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ABSTRACT

The estimator of the reliability function of an exponenti-
al lifetime distribution truncated from above at a known point
. 3 . -
has been considered by Holla[ ]. In this paper we derive a

minimum variance unbiased estimator (M.,V.U.E.) if the trunca-

tion point is unknown.

1. INTRODUCTION

In most studies of systems reliability, the failure dis-
tributions of these systems aré considered such that the life-
times of these systems take values from zero to infinity. In
many applications, we may note that these lifetimes have limits
which are neither zero nor infinity. So, it would be more
realistic in these applications if these lifetimes assumed not
to be less or greater than a given age. Hence, the idea of
using truncated exponential distribution in describing the

system lifetimes arised. RAIN[l] presented a procedure by
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which a uniformaly most péwerful tests as well as an optimum
exact confidence imits can be obtained for the failure-rate
in an exponential distribution truncated from above (i.e. the

system lifetime does not exceed a given point of time).

In a paper presented by Epestein and sobel.[2] the system'
lifetime was supposed to be greater than an unknown point of
time. The reliability estimation of a system whose lifetime
has an above truncated exponential distribution, was studied
by Holla[al. The point of truncation was known. In our study

this point is assumed to be unknown.

Consider n components whose lifetimes follow an above

truncated exponential distribution given by

f(v) = I 0o < v < A (1.1)

where A and A are unknown . The reliability function for

such a component is given by

«

A A e"Av '
R(t) = J" . dv = 1-F(t) o<t <A (1.2)
t ~AA : '
l-e
where
-t
. 1l - e
F(t) =
-AA
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15 the distribution function of (1l.1l).

Our interest is to get a minimum variance unbiased estima-
tors (M.V.U.E.) for each of f(v) and F(t) defined in (1.1) and
(1.2) respectively. The lifetimes observations of the tested
lcomponents can be obtained in two different ways of sampling,
namely Type I and Type II sampling. In Type I sampling, the
lifetimes of the n tested components are observed. These
components; may be tested sequentially (i.e. test one component
at a time) or simultaneously (i.e. test all components together).
In Type II sampling, only the observation of the lifetimes of
the first r < n components are available. In section 2, our
estimators will be considered when using sampling of Type I.

In section 3, these estimators will be studied when sampling

of Type Il is used.

2. THE CASE OF TYPE I SAMPLING

1
nts tested independently. So the likelihood function of these

Let X, x2,... xn be lifetimes observations of n compone-

observations is given by

n
-2 I X
n = 5
LOX ) Xy eeegX ) = Ayt i=1 (2.1)
B 1-e-AA
Let X be the largest value of the above given observa-

(n)

tions. Denote by V the set of observations after choosing x(n)
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namely V =(V;, V,p «ce vn-l)' It can be easily seen that the

conditional density function of v given X(n) is

f(v, /X, ) = s 0o < v, <X (2.2)
i (m) -1 X i (n)
l-e (n) :
l=(0,l,-..,n-l)
n-1
From (2.2), it follows immediatly that X and T = L v, are
(n) i=] 1

sufficient and complete statistics for A and A respectively

(see Smith(“) and Tukey(s)). According to BAIN(l), we may

get the conditional density function of T given X(n) as
A A k°
1 -1 =AT n-1 -
n-2! 1l-e (n) k=o k n
(2.3)
where
k X < T < k k = e oo e 19
oX(n) (k_+ 1) X(oy» Koo oy 1, n-2)

From (2.2) and (2.3), the conditional joint density function

of v and t is

k(v, T/X, )= £(v/X, ). g(T-v / X, )

(n) (n) (n)
1 A n-1 -AT ko k n=2
= ( 7 ) e L (-1) ( Y(T-v-k X )
n-3! l-e "“(n) k=0 k . (n)

(2.u)

K



- 187 -

Since kox(n) + v < T <(k°+l) X(n) + v, k°= (o,1,... n=3)

Using (2.4), the conditional density function of T given X( )
n
can be rewritten in the following form

™~

k .
ISGDE (M ek x "

ko X(n) < T <(ko+l) X

(n)

‘rom (2.4) and (2.5), the conditional density function of v

given T and X(n) is

k(v, T/X(n))
€ “ p
-l(V/T, A(n))’

g(T/X(n))
[ kO k,n-2 n-3
L (-1)°¢( Y(T-v=k X(n))
k=o - k R - .
{(n-2) =sI(k )o<v<T-k X
k o] C (
°C-1%™ y(rex x )P
_{ k=o k (n
Ko-1 ,
I DM (Tavek X))
(n-2)E22 =1(k )
k (o]
° (-0XM y(r-x x H"-?
L k=o k (n) T—(ko)x(n)<V<X(“
I(-l) = I(n-3) s 0 k = o’l..oo’ n—3 (2.6)

(o]
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Theorem (1):

The statistic -
n 1

unbiased estimator for the probability density function f(v)

(v/T. X ) is a minimum variance
1 (n)

defined in (1.1).

Proof:
We have
E f (v/T,X ))= S f (X Yg(T/X YE (v/T,X )dTd
crox, o T Tk o e Ky B T T T Gy T T
(n) (n)
a (207)
where N
. -A X(n) n-1 -2 X(q)
£(X ) = nt_ [ E:ET___. ] .1;37____
n-11 1-e 1-a
le€Co,
A
E(T.X )(fl(v/T.x(n))]- [x =ofo(x(n))[! g(r(x(n))fl(v/r.x(“))drl
(n) (n) T
.dx
(n)
Using (2.5) & (2.6)
A" 2+ B )
-Av 1 2
J g(T/X ) £ (v/T,X ) dT = e
(n)" "1 *"(n) -\ X -
T n n (1-e (n))“ 1
where
n-3-3j -
n-3 ko Kk .peg D-b X A kg X(n)
B = I 1% (-nf ("% 1 ) ., & :
ko-o k=o k i=o n-3-41 AJ
-3- n-3-4 ~A X(n)
-{(ko—k)n 3 - (ko-k+l)n 3 e (n }
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and
k -2 k X
n-3 -] - o%(n) -2 X
B = L (DX (ThH e (1-e ()
koio k=o k Xn-3
It may be shown that
Bl = 0
-(n=-3) A X -
B, = A (1-e  (n)yP~?
and hence,
E (£ (v/ 3= e A (x, ) o M)
v/T,X = e =0 £ (X
(T.x(n)) 1 (n) x(_n) o (n) (l-;A X(n)
(2.8)

Substituting for fojxo) from (2.7) and performing the integrae

tion in (2.8) we obtain

-Av
n A e
E(T'x(n))[fl(v/T.x(n))] = — 1_;XA 0 < v < A

from which it follows that B-l fl(v/T, X ) is an unbiased

-V n (n)
estimator of f(v) = A e . Since (T, X( )) is sufficient for
1-¢ n

(A,A) it follows by the Blackwell-Rao theorem that this estimat

is M.V,U.E.

Theorem (2):

Let v denotes a random variable having the probability

density function f1 defined in (2.6), For any specified t



~~360 -

define the randoa variadble Z as

~
o] for v > t
z = w(v)=Y
1 for v < t
L
r
then . .
-0tk x, O e x sk x, )7
k=o (n ° (n) (n)
=Z, (k)
120X (1o x )" o
ko k T (n)
KoX(n) <T<ko X(p)y*t
K
o k n=2 n- n-2
{ I (-1) ( Y{(T-%x X ) -(T-t-k X ) }
B £7/T.% ) k=o k (n) (n)
v *(n)’ " " ) ] =2,(k,)
OGN (T (rex X, ))"'2
" n kK X, +t<T<(k +1)X
o (n) o (n)
o S A 2 2
£® (-1)" (" kK +1)X. -k X =2 _(T-t-kx )""%)
oo Cr IO 1Ix =k X )17 5= (TmtmkX
Ko )
I (-1)% (*7ly (rox x, P2
k=o (n)
=20k -1)
(kO)X(n)<T<(kO)X(n)+t
v r 0, l,.e., N=3 (2.9)
o
2 (n=3) = 2 (n-3) = o0 & 2 {=1) =o
1 2 3
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?nd the statistic

n-1
n

Proof:

E,(2/T, X)) is M.V.U.E. for F(t)

We have

EV(Z/T,X(n))= Pr (v < t/T, x(n))

.
Tzk°x(“) E(V/TX A
{
= IO fl(V/T,x(n))dv
It fl(V/T,X(n))dV
T-(k )X 1)
L

which are readily verified to reduce to the results

Furthermore, following the method of proof given in

it may be shown that

k

<T<k X +t
[o]

oX(n) (n)

(n)

k +*t<T<(ko+l))(

o (n)

(k )X <T<(k )X +t
(o} (o]

(n) (n)

civen above.

theorem 2.1,

-At
n l-e
E T =
Ecr,x B3/ TeX(gy) Y
(n) n= 1-e
Hence P=1 £ (Z/T,X ) is an unbiased estimate
n v (n)

function F(t) and by the Blackwell-Rao theoren

of F(t).

of the distribution

it is a M.V,U.LE.

It further follows from this result and (1.2) that



1 -2 Eo(z/r, x 0)
n v (n)

is a M.V.U.E. of the reliability funection R(t).

3. THE CASE OF TYPE I1 SAMPLING

Suppose that on a test of n components whose lifetimes
follows the exponential distribution definmed in (1.1), the
first r failure times are X; £ X, £ ece £ X,. Then the joint
density of xl, x2. cee o Xr is

r
-A § X3 'Axr =AA n-r

n! A r i=1 e - e
f(x .x ’o'o.x ) = ( X ) e [ ]
-y ? =AA -AA
l 2 r n-r! , o 1 - e
(3.1)
o <X <X < ,,, < X. <A
r-1
From which it follows immediately that (X, i§1 X;) is a

, |
sufficient statistic for (A,A) [see also smithts] and Takey[“hq
i

1

Lemma:

Let yl = (r-l)xl » Y2 = (r-2)(x2-xl)..0. Oo.yr-1=(xr-l-xr_

Conditional upon xr = L the random variables Yy Yoseees

yr 2 are independent and each has the truncated exponential

1

distribution

-
A e d

-A X
l-0 r

f(y/x ) = o<y <X, (SJZ)
r
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' This lemma is easily proved by adopting proof of similar

lemma by Epstein and sobell2],

Setting
r-2
W= I
i=1 T3

it follows from Bain and wocks(l) (1964) that conditiomal wpon

Xps the density of W is

o =Aw Kk . -
£H/x ) = L : ™2 ¢ 1% (-1)¥ ("7 (u-k x )" 3
r-31 1-3* Xr k=o - k :

(3.3)

koxr : w i ‘(ko’l)xr! k°=°’1.-oo. r-3

Now, let T_ = W + Y and V = Y . Noting that W and T
r r=1

r-1 r-1

are independent and using (3.2) and (3.3) it follows that the

joint density of Tr and v given X, is,

AT k .
K(v,T /X ) = ke (2 )™ o T 5% () ("7 (T ek X))
r r -AX k=o k r r
r-31 l-¢'r

(3.u%)

vhere

kX ¢ v<T <(k ¢1)X ¢+ v , k 20,150004 =3
or r ° r o

Iateagrating out v we thus get tha coamditional density of Tr as



T

Lk 9 <A T
r~1l k - r-2

1 (2 7% e (& l)(Tr-k Xx) ‘e T
pe2t 1-st Xr k=o k r

k X < T <(k +1) X
o'r r o r

g(Tr/Xr)=

2 =X T,

1 A r-10 _ r-1 _ r-
(=) ko (71 T kX))

(k #1)X < T < (k +2) X
o r r o r

k = O,l.-oa’ r-3 (305)

It follows that the conditional density of v given T and Xn is

al
k -
x°(-1)k("2)(rr-v-k x )2
(r-2) Kio x az(ko)
o k, r-1 r-2
- - k
kgo( 1) ( . )(‘rr Xr)
o < v < Tr - koxr
k(Vv,T./Xn.)
£ (v/T X )= Pr.r.o-
g(Tr/xr)
ko-1
R (-l)k(r;2)(Tr-V-k x )73
(r-2) — =2(k -
X
r° (-1)*(”;1)(7 -k x_)F-2
k=0 = =
Tr-(ko)xr < v < Xr
.

ko= C,l,........, t‘-3

Z(r-3) = o & 2(-1) = o {3.6)
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Theorem (l;:

The statistic -1 fl(v/Tr'xr) is a minimum variance unbiased
n

¢stimator of the probabilty demsity function defined in (1.1).

roof:

N

This theorem can be proved similarly as theorem (1).

Theorem (2;:

Let v denotes a random variable with the probability

density function f (V/T A.) defined in (3.6). For any

r.

specified t define the random variable,

n
) for v > t
72 = *(v):ﬁ
1l for v < ¢t
then k d
o k, r-2 r-2 r-2
k§ (-1) ( K YO(T -k Xp) -(kgXp-k X.) ]
2 =1 (k )
k -1 _ l o
2°C-1% (" Ty(T -k x )T"2
k=0 k r r
koxr < Tr < koxr+t
k -
I°C-DX (7T [Tk X)) T 2= (Ta-t-k X )T 2]
. | E29 k =1.(k )
EV(Z/TP.Xr)- 2 o

ko
-1yk¢r-1 - r-2
kEo( DR (T -k X))

k X ¢t < T < (k +1) X
o'r r o r

k_ -1

4 k re2 r-2- = r-2
kEo (-1) «( x )[(k°¢1)xr-k xr) ('rr t-k xr) ]

k -2

£° (-1)% (T-1) (T_-k xF
k=o k r r =I4(k,)

(ko) xr < Tr < (ko)xr’t




where

and the statistic
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Il(r-2) = Iz(r-2) =0 & 13(-1) =o

k = O.l,.... !‘-3 (307)
(¢}

r-l p (z/T , X ) is M.V.U.E, for F(t).
n v r r

Proof:

See the proof of theorem (2).

Note: Putting r = n in (3-7) we get immediatly (2.9).

(1]

L2]

(3]

[u]

(5]
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