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SUMMARY

The problem of determining the mean of the range of partial sums of
random variables is important in planning the storage capacity of reservoirs
under the assumption of infinite storage capacity. In this paper, new formulae
for the mean of the range (and adjusted range) of partial sums of a finite number
of exchangeable random variables are given. These formulae are essentially
based on a lemma given by Spitzer (1956) concerning the expected value of the
maximum of the partial sums.

This lemma of Spitzer is estalbished by a simpler proof when the original
random variables are indepenhently and symmetrically distributed.

INTRODUCTION

Let X;, X ... , Xn be a sequence of exchangeble random variables, having
the common probability density function (p.d.f.) f (x) with characteristic
function (ch.f.) ¢ (0)

Define the partial sum s :

r .
8,=0 » Bp= I X 3§ i=142, ¢-eoB
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Their maximum, minimum and range are defined respectively as :

Mn = max ( 0’81. ey Sn)

% = min ( 0,81.4000’ Sn)
1.1)

When taking the partial sums of the deviations of Xi from their sample

1 n .
mean X, = —— X x; , then the partial sums S; will be called
noq
adjusted and denoted by S*;, and the corresponding adjusted : maximum,
minimum and range are defined in anology with (1.1

By using combinatorial analysis, Spitzer [5] derived a fundamental

identity from which the expectation of the maximum M, may be written in
the form :

ey

BQM )=

In (1972), this lemma was used by Boes and Salus-La-Cruz [2] to show
that the expected value of the range R, may be presented as :

(1.2)

n
E(Ry)= = =™t EC |8, )

(1.3)
whence, it was possible to state also that,
n
-l >3
E(x):: T - E( ls‘)
Ra)= 3 * (1.4)

The work done in this paper falls into two parts :

In the first part, we express equations (1.3) and (1.4) in a more practical

form in which the expectations of R, and R}, are given in terms of the ch.f.
of t e original random variables Xi.
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Because the expectation of the range is twice that of the maximum in the
case of symmetric random variables, the second part is devoted to give a simple
proof of Spitzer’s lemma :

EQ)=% & rLE( s )
1 & (1.5)
when X; are independently and symmetrically distributed
The mean range and the mean adjusted range
in terms of the ch. f. of X.
The mean range :

In addition to the definitions and notations given before, we first introduce

the following notations :
¢r (.) the p.d.f. of | s | 2.1
ne (0 thech.f.of pr(.) (2.2)

gr (0, , ---» O ) the joint ch.f. of the random
vector (X, ..., X;) (2.3)
Next, since the p.d.f. of Y, = | s, | is given by,

¢r V) =5 +£(—)
w ere f, (y) denotes the p.d.f. of S, .
we have,
© 10y © iBy
n (8) = f e f (y)dy + S e f (-y)dy
r () p o o r

On the other hand, y, (18) denotes, according to (2.3), the ch.f. of f (. )
where 1 is the unit raw-vector of order r. Thus, its complex conjugate
Yr (—10) is given by :

© -:iBy
¥ (-18) = S e £f (y)ay
r - r
e wifby o -jfy
= J e £f (y)dy + J e f (y)dy
- r o r
© i@y © -ify
= f e f (y)dy + J e f (y)dy
o] r o r
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Comparing (2.4) and (2.5), we find immediately that :

[ <]

n (6)-=s¥ (-16) + 2i S  sin (6y) f (y)dy
r - . o r €

To find the last integral, we make use of the Fourier inversion formula.
Thus, if yr (16) is absolutly integrable function, f (y) can be substituted
by its inversion transform,

1 @ -ity
£ (y) = E 4 e Y (1t)dt
 of 2 n - r
Hencé,
i @ @ -j_ty
n (6) = ¥ (-10) + S f sin(ey)e ¥ (1t)dtady (2.6)
r b of T © ~® o

Since we are interested in the expectation of |Sr| , and according to the
fact that,

- a '

E(fs |) = 4 —_— n (8) |

r do r
6=0
we get
, 1 «© o ity
EC[S |) = v E(X ) + — S Is y e ¥ (1t)dtdy.
r i n -0 - QO T

Inverting the order of integrations, and integrating by parts, first With respect
to y, then with respect to t, and making use of the fact that :

lin ﬁﬁr(li:) ==<),
t— 2

we obtain

E|s | = -»r E(X ) — ot d VY (1t)
b of 1 R - r 2.7)
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going back to equation (1.3) of the mean range, and applying (2.7) we find
that,

-1 © .}
J t d ¥ (1t)

' R
E(R ) = =-n E(X ) - —
™ - r (2.8)

n 1

=M
]

This formula is valid for any set of exchangeable random variables for
which y, (1t) is absolutly integrable function.

We notice that, in the special case of independece, the function y, (It)
reduces to yr (t), hence,

© -1 r-1

J t Y (t)d ¥Y(t).

1
E(R ) = -n E(X ) - —
o - (2.9)

n 1

~™MpB

The mean adjusted range :

Using the same notations above but with the superscript (X) to denote the

adjusted case, we can find, following the same method, that :

if ¢ . (1t) is absolutly integrable function, then

3 1 n -1 oo - we
E(R ) =-— £ It 4 ¥ (1t), (210)
n ‘n’ 1 - T

13

Since E(X ) = ©
1

where y;,* (1t) reduces, in the independence case, to :
g [ A—r/n) t] g (—r t/n)
Example :
Suppose X;, i=1, ... , n are symmetrically distributed random variables,
having the multivariate normal distribution with,
E (x) =p, var (Xj) = o2and E (Xi, X;) = po? i =]
ij=1,..,n.

According to equation (2.8) we have,



sep, [ e

. 2
Y (1t) = exp [it E(S ) - 1/2 t wvar (S )]
r r r
where E(S ) = ru .
r
2 2
var (8 ) = r © + r(r-1)po
b o]
Thus,
1 n © -1 .2
E(R ) = =np = — & S (iut -C ) exp(irut- 1/2 rC t ) 4at
o T 1 e r r
N 2 -
where C =0 [ l+r(r-1)p].
r
n 172 172 172
=.-nu + 2 I [uz(r/C ) u) + (C /r) z({C /r) u)l,
o 6 r r r

(2,11)
where Z (.) is the standard normal distribution and z( . ) is the standard normal
density function.

when taking u = 0, E (R,) reduces to :

l/72 n -1 1/2
E(R ) = (2/m) I r (var(s ))
n l r
172 n -1/2 1/2
= (2/7) g r (1+(r-1)p) (2.12)
1

Moreover, when p = 0, we get,
Y o ~%
ER) = (2A4&)* o & r
1

Which is the same form as the result given by Anis and Lloyd [1]. Also, accord-
ing to equation (2.10) of the mean adjusted range, we have,

# 2 %

¥ (1t) = exp -1/2 [ t wvar (s ) 1,
r r .
%

where var (S ) = r/n (n-r)(1-p)o
r ~—
Thus - 5 a

x -l co
E(R ) =-i-2r f wvar (S ). exp - 1/2 [t var (s )] at
n T 1 - b o] } o



1/2 n -1 ® 1/2

= (2/7) I v (var (s ) )
1 r
1/2 n (n-r)

= (2/7(1-p)") ol

1 (ap)l/?
when p =0, o =1 we get,
- ' s (n-r)'2
E( R, ) =/ n)w = = 2.15)

which is equivalent to the result given by Solari and Anis (4)

3. A new proof of Spitzer’s lemma

We now give a new proof to the formula
n

Consider the probability,

h,=Pr(S; <0,S, <C0,...,51 0,8, > 0), 3.1)
and let q, be defined as,
Qn = Pr (S, = My)

=Pr(S, > S;,i=0,1,...,n...1) 3.2)

By taking the variables X, ..., X, in reverse order the partial sums of the
new variables X', ..., X', willbe S", = S_—S,_, and the correspondence X;

- —--=3 X’; maps any event defined by S; into a similar event defined by S*,
of equal probability. Thus,

=Pr(S; >0,...... » S, > 0) (3.3)
we state now following lemmas :
Lemma (1) : The generating function of h, is given by.

h () = 1—(1—@)112 (See Feller [3] p. 396)
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Lemma (2) : The generating function of q, is given by
q (8 = 1/(1—e)12 (Feller [3] p. 379, theorem 4)
Lemma (3) : Pr (S, = M,) = q, q,forallr —n.
(Feller (3) p. 398).
corolary (1) : from lemma (1) and (2), it is deduced that :

Qn
h,= 2n—1

Lemma (4) : For any symmetric random variaple X,
E(X|)=EX/X "> 0).

Now, the expectation of the maximum M, may be written in terms of the
conditional expectations as follows :

E(SP/ S, =M ) Pr(Sr =M

n n’

E(M )=

Mn)' 9% 95-r

MO M

B( Sr/ S.
according to lemma (3)

But, E(S,/S; = M) = E(S;/S: > S;r3>%£i,i=0,1,...,n)"
=E(S,/S; > S;,i=0,1, ...... , T...1),

for reason of independence
= E (S/S; = M)

Thus, 0
E(M, )= 3 B(S,/5,. = M) 4, 9y » (3.4)

we shall now prove the following identity

r
B(S,/Sp = Mp) dp = I (W) qry B | Sy 0

Proof. The proof is given using induction
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The identity (3.5) is ture for r = 1 in virtue of lemma (4).
Assume the identity for allj < r.

E (S./S; = M,) g, = E (S./S; > S,,i=0,1, ..., T...1).

Pr(S;>0,i=1.2,...... ,T) (3.6)
We take the variables Xj,j =1, ...... , T in reverse order, so we define the
disjoint events
8y = {5 > 0}
B; =181 < 0,8,<0,....,8 1 < 0,8 > 0),1=223, ...s T 3.7

In addition, we denote by C;theevent (S; > 0,i=1,..,j),j=1,...,r
It is thus evident that :

Bjn C, are disjoint events, and,

But,

g .Ng -.-{si < OpaeryB8_3< 048Y 2 05 S > Opeenyy> o}

J
= {S. < O,..--’s'_ < o’s,.> o.s >o,...’s > o }
1 3=1 J r~J +

= 8;N G5 5 ‘the intersection of independent events

Thus, equation (3.6) can be rewritten in the form :
B(Sy, /5,%.)q;, = B(S./ U N 840, 52x( U N Ben ;)

4
= B(s/NB;

i=1 J X“J)Pr( N BJ 1"’0

since Bg are diggoinmt,
+

- i [E(s_ E(53/ B;)) Pr( B; ). Bri{c, ;)

_ r™~1
= i E(Sj/si> 0, 1=1y0e09d) q‘j h:n.o'

b o
-+ ]8- t(SJ/SJ V4 0,81 < O, isl...,a'—l)hé q!‘-,)'
(308)
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For reason of symmetry, E (S;/Sy ©> 0, S; <0,i=1, ..., j—1) h; is similarly
obtinable as E (5;/S; > 0,1 =1, ..., j) q;, since the correspending integrals are
of the same type which means that, if this latter is assumed as given by (3.5)
for all j < r then the former must be equal to

ZJ
1

-1
- (2%) Bk E ' 8l (3.9)

Thus, applying (3.5) and (3.9) to (3.8) for all j < r, and making use of
corrolary (1), we get

E(S./3, = M) q;

=i 4 -1 -1
- Jig £ () (2(r-x)-1} Aoy zeg * B 15|
- F £ () 2(3-k)-1 x Yoy B

£i ia {203 ) Qyx Yyay B 15|

+ B(8 /8.5 0, 3,< 0y 15 PP 3—1).br.

Inverting the summation signs in the first and second double sums
above, it is found that most of the terms cancel, leaving :

E(sr/srs r‘tr)qr - E(sr/sr> ¢,s;< 0, i=l,..0y=1) h

-5t -1 —e1) a0 [2(ex)-1)
= I 07 g Bl =(-1) z (¢ [ ) .

Ik E lsl:l

Since q, = 1, we can add and subtract the term (2r)—! E | S;| to the
first and second sums respectively, which yields the required identity (3.5)

Thus, the inductive proof is complete.
going back to equation (3.4) and applying the inductive formula (3.5), we get :

; (2x)™F Ak Ip-r © | Syl

EM) =
- k=1

= M3
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n n=-k
= ro1 (2k) E lskl iio ay qn-k-:l.

n
- kil (2¢) 1 5 |Sk, » 1in virtue of lesma(3).
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