007), we propose to use the indirect procedure, explained above, to determine
or identify such initial values, qo and Qq. Then the values qo and Qo are used to

cstimate the errors &.'s recursively by the recurrence formula

E(t) =y(t)+ }:eq E(t—1)+ Z@Q jE(t = js) — Z Zﬁus(t i—js) (3.3)
i=1j=1

Where;
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¥(q9:Q0) = [eq 1--9g.4, ®Q°1 "'@Q.Q. Bir .- ﬁq.Q.]' is the nonlinear least squares
estimate of the coefficients’ vector y (90-Qp)> found by minimizing

SSE = Y7, &
With respect to the coefficients vector, y(q,Q ), over the region of invertibility.

Once the estimated errors &.j's are obtained, they are substituted in the likelihood
function (3.2) to get an approximate conditional likelihood function in the form

L(r(¢Q.9Q1y) <(7:
(3.4)
exv— y(t)+zeqif-:(t—n)+zeana(t—Jsrzzaja(t—-—Js)]z

i=l

L' (y(q.0), q’Q’TIZ) has a normal gamma form. If n is large, the
approximate likelihood function L" is expected to serve as a good
approximation to the likelihood function.

The parameters vector y(q,Q) is assigned, a priori, a conditional

normal distribution given q, Q and 7 with mean vector H(q,Q) and

precision matrix = R(gq, Q) . Assuming that 7 and (q,Q) are independent where

7T has a gamma density with parameters a and b and (q,Q) have a joint
uniform prior function over the integers q=1,2,...,k, Q=1,2,...,m. Thus, one
may write the joint prior distribution of the parameters y(q,Q),q, Qand 7

as follows:

g({(q. Q.9,Q. T)°C(21t) (me)|R(q Q_)Iz'c2

exp- -; {2b + [X(qs Q) - E(q’ Q)] 'R(qa Q)[X(q’ Q) - E(q’ Q)]}
3.9)

2{a+QrqQu2a)1

If one is not quite confident about the hyperparameters u(q,Q), R(q,0), a,

b of the prior density one might use Jeffreys’ vague prior

&1 (}_”q’ Q,T)OCT-I ,7>0 3.6)

The approximate conditional likelihood function (3.4) can be written in matrix

notation as

L (¢(0,0),9,Q,1y) « (2)z exp- = [y (0 - 1@, Qm @ QF 6.7
2 ¢=1
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Where,

(@ Q) =[-£ (1-i) ~& (t=j9) & (t-1-j9 ... & (t—q—j9)]

& (t-i)=[(t-1) &t-2) ... &t-q)]
& (t—jo)=[8(t-s) &t-25) ... &(t-Qg)]
§:'(t—r—js)=[é(t—r—s) &t-r—2s) ... &t-r-Qs)] s r=12,...q

Since the exponent is quadratic in y(q,Q), L as a function on the parameter

space is a normal gamma density. Thus, one would expect a normal gamma posterior
density when L. is combined, via Bayes theorem, with a normal gamma prior density
or Jeffreys’ vague prior. In order to formulate the posterior analysis, let us define the
following quantities:

[ Ay Ap . Ayge

. Ap An o Ayge
A'(@,Q=| . : ) 3.8)

| Algr) A2qe) - Aggaayes) |
Where the matrix A, is of order ¢ x ¢, with ijth element i 8(t — i)&(t — j)- The
t=1
matrix A, is of order g x Q0 , with ijth element y (¢ - i)&(t — js)+ The matrix A,
t=1 .
d=3,4,...,q+2 is of order g x O, with ijth element _ 2": 8(t—i)&(t—js—d+2)- The
t=1
. . epq ooth :
matrix A,, is of order Ox Q, withij element )n:lg(t — is)&(t — js)- The matrix A, ,
t=
d=3,4,...,q+2 is of order Ox Q, with ijth element _ i B(t—is)&(t—js—d +2)
t=1
The matrix A =3.4,...,q+2, d=r,r+1,...,q+2 is of order Ox O, with ijlh element

TE(t—is—r+2)8(t—js—d +2)-
t=1

FFurthermore,

B (q,Q)=

(5]

(3.9)

. 19 I

| =(q+2)
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.., .th .
Where, El is a column vector of order q, with 1t element _ i‘: y(DE(t - i)- §2 is a
t=1
h
column vector of order Q, with i element — zn:y(t)g(t —is)- B, =34,..qr2 is a

t=1

o o
column vector of order Q, withi  element y- y(t)&(t — is — r + 2)- Moreover, let
t=1

* n 2
C =2y (@) (3.10)
Using the quantities A” (q,Q), B (q,Q) and C" in (3.8), (3.9) and (3.10)
respectively, the approximate conditional likelihood function (3.7) can be written in

matrix notation in the form
L ()_’(q, Q,9,Q, TIX) oc (1:); exp- % k’(q, Q)A* (9,Q7(q,Q - 21’ (q, Q)I_S* Q)+ c ] (3.11)

In addition, define

A(q,Q) = A"(q,Q)+R(q,Q)

B(q,Q) = B (q,Q) + R(q,Q)(q, Q)
C(q,Q) =2b+C" +p'(q,Q)R(q,Q)1(q, Q)

(3.12)

Where R(q,Q), u(q,Q) and b are hyperparameters in the joint prior (3.5).

Using the above information, one may assert the following theorem and corollary:

Theorem (3.1)

Using the approximate conditional likelihood function in (3.11) and the.prior
density function in (3.5), the joint posterior mass function of the-orders q and Q is

1 1 v
h(q,QIz)oc|R<q,Q)|5|A(q,Q)I'Er(vl)[C(q,Q)—.lz(q,Q)A“(q,Qm(q,Q)T' (3.13)

Where, q = 1,2,y k,Q = 1,2,..., m and 2v, = n + 2a.A4(4,0), B(q,0) and
C(q,0) are defined in (3.12).

If one knows very little, a priori, about the parameters, one might use the
following corollary:

Corollary (3.1)

Using the approximate conditional likelihood function in (3.11) and the
Jeffreys’ prior in (3.6), the joint posterior mass function of the orders q and Q is
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! . - . -@Q)
(0. Qly) o (1) ™[A" (@,Q) 2lr(vz(q,cz)){c -B @,QA" (q,QB (q,Q)} (3.14)

Where, 2v,(q,Q)=n-q-Q-qQ, g=/1,2,....kand Q=1,2,...,m. The ma/rixA‘(q,Q),

the column vector B'(q,Q) and C* are as defined in (3.8), (3.9) and (3.10)
respectively.

After deriving the posterior mass function, then one may calculate all possible
posterior probabilities to study the behavior of the marginal posterior mass function
for all possible orders. Then one may choose the orders with the maximum posterior
probability as point estimates for the orders (q,Q).

4. A Numerical Study

This section aims to assess the performance and efficiency of the
proposed direct technique in identifying the order of seasonal moving average
processes. In order to achieve this goal, four simulation studies have been
conducted. The proposed technique is employed, with three different prior
distributions, to identify the orders of SMA(1,1)4 , SMA(1,2)s and SMA(1,3)4
models with various parameter values. The parameters in some cases are chosen to
be well inside the invertibility domain while in some other cases they are chosen
to be near the boundaries. All computations are performed using Matlab 7.

Here, our main concern is to study the effectiveness of the proposed
direct technique by calculating the percentage of correct identification. Such
effectiveness will be examined with respect to the time series length as well as
the parameters of the selected models. For all models, sample size and parameter
sets the precision of the noise term is fixed at two.

Simulation 1, for illustration, begins by generating 200 data sets of

normal variates, each of size 2500, to represent the noise &. These data sets are
then used to generate 200 realizations, each of size 2000, from SMA(1,1), process
with coefficients 6, = 0.5 and ®; =0.5. Note that, the first 500 observations are
ignored to remove the initialization effect. For a specific prior, the second step of
simulation 1 is to carry out all computations, assuming certain maximum orders k
and m, required to identify each of the 200 realizations and to find the percentage
of correct identification. Note that the computations include the application of the
indirect technique to get initial values qo and Qo and use them in the application of
the proposed dircct technique. Such computations are done for a specific time
series length n using the first n observations of each generated realization. The
second step is repeated for each chosen time series length, maximum order, and
prior combinations. The time series length n is taken to be 200. 400. 600, 800,
1500 and 2000, while the maximums k and m are taken to be (2,2) and (3.3).
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With respect to the prior probability mass function of the orders q and Q, which

is combined with the vague prior of y(q,Q) and 7, the following three priors are

used

e Priorl: ¢(q,Q) « l_x 1_ q=1,2,....k; Q=1,2,...,m.
k m

e Prior 2:4(1,1)=035((1,2)=(2,1)=02562,2)=015 fork=m=2.

€(1,1) = 0.28,£(1,2) = £(2,1) = 0.18, 6(1,3) = £(2,2) = €(3,1)=0.08
£(2,3) = £(3,2) = 0.045 and €(3,3)=0.03 fork =m = 3.

e Prior3: £(q,Q) « (0.5)9"?%  ¢=12,...k;Q=1.2,....m.

The first prior assigns equal probabilities to all possible combinations of the
orders q and Q. The second prior is chosen in such a way to give probabilities
that decreases arbitrarily with the order, while the third prior is chosen in such a
way to give probabilities that decline exponentially with the order.

Simulation 2 is done in a similar manner but using SMA(1,1)4 with
coefficients 0; = 0.8 and ®; = 0.8. While simulation 3 is done similarly but using
SMA(1,2)s model with coefficients 0; =-0.5, ®; =0.1 and ®, =0.9. And finally,
simulation 4 is done similarly but using SMA(1,3)4 model with coefficients 0; =

0.5,®;=0.2, ®, =-0.2 and ®3 =0.5. The results of the four simulation studies
are presented in Table 1. For the four simulation studies, the percentages of correct
identification using the indirect procedure, with Jeffreys’ prior density, are also
reported in the same table.

For the matter of comparison, the well-known Akaike’s information critéria,
denoted by AIC has been calculated for all 200 generated series in each of the
above mentioned four simulation studies. The selected model is the one that
achieves the smallest value of the criterion. Then, the percentages of correct
identification are computed for AIC for various time series lengths and the results
are also given in Table 1 for the same two assumed maximums of the orders q
and Q.

The Egyptian Statistical Journal Vol.55, No.1,2011




‘R()

Bayesian Identification of Seasonal Moving Average Models

Table

1

The Percentapes of Correct Identification for SMA(q.Q)‘ Models Using Bayesian and Automatic Techniques

[ SMA(1,1) ] SMA(2) [ sMA@3) ]
0 =-0.5,0 =0.1, 0 =0.5,0 =0.2,
0 =0.5,0 =0.5 0 =0.8,0 =08 ! ! ! !
! ! ! 1 OI———O.9 O|="2‘0_v=0’5
Scrics length || Technique || Max(2,2) || Max(3,3) || Max(2,2) || Max(3,3) || Max(2,2) Max(3,3) Max(3,3)
Priort || 87 || 80 | ses || 2z o s 91
[ Prior2 J[ 90 |{ 8 [ 825 [ 85 [ 98 [ 845 || 91.5 )
200 [ Prior3 |[ 915 N 90 [ ss [ 795 [ o985 [ 35 || 915 |
[ Indircct || 79 | s65 [ 665 ][ 37 [ 905 [ ss5 | 78 |
| AIC [ 705 62 || 685 s7 || s 60 76.5
Prior 1 95.5 92.5 91.5 88 93 91 94.5
[ Prior2 )| 965 || 94 [ 925 [ s9 [ 985 [ 9¢« [ 95 |
400 || _Prior3 || 975 || o5 [ o« [ s [ 985 [ o1 || 95.5 |
[ Indirect |[ 82 || 665 [ 76 [ 465 [ 945 [ e [ s |
AIC 70.5 T E 64.5 845 || 615 80.5
Prior 1 94.5 92.5 90 84.5 97.5 91 95
[ Prior2 |[ 96 | 955 [ 90 [ ses [ 975 [ o+ || 98.5 |
600 [ Prior3 |{ 97 [ 915 [ 905 [ 87 [ 985 [ o93s || 98.5 |
I Indirece | 85 | a3 [ 7es [ s0o [ e« [ w0 | 88.5 ]
AIC 75.5 62.5 70.5 63 875 || 71 84.5
r— Prior 1 95 e WEF [ 99 BN 95
[ Prior2 [ 955 || 94 [ o2 [ 815 | N 95.5 |
800 | Priord || 96 [ 945 [ 935 [ 885 [ 995 || 935 || 955 |
[ Indirece || 81 [ 645 [ 7ss [ sss [ 925 I 71| 87 ]
AIC 67.5 59.5 70.5 I 60s || 835 67.5 81.5
|| Priord 95.5 95 95.5 90.5 99 93 94
[ Prior2 || 97 W[ 96 [ 97 [ 95 [ 99 [ o945 | 94 |
1500 [ Prior3 || 975 [ 965 [ 97 [ 9+ [ 99 [ oe4s5 | 94 |
[ Indirect || 835 [ 71 [ 795 [ s6 [ o945 [ 711 | 84 |
[ AaiCc | 71 61.5 70 59.5 83 61.5 80
[ Prior1 || 96 93.5 TTT 96 94
[ Prior2 |[ 96 [ o4 [ 925 J[ o1 [ o985 [ 91 | 945 |
2000 [ Prior3 | 965 [ 95 [ 91 [ 925 ][ 985 [ 965 || 945 |
[ Indircct || 82 [ 725 [ 75 [ 54 [ 925 [ 755 | 85.5 ]
AIC 66.5 59.5 725 || 65 | 8 || 66 J 81.5 |

Inspection of the numerical results in table 1 shows the followmg

The numerical efficiency increases as the time series length increases for all
models. all techniques and all maximum orders.

The numerical efficiency of the proposed direct technique is high. being
greater than 71%, for all models, all time series lengths and all maximum

conclusions:
1.
2.
orders.
3.

The numerical efficiency of the proposed direct technique is better than
those of both the indirect and the AIC techniques for all models, all time
series lengths and all maximum orders.
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4. The numerical efficiency of the indirect technique is fairly high and better
than that of the AIC technique almost everywhere.

5. The numerical efficiency of the proposed direct technique using prior 3 is
better than that of prior 2, which in turn is better than that of prior 1.

6. The results corresponding to maximum orders (2,2) are better than those of
maximum order (3,3), for all models, all time series lengths and all
techniques. This is reasonable since searching for the appropriate model
among a smaller number of alternatives is easier.

5. Conclusion

This article has proposed a direct Bayesian technique to identify the
orders of seasonal moving average processes. The joint posterior probability
mass function of the model orders has been developed in a convenient form
using an approximate conditional likelihood function and a normal-gamma prior
density. Then one may easily inspect the behavior of the posterior probabilities
and choose the order combination with highest posterior probability to solve the
identification problem. The efficiency of the proposed direct technique has been
checked and compared with a well known non Bayesian automatic technique
through simulation studies. The analysis of the numerical results shows that the
proposed direct technique can efficiently identify the orders of seasonal moving
average processes.
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