Multi-Class Intrusion Detection System using Deep Learning | ||||
Journal of Al-Azhar University Engineering Sector | ||||
Volume 18, Issue 69, October 2023, Page 869-883 PDF (847.93 K) | ||||
Document Type: Original Article | ||||
DOI: 10.21608/auej.2023.213003.1375 | ||||
![]() | ||||
Authors | ||||
Sara M. Mohamed ![]() | ||||
Systems & Computers Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt. | ||||
Abstract | ||||
Web applications are a critical means of accessing information in today's world. However, as the number of internet users continues to grow rapidly, cybersecurity has become a major concern. In this study, a deep learning-based approach to detect web attacks is proposed. Our system explores incoming requests, categorizing them as either normal or attacks, and further identifies the type of attack. The approach is evaluated on three different datasets (ECML-PKDD, HTTPPARAM, and CSIC-2012) and used four classification algorithms (Bi-LSTM, LSTM, RNN, and CNN). The Bi-LSTM algorithm achieves high accuracy with the ECML-PKDD and HTTPPARAM datasets (90.6% and 99.66%, respectively), while the CNN algorithm performs best with the CSIC-2012 dataset, achieving an accuracy of 99.28%. This research provides a valuable contribution to the field of web security and has practical applications for companies and website owners who need to protect their data from potential attacks, making it a powerful tool in the fight against cybercrime. تعد تطبيقات الويب وسيلة مهمة للوصول إلى المعلومات في عالم اليوم. ومع ذلك ، مع استمرار نمو عدد مستخدمي الإنترنت بسرعة ، أصبح الأمن السيبراني مصدر قلق كبير. في هذه الدراسة ، تم اقتراح نهج قائم على التعلم العميق للكشف عن هجمات الويب. يستكشف نظامنا الطلبات الواردة ويصنفها على أنها إما عادية أو هجمات ، كما يحدد نوع الهجوم. تم تقييم النهج على ثلاث مجموعات بيانات مختلفة (ECML-PKDD و HTTPPARAM و CSIC-2012) واستخدمت أربعة خوارزميات تصنيف (Bi-LSTM و LSTM و RNN و CNN). تحقق خوارزمية Bi-LSTM دقة عالية مع مجموعات بيانات ECML-PKDD و HTTPPARAM (90.6٪ و 99.66٪ على التوالي) ، بينما تعمل خوارزمية CNN بشكل أفضل مع مجموعة بيانات CSIC-2012 ، محققة دقة 99.28٪. يقدم هذا البحث مساهمة قيمة في مجال أمان الويب وله تطبيقات عملية للشركات ومالكي مواقع الويب الذين يحتاجون إلى حماية بياناتهم من الهجمات المحتملة ، مما يجعلها أداة قوية في مكافحة الجرائم الإلكترونية. | ||||
Keywords | ||||
Web Application attacks; Cyber Security; deep learning algorithms; multi-classification. هجمات تطبيقات الويب ، الأمن السيبراني ، خوارزميات التعلم العميق ، التصنيف المتعدد | ||||
Statistics Article View: 304 PDF Download: 545 |
||||