SCATTER DIAGRAMS FOR DATA ANALYSIS USING A
CHARACTERIZATION PROPERTY

MAGDY KHEDR

SUMMARY

Given a sample from any of a variety of theoretical dis—
tributions, the problem of choosing one for the analysis of the
given data has long been a major concern to both the theore—

tical and the applied statistician. The major topic of this

paper addresses this topic as applied to classes of distributions.
More specifically, given the data, we wish to classify the parent

distribution as either normal-tailed, long-tailed, or skewed in
a particular direction.

The basis for the classification is a characterization of
the normal distribution. Essentially, the indepdence of the

sample means and variance is under consideration here. Graphi-

A two-dimensional statistics, (R1 ,R2) , 18 developed from

a second order, linear regression model. Empirical power in-

vestigations, using the normal, chi-square with two degrees of

freedom, and Cauchy distributions as representatives of their

respective classes, exhibit the strength of this statistic.

1. REVIEW OF LITERATURE

In the last century, Gauss® theory of errors was extensi-

vely used to justify analysis using the normal distriburtion.

Problems began to appear when Karl Pearson, working in biome-

trices, and Edgeworth, in economics, found the norma |

Inadequate in describing their data.
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Pearson to a study of sample moments. Contributions of

Pearson and others are reviewed below:

a) Standardized Third and Fourth Moment Tests
—_— e e routth Moment lests

The basic idea behind testing with sample moments is
quite simple. Shape parameters, 8, and B,, which are func-
tions involving the third and fourth population moments, measure
the skewness and the kurtosis of the distribution. Graphic
methodks. usually using /By and B, can be used to discriminate
between different distributions. Examples of such methods can
be found in Ord (1967), for discrete distributions, and Egon

Pearson and Please (1975), for continuous.

Estimators, b; and b,, of the above parameters are used
to determine distribution given only sample information.
D'Agostino and Egon Pearson (1973) purpose a test by consider-
Ing transformations of /bl and b2. Under the hypothesis of
normalitry, these transformations are each Chi-square with one
degree of freedom. The test is completed by looking up a
Chi-square distribution with two degrees of freedom. However,
since ,/b1 and b2 are not independent the test is only approxi-
mate. Bowman and Shenton (1975) modify the above work with
fwo new transformations which Monte Carlo studies indicate are
very nearly independent. Again, the result is a test based

on the Chi-square distribution with two degrees of freedom.

b) Ratiosof Spread Estimate and the shapiro-Wilk Statistic

Another basic approach to testing for normality considers
ratios of spread estimates. The first of these was suggested
by Geary (1935). His statistic was the ratio of the mean devia-
tion to the standard deviation in a sample. Power studies con-
ducted by D'Agostino and Rosman (1974) indicate the usefulness
of this ratio as a quick test for normality. Geary's statistic

was simplified by David, Hartley and Pearson (1954) to the

ratio of the range to the standard deviation.
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Central in any discussion concerning ratio statistics for
determining normality is the Shapiro-Wilk (1965) statistic W.
subsequent power studies have established W as an effective
statistic; however, for sample of size over 20, W can only be
found by approximation. To remedy this problem, several

modifications have been suggested by Shapiro and Francia
(1972), Weisberg and Bingham (1975), Filliben (1975).

c) Distance Criteria, the Kolmogorov-Smirnov Stat_ist}_c_

Criteria concerning the distance between the expected

and the actual observations have long been used to test dis-
tributional fit. An example would be the Chi-square test,
This test possesses two major difficulties, first, the intervals

are arbitrary and second, it is incovenient for small sample

s1zes.

Other tests based on such criteria usually employ the
empirical distribution, EDF for brevity. Anderson and Darling

(1954) consider the weighted average of the squared distances

tion, {Fn(x)—Fo(x}}z. Here, the null distribution is of any

form, but must be fully specified,

Better known is the Kolomogorov-Smirnov statistic, D.

Kuiper, see Stephens (1974) suggested modifying D by V. A
further modification was suggested by Finkelstein and Schafer

(1971) which proves more powerful.

d)  Tests Based on Characterizations, the McDonald-Katti Test
—_— o eal’ons, the McbDonald S SR

Construction of tests based on characterization of the
hypothesized distribution present a perplexing dilemma to sta-
isticians. Since characterizations are usually based on some
form of independence, testing the characterization poses as

large a problem as testing for the distribution itself.
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Lock (1976) developed a test based on a characterization
of the gamma distribution. A study rather similar to Locke's

was undertaken by McDonald and Katti (1974) for the normal
distribution. They began by considering the well known chara-
cterization of the normal distribution of the independence of
sample mean and variance. From this, it has been shown that

the sum and the absolute difference of two independent obser-

vations also characterizes the normal.

McDonald and Katti found simulated distributions for
these tests. As such, only approximate percentage points can

be found. An empirical power study shows that for different

alternative distributions ''best' of the proposed tests changes.
The results of this study were favorable when comparing the

three tests against Kolmogorov-Smirnov, the .i'bl, and b, tests.
However, the Shapiro-Wilk statistic proved at least as good in

all but one alternative, the binomial distribution with n=4 and
p=0.5,

2., PRELIMINARY INVESTIGATION.!.

Preliminary studies began with several questions concern-
ing the McDonald-Katti paper. Do other long-tailed, symmetric
distributions have graphs similar to the Cauchy? Also, can
distributions with long-tails, but not quite as long as the
Cauchy's, be distinguished from'the normal? Finally, can a
testing procedure be formed to distinguish between all of these

simultaneously, using the graphs as the basis?

Answerihg such questions is the focus of this paer. To
resolve the first two, an empirical examination of Rogers and
Tukey's class should prove satisfactory. As for the last,
attention is restricted to the normal, Chi-square and Cauchy
distributions. Here, if the test statistic indicates independence
of sample mean and variance, the data is classifed as normal-

tailed. Otherwise, that is, if the test statistic fails to support
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such independence, the population is classified either skewed or

long~tailed according to test results,

a ) T'he Tukey Ratio System of Distributions

Rogers and Tukey (1972) describe a class of long-tailed,
symmetric distributions. This class consists of ratios, X=W/V
where W follows the standard normal distribution, V is 1ndepe-
ndent of W and the forms chosen for V generate the various dis-
tributions of X. Additional distributions are obtained through
mixing as explained below. A few members have spectal names,

while others are referred to by their symbols.

The members of the class of distributions of X under con-

sideration are given in Table 1.

In view of the complexity of the construction of this family,
family, it was necessary to verify that the distributions we
had obtained through the interpretations were the same as
their. Although this was virtually unnecessary for some of the
distributions, but it may be Imperative for others, for example
the Gucumatz. A list of selected percentage points for standariz—
ed versions have been provided by Rogers and Tukey. In view
of the unknown parameters, Tykey's percentile T is related in
this paper to X through T = a + bX. S50, we estimate a and b

using two percentile points. Additional details are as follows:

problem. Distributions for the probability mixtures are found
by merely multiplying the component distributions by their
respective probabilities, for example F'S/A(t)zO.QS E_frhe0.75 FG(I).
The Gucumatz distribution is given by

PIFC(T) if te-1

Pch{ —l+P2(FG(l]-FG(—1))+P1(FC(I)+FC(1)J} Lf 1]
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Table 1
A List of Tukey Ratio System of Distributions

Symbol Name Explanation 1
ke Cauchy | V is standard normal
G Standard Normal ' V=1 with problability 1
S Slash V is uniform on (0,1)
S/4 S/4 - | A probability mixture of 25% S and

75% G, corresponding to V=1 with

~ probability 0.75 and V uniform on |
(0,1) with probability 0.25.

Q Q V is distributed triangularly on
(0,1) with vanishing density at O.

QS QS ‘ A 50% - 50% mixture of Q and 5,
corresponding to V trapezoidally
(altitude 0.5 at 0, 1.5 at 1)
distributed on (0,1).

35/4 35/4 A probability mixture where V=1
with probability 0.75 and V
uniform on (0, 1/3) with

propability 0.25.

10G/4 10G/4 V=1 with probability 0.75 and
V=10 with probability 9.25.

L Logistic This distribution is approximated

by a member

GUCU Gucumatz [t is constructed by taking an
appropriate function (about 69%)
of the standard normal between-1

and +1 and another appropriate

fraction (about 105%) of that part

of the Cauchy outside these limits.
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where P1 and P2 are subject to the restriant that F

U
gucy must
be a statistical distribution function.

After Fx has been found, its upper 40t11 — 2orh
tiles denoted by X

percen-—
Y and X .2 are computed. These are put into
the linear relationship with the corresponding percentiles
by Rogers and Tukey denoted by t

listed
/ and t 5 Ylelding,

X‘4=a+bt_4 and X =a+bt-

F'rom these two equations,

Now, setting T = a + bX,
Now, given the Folt) = by ({t-a)/b},

are easily checked.

procedure more clea rly.

FS 1s found using the standard statistical techniques as:
2
(exp(-x“/2)-1)/x + F-(x) for x £ 0
Folx)=
45 fOL“ X = 0

Using simple iterative techniques, x . and x o are found ro be

.512 and 1.946 respectively. Hence, we have

.512 = a+b (.256) and 1.946 = a+b (.973),

giving us a=0 and b=2,

To check the remaining percentiles,
use

W e

Fo(t) = [exp{-(t/2)2 /2 “N/(/2)+F(1/2 )], 140

_Note that, for the GUCU distribution, P, and P

1 are found by
using the equations

FGUCU“’[') = .6 and F

o1

A comparison of percentage points is given in Table 9 [f a

— @

difference occurs, Tukey's value is listed below ir

N parentheses,
This table also provides the reader with a fee)

fcr the various
dlsttlbutlons
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Table 2

Percentage Points for the Distributions

10% | 5% 2% 19

Distribution | 40% 20% 0.1%
G 253 | .842| 1.28 1.64 2.05| 2.3 3.09
L 254 | .869| 1.38 1.85 2.4 2.88 | 4.33
' (1.84)
0 254 | L8811 1.45 2.10 2.33| 4.71 | 14.9
r _ ' (4.74)
10G/4 255 | .927 | 2.14 6.52 | 10.9 | 13.6 | 20.6
(20.8)
S/4 254 | .867 | 1.40 2.04 4.36| 8.72 | 87
(8.73)
QS 255 | .920| 1.67 2.91 6.48| 12.3 | 117
S 256 | .9731 1.99 3.99 9.97| 19.9 199
2.00)
GUCU . 256 021 2.26 4 .62 11.6 | 23.3 233
(4.61) (23.7) | (232)
35/4 255 | .910] 1.75 4 .62 11.8| 23.7 237
(5.20) (23.2)
C 259 | 1.098| 2.04 | 12.7 12.7| 25.4 254

The differences are extremely minore,

additional studies involving Monte

e e —— ———— el —

so we may proceed to tne

Carlo methods.

generation of random samples now poses little problem.

Wherever the X-distribution is obtained through simple forms for

W and V, we first generate W and V, and then divide.

For

others, such as L and GUCU, generating a uniform number Y

and obtaining X through FX

1

(Y) proved easier.
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b) Basis of Sample Classification

Now, given a sample, we need a method to determine from
which of the class members it has been drawn. Focussing on
the normal as a parent distribution, a well known characreriza-
tion is the independence of the sample mean and variance.
DcDonald and Katti (1974) start their work by investigating this
fact, For a sample X11 Xoseee, X of even size n, their prelimi-
nary scatter diagrams utilize the independence of the sum and

the absolute difference between X and X for 1=1,3,...,n-1.

The rational for this stems from the fact that a sample,
no matter what size, has only one mean and one variance.
Hence, 1f we plot X against 82, we would have only one point.
With this sole point, the graph cannot shed much light on the
independence of these two variables. Subsequently, an overall

sample of size n should be split into m subsamples, giving us

m 1nstead of just one point. Of course m should be as large
as possible forcing the size of the subsamples to be as small
as possible. At least two points are needed to find 52; there-

fore, the smallest size for the subsamples is two. TFor subsam-

ples of size two, using X, and Xi+l'

2 2

X = (xi+xi+l)/2 and S = (x.-x, )7/2
which are independent if and only if X and X, . are tndepend-
ent identically distributed normal observations. Hence. the
variables

Yi = X +* X4 and z, = ,Ki"xnl" (1)

.. . - i ,
which are one-to-one function of X and &}i, are also independent.

Since the graph is designed to distinguish distribution,
regardless of location or scale parameters, attention must be

given to the affect on y; and Z made by a linear transfcrma-

tion of X. Let x.' = ¢ + dx. and x ' N oA T, | Define
1 1 1 +1 1+
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and z.' similar to (1) by yi' = X+ X and

4

yi 1

By an © Ixi'—xi'+1| . Then, y.,' = 2c + dyi and z,' = dlzil.

In view of this, the origin of the scatter diagrarﬁ is
taken to be (my,mz) where m,, and m_ are respectively the
sample medians of the set of y's and z's. The scale of the
graph is set so that the difference between the largest and the
smallest z 1is fixed as so many units and the same about the
scale on y. With this rule, the graphs focus on trends without

regard to location and scale.

C) Preliminary Empirical Results

Using computer techniques, ten random samples, each with

n=40, were generated from the distributions mentioned in Section

(a). Each sample was then split into twenty pairs using conse-
cutive points. From each set of pairs, a graph was made of Yy,
the pair sums, versus z the absolute pair differences. Thus,

we had ten graphs from each distribution. l

\

To set up an order of presentation, we arranged the dis-
tributions in the increasing order of their 1% points for the

standardized version. The order came out = G, L, Q, 10 G/4,
S/4, QS, S, GUCU, 3 S/4, C.

For purposes of comparison, three graphs were chosen
from each distribution. One considered '"typical', one most .like
the proceding distribution and one most like the next. To
determine which of the ten graphs would be selected for these,
a point system based on empirical criteria was employed. Basica-
11y, these criteria dealt with outliers, missing points, and the
spread of high and low points. For each criterion, a point
system awarded -2, -1, O, 1, or 2 points to a graph depending
on the number of graphs from the distribution exﬁibited said

criterion.
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For the purposes of presentation, only the typical graphs
are supplied as Graphs 1-10. The straight lines are y=my and
z=m_, Circled points depict repeated values, and ‘the number

of repetitions is given. Several observations are rather striking.

1} The normal and logistic both lack tails (extreme points).
See Graphs 1 and 2.

2) Tails definitely begin to appear in Graph 3 and are

prominent in Graphs 5-10.

3) Domination by one tail begins in Graph 4 and is definite
in Graphs 5-10.

These observations are made to show trends In the graphs going

from the normal-tailed to the long-tailed distributions.

3. A STATISTIC TO TEST NORMAL-VS-CAUCHY-VS~CHI-
SQUARES

The graphs presented in the last section were provided to
give a feel for how the relationship between the variable y and
z changes for the various distributions. A quick test can now

be performed. First, given a sample xl,x2,. X of size n,

population, split the sample into (n/2) consecutive pairs,

(xi’xi+l)’ 1'=1,,'3,....,n:-1 .  Find (yi,zi) using (1) in the last
section part (b) and plot the (n/2)y - z pairs. The final

best may be based on some point system or on intuitive under—
standing of the graphs. The suggestion would be that, if one

'S Inferested in such a test, many graphs should be made from

samples from known distributions to gain insight in their intrin-
sic differences.
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Being a quick test, there are obvious difficulties which

this procedure. However, there are also notable strengths.

First, the graphs do show obvious trends. Second, the statis-

the y-z graph by constructing these graphs for distributions of

particular interest.

So, for this large class, there is a general eye-ball
scheme. Restricting the attention to only three alternative,
normat-tailed, long-tailed, or skewed to the right, we have more
organiied study which shows much power. This indicates that

the quick test can have mcuh value.

The test proposed in this paper not only distinguishes
between normality and non-normality, but also indicates whether
a4 non-normal distribution is either long-tailed or skewed. Thus,

we are really providing for a test of three hypotheses:

Hl: the data is distributed normally

H2: the data is distributed as a chi-square with 2 degrees

of freedom

H3: the data is distributed as Cauchy.

For this 3-way test, the suggestion is to consider a second order,

linear regression model:
Z =a+BY +y Y2 + ¢ (2)

If Y and Z are independent, then the regression coefficients g
and are both equal to zero. An F-like ratio, that is, dividing
the regression sum of squares due to the individual coefficients
by the error sum of squares, is a natural statistic for testing
that both coefficients are equal to zero. Since the basic assump-
tions of normal regression analysis are not met, our ratios cannot

be compared to the percentage points of F-distribution. In this
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Graph 1: Plot of Y vs Z for the Normal Distribution

Graph 2: Plot ot Y ve 7 for the Logistic Distrinuticn
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section, an empirical study provides regions of acceptance for

the various hypothesis yielding power of roughly 80%.

a) Procedure for the 3-Way Test

Given a sample XqsXopseoe s X of size n, we would like to

find a two dimensional vector test statistic (Rl’RZ) . The basic
idea is to rewrite equation (2) with the second degree orthogonal
polynomial

z = a + b dl(y) + C éz(y)
where

él(y) = y+d , and éz(y) = y2+e1y + e,

are the orthogonal polynomials and a, b, and c¢ are found using

the least squares criterion.

A fundamental alternation from the quick test is that the
(y,z) pairs are now found using all combinations of data points,

not merely the consecutive pairs. This is done to extract maximal

information from the sample. For this reason, equation (1) are

changed to

Yij = X§ + X and Zij = Ixi-—le (3)

where 1 < 1 < j <n.

To find the constants a,b,c,d, €y and €, requires summa-
tions overall the (2) possible (y,z) combinations. Extensive
simplification of thse sums can be found when the data is listed
in descending order, say x(l),x(z),...,x(n). A list of simplifi-

cations needed to find (RI’RZ) as given below:

a ) LY; = (n-1) EX(4)
b) ¥ yij2 = (n-2) g x(i)z + (£ x(i))z
C) zyij3 = (n-4) zx(i)S + (Zx(i)z) (Zx(i))
4 3 2.2
d) LY = (n-8) X5y o+ (Exgy (Ex(i) + 3 (Ex(i) )
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e) zzij = £ (n-2i+1) X (1)
2 2 2
f) zzij = n }:x(i) ~ (Ex(i))
2 . 3
h) Lz Vi © £ (n=-2i+1) X5y * ?(jﬂ X (1) X(j) (X(i)*x(j))'

Now, the steps in finding the test statistic (Rl’RZ) are:

1) Take a sample of size n and list its members 1n

decending order.

2) Find d, e; and e, using the properties of orthogonal

polynomials, resulting with

d = - ty/nc,, e =1 (Eyz)(zy)/ncz— E_y3)/(2y2+d2y}

().

2
and e, = d e, -Ly /m:2, where nc., 5

3) Find a,b, and ¢ using ordinary least squares.

(Lzy+d £z) /(L y2+d fy), and

[

a == z/ncz, b

c =(£zy2+elzzy + e, Zz)/(zy[‘-relz y3 + e,k yz).

4) Compute the sum of squares due to the coefficients

and error through the use of the formulae

55, = a iz, SS, = bltzy + diz),

b
SSC = ¢ z zy2 + ey LZYy + e, Lz, and
GS =322—(SS + SS, + SS ).
e a b e

'5) The test statistic (R,,R,} is found by

R, = a(b) (SS,,) / SS. and R, = & (c) (SS_)/SS,,

where A(w) is defined by

-1 if W O

1 if w s O
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The final decision as to which of the three hypotheses to choose

is based on empirical, Monte Carlo results presented in the coming

section.

b) Invariance of (Rq,Rj5)

One last consideration must be noted. To deal with the
composite hypothesis of normality with unspecified mean and
variance, our statistic should be linearly invariant. To check

if it is so, consider the linear transformation of the original

data
xi.j = m()ci + t/2), with m # 0. Now,let
Yij = m(yij + t) and 2y = |m | 23§ where
Yi and z;; are defined in equation (3).

Looking at Ry, the ratio of the sums squares, SSb/SSe, is
known to be linearly invariant due to its similarity to an F
statistic. Therefore, it suffices to consider 4 (b'), where b' 1is

b's equivalent when working with the transformed data X'.
Throughout the discussion, let the symbol’ indicates the equiva-

lent constant or variable when working with the transformed data.

It is easily seen that d' = m(d-t). Now writing

b = zz(y+d)/ y (y+d), we see that

H

b'= |m| m I z(y+d)/m° 3z (y+t)(y+d) = |m| b/m,

since I(y+d) = O

Hence,
- Alb) if m <O
alb') =
A(b) if m > O.
S0 R, 1s only invariant up to its sign. Such dependence only

causes problems with skewed distributions. Hnece the skewed
alternative must indicate the direction of the taill. Here, 1t

is assumed that the tail was to the right.
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Turning to R,, again it suffices to consider only a(c').

After a little algebra, it is seen that
g1'=nﬁe1 - 2t) and e’ = m? (ep - elt + t4).
Now, writing

cC =z z(y2+ely+ez) / I y2 (y2+e 1y+e2), we see that

c'= {m] m> zz(y2+e1y+ez) / m® > (y2+2ty+t2)(y2+e1y+e2)
= |m| c/mz,
Since }:(y2+ely+e2) = Ey(‘y2+e‘1y+ez) = 0. Hence,
a(c') = aA(c) and R2 is found to be linearly invariant.

c) Empirical Results Using (R,,R,)

To determine the various acceptance regions, a 500 samples
of size n=20 were generated from each of the parent distributions
normal, chi-square with two degrees of freedom, and Cauchy.

'For each distribution, the 500 (rl.rz) pairs were found and
graphed. Graphs 11-13 are the overall graphs for the three
distributions. To indicate the number of repeated points at a
position, an intricate system was employed. A point which re-
peated 10-35 times was indicated by the letters A-Z with A
indicating 10, Bll, and so on up to Z indicating 35 repetitions.

Points repeating 36 to 135 times were represented by an asterisk

and those repeating more than 135 times by "+". Since "*'" and

+"' do not specify the exact number of points, the horizontal

row sums are provided in parentheses in the right margin for
partial guidance.

The (R,,R,) space was divided into three regions so as to
get a power of approximately 80% for each of the three alterna-
tives. To draw these regions, graphs 11, 12, and 13 were
redrawn with a wide variety of magnifications of different

regions. Graph 14 gives the final acceptance regions for the
three alternatives.
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Graph 13: R1 Vs R2 for the Couchy Distribution
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Next, 10,000 new samples with n=20 were generated from
each parent distribution and classified according to graph 1A4.

Table 3 records the results of this power study.

In this table, the strenght of the test statistic is clearly
exhibited. For samples with n=20, it indicates that roughly 83%
of those samples taken from any normal distribution will be cla-
<sified as normal, 88% those taken from a Chi-square with 2
degrees of freedom will be correctly classified, and the propor-
tion of correct classifications for samples from the Cauchy distri-
but{on is roughly 78%. Hence, (Rl'RZ)’ and therefore its basis

(y,z), is shown to be an effective discriminator of distribution.

Table 3

Monte Carlo Power Study

Distribution
Normal Chi-5quare

9 z 9o © Normal 0.8344 0.0753 0.0875
® 3 o .
A ® 5 Chi-Square 0.0752 0.8869 0.1237

E ” E" Cauchy 0.0904 0.0378 0.7888

{'D 0

| -

4. CONCLUSION

Given a sample from any of a variety of the theoretical
distributions, the problem of choosing one for the analysis of the

given data has long been a major concern to both the theoretical

and applied statisticians.

A two-dimensional statistic, (Rl,Rz) is developed from a
second order, linear regression model to classify the parent dis-
tribution. Empirical power show that using the normal, Chi-
square with two degrees of freedom, and Cauchy  distributions as

representatives of their respective classes, exhibit the strength
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of this statistic. This statistic is shown to be =nr effective

discriminator of distribution.
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