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ABSTRACT

Forecasting is the final and one of the most important phases of a multivariate
time series analysis. This article develops an approximate Bayesian
methodology to forecast the future observations of vector moving average
processes. By employing an approximate conditional likelihood and a matrix
normal-Wishart, or Jeffreys vague prior, the proposed Bayesian forecasting
methodology is based on deriving an approximate posterior probability density
of the future observations in a convenient form. Then one may easily calculate
the posterior mean vector and precision of the future vector of observations and
hence develops a Highest Predictive Density(HPD) region for the future
observations. Four simulation studies, with Jeffreys’ vague prior, have been
conducted in order to demonstrate the idea of the proposed methodology and
test its adequacy in solving the forecasting problems of vector moving average
processes. The numerical results show that the proposed methodology can
efficiently forecast the vector moving average processes with high precision for
moderate and large time series length.

Keywords: Forecasting, vector moving average processes, likelihood function, matrix
normal-Wishart distribution, predictive density.
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1. INTRODUCTION

The statistical analysis of time series is very important topic and may be found in
many areas of application such as economics, business, marketing and environmental
studies. The problems of time series analysis are called univariate time series if the
observations are made of single response such as hourly temperature and daily spending
on food (in money). The vector time series problems arise if the observations are
available for several related variables of interest. The multivariate time series may be
found in many fields of application such as economics, business, meteorology,
hydrology and utilities. In ecbnomics, one may record yearly money supply y(t, 1), real
interest rate y(t, 2) and gross national product y(t,3) . In business, one my record single—
family housing starts y(t, 1) and houses sold y(t, 2) in the U. S. A. These variables are

" modeled and investigated simultaneously for two reasons. The first reason is to

understand the nature of the dynamic relationships between variables. One variable may
lead to the other or there may be feedback relationship. The second reason is to increase

the precisions of the estimates and forecasts. Better estimates and forecasts can be

achieved when the series are modeled jointly if there is information on one series
contained in the others. See Tiao and Box (1981).

Usually the Bayesian and non-Bayesian approaches of univariate and
multivariate time series are based on a class of parametric models such as
autoregressive moving average, denoted by ARMA for short, models. After the model
is identified, the parameters are estimated and the future values are forecasted. Model
estimation and forecasting are two main phases in time series analysis. Although these

two phases are closely connected in time series analysis, they are usually treated as two

separate steps. Standard references of the univariate non-Bayesian approach are Box

and Jenkins (1970), Granger and Newbold (1973), Harvey (1993), Priestely (1981),
Brockwell and Davis (1991), Wei (2005), Box et al. (2008) and Liu (2009). It is a fact
that the methodology of Box and Jenkins for identification, estimation, diagnostic
checking and forecasting of autoregressive moving average processes is the most
favorable non-Bayesian technique to model and forecast time series data arise in most
areas of application. Their methodology has grown up in popularity and is today the
prevailing technique of modeling and forecasting time series data. The Box-Jenkins
methodology has been explained by many others such as Harvey (1993), Priestely
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(1981), Bowerman and O’Connell (1987), Chatfield (2001), Wei (2005) and Liu
(2009).

Regarding the multivariate version, the estimation and forecasting, from non-
Bayesian viewpoint, of vector autoregressive moving average, denoted by VARMA for
short, processes have been extensively studied and investigated by a large number of
applied and theoretical researchers. However, it seems that the non-Bayesian literature
on the estimation problems of multivariate processes traditionally focused on maximum
likelihood methods because of their desirable properties. However, it is well- known
that the maximum likelihood methods, which estimate simultaneously the coefficients
and covariance matrix, require heavy comput_ational efforts in non-linear optimization

‘procedures. Therefore, there have been extensive investigations in order to ease the
maximum likelihood routine and make it faster. For instance, Luceno (1994) developed
an efficient numerically expression for the likelihood function of stationary and
partially non—stationary autoregressive moving average processes. Another
development was done by Mauricio (1995) who proposed a new procedure for the exact

maximum likelihood estimation of mixed VARMA models.

The Bayesian analysis of time series processes is being developed and most of
the Bayesian contributions have occurred since the last few decades. It was not until
Zellner (1971) that the systematic analysis of Bayesian analysis on time series began.
With respect to Bayesian literature, one may trace three different approaches to analyze
univariate time series processes. The first approach is to use the numerical integration.
Monahan (1983) used this approach to implement the identification, estimation and
forecasting phases of autoregressive moving average models with low orders. This was
the first Bayesian attempt to perform a comprehensive time series analysis and was a
very valuable contribution. However, the use of numerical integration is difficult and

time consuming especially in the cases of multi-parameters and multivariate models

The second approach is the use of analytical approximation in order to have
standard posterior distributions. Several approximations have been developed to solve
the estimation and forecasting problems of ARMA processes. However, Zellner (1971)
derived the posterior and predictive distribution for the first and second order
autoregressive processes using Jeffreys’ improper prior density. Newbold (1973)
developed an approximate Bayesian analysis for transfer function models of which an

ARMA process is a special case using Taylor's expansion for the errors as linear
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function of the coefficients. Newbold's results were based on a t-approximation for the
posterior distribution. Another important development in the area of autoregressive
processes was done by Chow (1975), who found the moments of the joint Predictive
distribution of future observations. Harison and Stevens (1976) had given a general
review of the time series that can be analyzed by Bayesian approach. Shaarawy and
Broemeling (1984) and Broemeling and Shaarawy (1988) have developed Bayesian
techniques of identification, estimation, and forecasting phases based on a t-
approximation to the posterior distribution of the coefficients. Their approximation has
been extended to the case of seasonal models by Shaarawy and El-Shawadfy (1987)
and Shaarawy and Ismail (1987). The first study has been extended later to the case of
bilinear models by Chen (1992).

The third approach to ease Bayesian time series analysis is to use sampling based
methods which include the Gibbs samplér technique (Geman and Geman (1984), data
augmentation algorithm (Tanner and Wong (1987)) and the importance sampling
algorithm (Rubbin (1988)). Recently, Ismail (2003a, 2003b) used Gibbs sampling
algorithm to estimate the coefficients and forecast future observations of multiplicative
seasonal autoregressive and moving average processes denoted by SAR(p, P) and
SMA(q, Q) respectively. Most recently, Philipp (2006) proposed a Bayesian technique
to identify the orders of ARMA processes and estimate their coefficients using MCMC
algorithm assuming a prior distribution of the initial values. His algorithm is
computationally efficient and not too sensitive to additive outliers. Young and Petti
(2006) used Gibbs sampling algorithm to calculate Bayes factors for choosing the order
of an autoregressive model and measure the effect of a set of observations on these
factors. Finally, Abd-Ellah (2009) extended Ismail’s work to case of multiplicative

seasonal autoregressive moving average processes.

Regarding the Bayesian analysis multivariate time series, a considerably large part
of multivariate time series literature tackles the analytical phases that precede
forecasting; namely; identification and estimation. On the other hand, the forecasting
phase still lacks analysis. With this in mind, Shaarawy (1989) introduced approximate
techniques to estimate the parameters of vector autoregressive moving average, denoted
by VARMA for short, processes and predict their future values. Shaarawy (1993) has
shown that the same approximation can be used to do a complete analysis for

multivariate mixed ARMA processes. However, the numerical properties and the
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efficiency of this approximation have never been investigated to forecast future
observations of pure bivariate or multivariate moving average processes. The current
article has three main objectives. The first one is to is to develop an approximate
Bayesian methodology to forecast the future observations of pure vector moving
average processes. The second objective is to investigate the numerical efficiency of the
proposed Bayesian technique in solving the forecasting problems of bivariate moving
average processes by conducting a wide simulation study. The last objective is to study
and asses the sensitivity of the numerical efficiency with respect to the parameters

values and sample size.

2. VECTOR MOVING AVERAGE PROCESSES
Let { t } be a sequence of integers, ge {1.2,...}, ke{2,3,.. }, 6i(i=1,2...,q) are
k x k unknown matrices of real constants, {y(#)} is a sequence of kx/ real
observable random vectors and {&(#)} is a sequence of independent and normally
distributed unobservable random vectors with zero mean and an kxk unknown
precision matrix. Then the vector (multivariate) moving average process of order

q, denoted by MA (q) for short, is defined for n vectors as
¥t)=6,(B)e(t) 2.1)
Where

ym=lyaen w2 k]

6, (B)=1,-6,B-6,B> —-...—6,B*

And ,

e (0)=lece) a2 eai]

Ix is the identity matrix of order k, and B is the usual backward shift operator.
The kxk matrix polyhomial 8,(B), of degree g in the backshift operator, is known
as the moving average operator of order . The process is invertible if all the
roots of determinantal equation |@,(B)|=0 lie outside the unite circle .
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Consider this very important case with moving average coefficients

0=9 — 611 012
] 021 622

Then, the model (2.1) can be written as

y(@&)={U —-6B)e(?)
Where

yO =D y12), =) &2)]

And

|l O]_[6uB 6.B]_[1-6.B -6.B
“lo 1| |6,B 6,B| | -6,B 1-6,,B

" Thus, one may write the observations of the MAz(1) processes in scalar notations

as

Y1) =—8,,e(t=L1)-0,,6(t -1,2) + ()
(2.2)

Y(t,2) ==6,,6(t — 1) - 0,,6(t-1,2) +£(1,2)

However, the model (2.2) can be written compactly, in matrix notations, for n

observations as

y(@)=e@®)—6s(t—-1), t=1,2..n (2.3)
Where

| e@- 1,1)
st=1)= [s(t - 1,2)}

Here we consider y(t, 1) and y(t, 2) as the dependent variables or the output, while |

g(t-1, 1) and g(t-1, 2) are considered as independent variables or the input.

Consider another important special case, the MA2(2) process with moving

average coefficients
91 =[0Hl 9!.!2:| and 92 =|:02.ll 92.12:]
el 21 9!.22 62.21 02.22

Then the model (2.1) can be written as
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w(t)=(1A—-6B—6,B*)s(t)

Where
B 2 2 ]
1-6, 113"92 llB "91.123“92 128
2
I-B-6,B" =
6. _B-6 32 1-6. _B-0 f
L T Y1210 T 7221 TY1.227 T 72227

Thus, the observation of MA2(2) model can be written in scalar notations as

Y(t’l) = 6’({,1) - 91.1 18(1 - l’l) - el.lzg(t - 1’2) - 92.1 lg(t - 2:1) - 92.l2y(t - 2a2)

(2.4)
y(t,2)=€(t,2) - 0,6t - L1) - 0,,,6(t —1,2)-6,,,6(t - 2,]) -6, ,6(t - 2,2)

Similarly, the model MA2(2) can be written in a compact form, using matrix

notations, for n observation as
yt)=¢e(t)- 6,e(t-1)- 6,&(t - 2), t=1,2..n (2.5)

Where y(t), €(t), £(t-1) are as defined above, and

_ e(t-2))
€t-2= L(t -2,2)]

In general, one can write the MA2(q) process as

(1) =(t)—- et —1)- 0,6t —-2)-...—6,&(t—q) (2.6)
The model (2.6) can be rewritten in a more compact expression as
Y=XO0+U (2.7)

Where Y is a matrix of order n x2 with ijt" element equals y(i, j), i =1, 2,..,n;j=1,2.
That is

Y=Y =[n1) »2) .. yn)]

The matrix X is of order nx 2q defined by
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[ -£'(0) -&'(-1) .. -&'(-9)]
-g'1) -£'0) .. -€'Q2-9)

—-&'(n-1) -¢'(n-2) .. -€'(n-q)

Furthermore, ® is the 2g x2 matrix of coefficients defined as follows:

rell N
6, : 0 O
®= and 6, = , i=1,2 ..,q !
0121 91122 ‘
..eq J2gx2

The class of two dimensional pure moving average models (2.7) is an
extremely useful, flexible and practical to model and forecast two correlated time

series arise in many areas of application such as business, economics, industry,

chemistry, ecology and meteorology.

In general, one can write the MA(q) process as

y(t)=8(t)—t918(t-—1)—928(t—2)—¢2--'—Oqs(t—q) 4=12...n 2.8)

The model (2.8) can be written in more compact expression as
Y=X0+U (2.9)

where Y is a matrix of order nxk with ij-th element equals y(i,j), i=1,2...,n;

j=1,2,...,k. . That is

Y=Y =) w2 ym)]

The matrix X is order nxkq defined by
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[ —&'(0) -g(-D) .. ~e(l-q) |
. -._g'(:]) —:s'(O) —:8'(2-4)
-&(n-1)  -g@®-2) -  -&n-q) |

Furthermore, ® is the kqxk matrix of coefficients defined by

5

i

a1 Oiz

ck - -

- O 62 - G

‘ 6, :

’ waLs i2k 5
O=..... where 6, ; : ; s 1=12, ..

o

Lei.kl ei.kZ ei.ldz N

The class of models (2.9) represents the general class of vector pure moving
average models of order q and is usually denoted by MAk(q). This class of models
allows the feedback to happen among the variables.

3. AN APPROXIMATE LIKE‘LIHOOD FUNCTION OF THE GENERAL

VECTOR MOVING AVERAGE PROCESSES
In order to achieve our main goal, let S-=[y(1) y(2)...y(n)]'be a matrix of nxk
observations generated from k dimensional moving average process of order q of
the form (2.8) where the order g is known positive integer. The likelihood function

of the parameters ® and T'is

b n
Le.1s,)=(2x) 2 ITF:.p(-%trZe(t)s’(l)T) (3.1)

1=}
Where ® € Rk and T>0.
In general the likelihood function (3.1) is very complicated because the

disturbance £(t) are nonlinear functions of the coefficients 0i. To see this, one may
write the disturbances of (2.8) as
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£(t)=y(t)-x(t-1)®, t=1,2..n (3.2)
Where
x(t-)=[-et-1)  -st-2 - -gt-q)]

Thus, one may write the mth component of the residual vector g(t) as

clm)=yt.m)= 3 36,6 ~i ), m=1,2, ..k (3.3)

i=1;=1

The expression (3.3) is a recurrence relation for the residuals. This
recurrence causes the main problem in developing the exact Bayesian solution for
the forecasting problems of the general multivariate moving average processes.
However, (3.3) can be used to evaluate the residuals recursively if one knows i and
the initial values of the residuals. Using (3.3), the likelihood function (3.1) can be

written as

~kn

L@©.71s,)= (27 )7|71§ exp(— 1S H©.1) T) (3.4)
=1
Where H(6, t) = (hrs) is kxk matrix and

e = [y(r-m £$et-i j)a.,,}[y(r-s)-é $ el f)e,..s,-] (3.5)

i=1j=1 i=1j=1

The form (3.5) is not quadratic in the parameters 8’s because &(t-i, j) is a
function of 8's through the recurrence formula (3.3). If £(t-i, j) are known, H(&, t)
would be a quadratic form in the parameters. The proposed approximation is
based on replacing the exact residuals g(t) by their least squares estimates. The

least squares estimates, say £(t) , are obtained by searching over the parameter

space for the values of 6, say 6o, which minimize the residual sum of squares

Zsz(t,i) , i=1, 2, .., k. The least squares estimates 6o and the assumed initial
{

values, namely zero, are then substituted in (3.3) to obtain the least squares
estimates of the residuals recursively. Substituting these estimates in x'(t-1), one

can write (3.2) as

E(t)=y'(t)-x (t—-1)® (3.6)
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Where t=1, 2... nand % (¢ —1)is the same as x (¢ —1) but using the residuals

estimates instead of the exact ones. Using the estimates of the residuals, one may

rewrite the likelihood function (3.4) approximately as

L'©.71,)<|1f2 em[—-%—tri“:y(t )-@ X(t -1)][ Y(t)—@ x(t-1 )] TH (3.7)
t=1
An appropriate choice of the conditional prior of & given T'is

g(@lT)oclT|% exp(—é—tr{[@—DIR [@—D]T}) (3.8)

Where the hyperparameters DeR4?and Risa kq xkq positive definite matrix. The

precision matrix T is assigned, a priori, the Wishart distribution

a—(k+1) 1

2 T) |1 2 exp(——z-tr[y/T]) (3.9)
where ¥ is a kxk positive definite matrix. The joint prior distribution of ® and T is
assumed to be

£:(©.7) < 2,(©)7)£.(T) (3.10)

The class of prior distributions (3.9) is called matrix Normal-Wishart class of
distributions.

From (3.8) and (3.9), the joint prio} distribution of the parameters ® and T, equation

(3.10), can be written as

!kq+a—( k+1
2

g(®.7) | / egy(—-zttr{[@— D] rle - D]+ y/}T) (3.11)

If one can't or unwilling to specify the hyperparmeters D, R, a, and y, one might
use Jeffreys vague prior

—(k+1)
g®. 7)< |1 2 (3.12)

The Jeffreys’ prior (3.12) is a special case from the matrix normal-Wishart
prior (3.11) when R=0 (kq xkq), a= -kq and y =0 (k xk).
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4. THE PREDICTIVE DENSITY OF FUTURE OBSERVATIONS
The MAk (q) class of models is quite useful in modeling and forecasting the
general multivariate time series data arise in many areas of applications. In
developing the proposed Bayesian forecasting technique, we will assume that the
order q is known. The posterior density of the model parameters ® and T is the

Bayesian tool to estimate the unknown parameters and forecast its future

observations. The posterior density £(0,7|S,) is the conditional density of the

parameters ® and T given the observations Sn.

Combining the approximate likelihood function (3.7) and the prior density
(3.11), according to Bayes' theorem, one can write the joint posterior distribution

of the parameters ® and T as

[L*ﬂ___l]_ n , ; '
(o, TS, )< T| 2 exp(—-%tr{;l[y(t )-®'%(t-1 )][y(t)—- % - 1)]

+¥+(@©-D)R@O-D))T) @.1)

The exponent in (4.1) can be written as

~ 4O [R+ %~ DR (¢ - O - 20'[RD + 3" 5t~ )y(t)] + DRD + ¥ + 3wy @) }T

=—L0r{®@A40-20B+C }T (4.2)

Where
A=R+3i(t-1)% (t-1) , B=RD+ 3 #(t-1)y'(t) and
=] 1=1
C=DRD+¥+3y(t)y(t)
1=]

Completing the square of the exponent in (4.2), we will have
~4tr{(©@-A"'B) 4(@ - 47'B)+C- B4~ B|T (4.3)

Using (4.3), one may write the approximate posterior density (4.1) as
lrebgeat] _ ‘
EO.71S, )T T exp(-4{[(@-A"BY A@-A"B)+C~-BA BT }) (44)
Usually with multivariate time series analysis, the final goal is to forecast
future values Y(n+1), Y(n+2)... of the process {y(t)} given the past observation Sn.

The posterior predictive distribution of a future value is a convenient Bayesian
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tool to solve the forecasting problems. Of special interest is to forecast the next
observation vector Y(n+1). The main goal of this subsection is to drive an
approximate one step-ahead predictive density in the case of general multivariate
pure moving average processes in a standard form, namely a multivariate t
distribution. In addition, it aims to explain how to use this predictive density in
constructing a point estimate and highest posterior density (HPD) for the first
future vector of observation. Moreover, it explains how to develop an approximate
conditional predictive for the mt future vector of observations Y(n+m).

In general the predictive density of Y(n+1) is obtained by multiplying the
conditional density of Y(1],‘ Y(2),.., Y(n), Y(n+1) given the parameters @ and T by
the prior density of @ and T; then eliminating the parameters ® and T by
'integration . The predictive posterior density of Y(n+1) can be denoted by
g(n+1) | Sn).

Theorem 4.1:
If the approximate likelihood function (3.7) is combined with the joint prior
density (3.11), the approximate conditional predictive distribution of y'(n+1) is a

t distribution in k dimensions with v=(n+a -k +1) degrees of freedom, location

parameter z and precision P defined as

Ei

u=ExP(¥Y(n+1)s,)

P=PREW(n+1)S,)= F{i - EFEn+a-k+1)
The quantities #, £ and L are defined as
Fe1-7(a+ 25 G5, B =% (fd+ 2 ()] and
fpa =C-Bla+#n) @] 5.
Where
(m)=[&m) &@-1) ---é(n+1-q))

=[(n1) &n2) é&n-L1) &(n-12) ---é(n+l-q,1) £(n+l-gq,2]
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With regard to point estimate of Y ‘(n+1), one may use the posterior

expectation E'F'. One may also use Theorem (4.1) to construct an (1-a) HPD

region as follows:

R,y (n+D)={y (n+1):[y (n+1)-FENI-EFE)"[y (n+1) - F"E |Fu<kF,,, }

Where F, , , is the upper (100 a %) percentage of an F distribution with k and

v degrees of freedom.

Another use of the credible region is to test

Ho: Y' (n+1)=Y,(n+1) versus Hi: Y (n+1)# Y, (n+1)
Where Hois rejected at level « if Y}, (n+1)is not a member of the HPD region. One

may also notice that any subset of the vector Y (n+1)has a multivariate t
distribution. Thus, one may also construct an HPD region for any subset of the
vector Y (n+1). Furthermore, may construct an HPD for any element of ¥ (n+1)

using student t distribution, see Box and Tiao (1973) for the properties of the
multivariate t distribution.

On the other hand if one is not sure about the hyperparameters (to express
on- s prior information), one may use Jeffreys’ vague prior (3.12). If this is the case,
the parameters of the predictive density should by revised by letting R—0
(kqx kq), a = -k(q), and Y- 0 (kxk).

5. AN EFFECIVENESS STUDY

One of the main objectives of this research is to study the effectiveness of the
proposed Bayesian methodology in forecasting problems of multivariate (vector) pure
moving average processes. In order to achieve this objective, four simulation studies
have been conducted. The proposed forecasting Bayesian methodology is employed to
forecast the future observations of MA; (1) process with various parameters values. All
computations were performed on a PC using SCA packages.

The simulation process has the following general design: first, a time series is
generated from a given bivariate moving average model of the first order with certain
parameters. Second, the generated data are used to evaluate the predictive density of

the first future vector of observationY(n+1). Third, performance criteria are
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calculated for the predictive density. Fourth, 500 replications of the above three steps
are done. Finally, the output is summarized in tables.

Generally, the generation process begins by generating 500 data sets of bivariate
normal variates, each of size 501, to represent the noise £(t), which is assumed to

follow N, (0,V") .These data sets are then used recursively to generate 500 realizations,
each of size 501, from MA, (1) process with certain parameters. The initial values of
() =[£(t,l) a(t,2)] are considered to equal their unconditional mean, namely zero.
The first 200 observation are deleted in order to remove the initialization effect and

hence we get 500 time series each of length 301. From the 301 observation, a bivariate

time series of the desired length is used to estimate the predictive density of the first

future observation Y(n+l)= Lv( n+1l) yn+l, 2)] ' using the proposed Bayesian
methodology. In our simulation studies, the time series length are taken to be 30, 50,
100, 150, 200, and 300. Each simulation study correspond to specific mean, coefficients

and covariance matrix of the noise. The selected coefficients are selected to represent
different positions in the invertibility domain of the MA,(1) model. It might be

important here to emphasis that the Jefferys’ non-informative prior is used to conduct
all the simulation studies and that the computer program used to execute the simulations

is SCA package.

Our main concern is to study the numerical efficiency of the proposed Bayesian
forecasting methodology by'calcu'lating two groups of criteria: The moments’ group
and discrepancy measures' group. The moments' group includes the posterior mean and
variance of the future observations. The discrepancy measures' group measures the

closeness of the estimated observations to the exact ones; this group contains the
measures P° , MAD and MAPE. The measure P°checks the goodness of interval
forecasts calculated form a specified predictive density. Defining 95% highest
predictive Density (HPD) region as the interval having probability 0.95 centered at the
mean of the predictive density. The percentage P° of time series for which the HPD
region of the predictive density contains the true future observation is defined as

P =" /500)*100

where n° is the number of time series where the HPD region includes the true value.
P® is evaluated such that the higher the value P°, The better the performance of the
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predictive density in forecasting. It should be noted that according to P* a certain
observation may be ruled as belonging to the HPD region or not. However, P* does not
account the distance of this observation from the center of the region or its boundaries.
Therefore, two other measures, named as MAD and MAPE are provided. The MAD
stands for the mean absolute deviation of the future observation from the location

parameter and is defined by

500
MAD= »'|y (n+1,k)~E,(k)|/500 k=12
J=

Where y,(n+1,k) and E, (k) are the k" component of the first future observation and
location parameter, respectively, of the j* simulated series. The MAPE stands for the

mean absolute percentage deviation of the future observation from the location

parameter and is defined as

vare (8 s 500 -1 2

Where y (n+1,k) and E (k) are defined as above.

The numerical efficiency of the proposed forecasting procedure will be examined
with respect the time series length (n) as well as the parameters of the selected model.
Simulation I, as an illustration, begins with the generation of 500 data sets of bivariate
normal varieties, each with 600 observations to represent £(z,1) and £(r,2)respectively.

These data sets are then used to generate pairs of 500 realizations, each of size 300,
from VMA2(1) process with

09 -02 09 -0
u=10, ©= and Cov(¢) = -
1.1 =09 1. =09

Assuming the starting values are zero and Jefferys’ prior, the second step is to carry
out all computations required to estimate the predictive density of the first next
observation Y(n+1)of each of the 500 realizations and compute the P°, MAD and
MAPA values. Such computations are done for a specific time series length using the
first n observations of each generated set. This second step is repeated for each chosen
time series length. The results of Simulation I are summarized in table (5.1) which
consists of two parts. The first part consists of six rows and four columns. Each row

corresponds to a time series length, and the four columns are reserved to the

corresponding variance, MAD, MAPE and P*values for Y(n +1, I). The second part is
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reserved to ¥(n+1,2) an explained in similar way to the first part. Simulations II, III
and IV are designed in a similar manner but using different coefficients, and their results
are reported in tables (5.2), (5.3) and (5.4) respectively.

Table(5.1) n=100=["] “0Z.cov=2 1

g 5
i 4
E
YO%

1.6968 93.6 0.1491 1.3877
15543 89.4 0.1606 1.4980
1.4636 93.6 0.1314 1.2319
1.4436 94.2 0.1205 1.1276
1.4311° 94.2 0.1290 1.1863
1.4250 94.8 0.1254 11718
1.2052 94.0 0.0985 0.9283
1.1027 89.4 0.1111 1.0618
1.0353 93.6 0.0894 0.8596
1.0190 94.2 0.0855 0.8227
1.0103 94.2 0.0836 0.8005
1.0063 94.4 0.0840 0.8076

Table (5.2) n=100,0 = . 3 0. z] Cov(e) = [1 1]
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Table (5.3) n=1000,0=[ %2 37].cov(e)= [

Rk WWE# , %"“f' FENRDIEE
5 20961 910 1.7824
2.0719 92.0 ooz 1me
2.0451 93.8 00002  1.6658
" 20310 94.4 00002 16478
2.0224 94.6 00002  1.6547
2.0169 94.4 00002 16442

Inspection of the numerical results shows that the percentages P"are very high,
being greater than 92%, for sample size 100 or more no matter what the coefficients
and covariance matrices are. In addition, the numerical results shows that the numerical
efficiency increases as the time series length n increases for all selected parameters. The
MAPE values are reasonably small, being less than 14%, for sample size 100 or more
ne matter what the coefficients and covariance matrices are. Moreover, the variances
of the first future observations and MAD values decrease as the length n increases for

all selected parameters.
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Considering the above comments, one may say that the numerical results support
the adequacy of using the proposed Bayesian procedure in forecasting the future

observations of vector MA processes for small, moderate and large sample size.

6. SUMMARY AND CONCLUSIONS

The main objective of the article is to develop a convenient Bayesian technique to
forecast the future observations of pure vector moving average processes. The
predictive density of the first future vector of observations is developed in a convenient
form using an approximate likelihood function and a matrix — normal Wishart prior
density or Jeffreys’ vague prior density. Then one may easily calculate the posterior
expectation, precision and HPD region of the future observation.

In order of demonstrate the performance of the proposed Bayesian procedure and
test its adequacy in solving the forecasting problems of bivariate processes, four
simulation studies with Jeffreys’ vague prior density have been conducted. The analysis
of the numerical results indicates that the proposed Bayesian procedure can efficiently
forecast future observations of MA2(1) processes with high precision for moderate and

large time series length.
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