Aromatase Inhibitors Versus Cabergoline for the Prevention of Ovarian Hyperstimulation Syndrome: a Prospective, Randomized, Double-Blind Study

Walid M. Attaalla, Tarek Abd Elhamid

Departments of Obstetrics & Gynaecology, Histopathology, Faculty of Medicine, Tanta University, Egypt, Department, Tanta University, Egypt

ABSTRACT

Objective: To evaluate the effect of the aromatase inhibitor letrozole in the prevention of ovarian hyperstimulation syndrome (OHSS) in patients at risk during controlled ovarian hyperstimulation (COH).

Design: This is a prospective, randomized, double-blind study on women at risk of the development of OHSS during COH using gonadotropin-releasing hormone (GnRH) antagonist protocol.

Patients and Methods: This research was conducted at the Center of Assisted Reproduction, Om El-kora Hospital, Tanta, Egypt. Sixty patients, who were considered at risk of the development of OHSS during COH were enrolled in this study. Ovarian stimulation was performed using GnRH, whereas cabergoline (0.25 mg) given twice daily or letrozole (2.5 mg) twice daily from the day of oocyte retrieval for one week.

Results: In the cabergoline group, two cases (6.6%) developed mild OHSS and one case (3.3%) developed moderate OHSS versus 8 (26.6%) mild OHSS and 6 (20%) moderate OHSS in the letrozole group. On the other hand, there was no statistically significant difference in the number of cases that developed severe OHSS in both groups where only one case (3.3%) developed severe OHSS in the cabergoline group vs. two (6.6%) cases in the letrozole group.

Conclusion: Although letrozole administration during the luteal phase of ART cycles can reduce the high E2 level in hyper-responding patients, but it cannot prevent the development of early OHSS. On the contrary, Cabergoline can effectively prevent the development of early OHSS.

Submitted: 25 August 2016, Accepted: 1 February 2017.

Key Words: Aromatase Inhibitors, Cabergoline, OHSS

Corresponding Author: Walid Attaalla, February 2017, Vol. 7, No. 1., Tel.: 01223488672 E-mail: wma646@hotmail.com

ISSN: 2090-7265, February 2017, Vol. 7, No. 1

INTRODUCTION

Prevention of OHSS can be either primary or secondary prevention. Primary prevention means tailoring IVF treatment protocols according to the patient’s primary risk factors, while the secondary prevention means the methods used to prevent the progression to OHSS in patients already showed excessive response to ovarian stimulation. Individualizing IVF protocol includes modification of the starting dose of FSH, use of antagonist protocol instead of long agonist protocol, lowering the dose of hCG needed to trigger ovulation or using GnRHa for triggering ovulation in GnRH antagonist treated cycles. Secondary preventive measures include coasting, withholding hCG and cycle cancellation, cryopreservation of all embryos, intravenous administration of albumin or hydroxyethyl starch (HES) during or immediately after oocyte retrieval, use of cabergoline or the vasopressin V1a receptor antagonist, relcovaptan.

Cabergoline, a dopamine antagonist prevents the VEGF effect on vascular system, i.e. reducing VEGF receptor 2 expression/phosphorylation by a D2 receptor-mediated mechanism. Cochrane Review by Tang et al. showed that cabergoline is effective in significantly reducing the incidence of moderate but not severe OHSS without significant effect on clinical pregnancy or miscarriage rates. More recently, a systemic review by Leitao et al. showed that cabergoline is effective in preventing the occurrence of both moderate and severe OHSS again without affecting clinical pregnancy rate.

Though the role of elevated E2 in OHSS has not been confirmed, estradiol concentrations on the day of hCG administration seem to play a role in OHSS development and lowering E2 level helps to prevent OHSS. One way to decrease estradiol is aromatase
inhibitors and so this could be used to prevent OHSS when used in the early luteal phase by acting on the sustained corpora lutea.

Two randomized studies assessed the effect of letrozol administratui in the luteal phase of IVF cycles in oocyte donors and both of them confirmed that letrozole reduces the luteal E2 levels in stimulated cycles31, 32.

PATIENTS AND METHODS

This prospective, randomized study was carried out in the Center of Assisted Reproduction, Om El kora Hospital, Tanta, Egypt. From January 2014 to December 2014, a total of 60 patients, who were considered at risk of the development of OHSS during COH were recruited. Informed consents obtained from all patients.

This study approved by the Clinical Research Ethics Committee.

Inclusion criteria

PCO patients and patients with ultrasonic picture of PCO, who became at risk of developing OHSS during controlled ovarian hyperstimulation using antagonist protocol. OHSS defined by serum E2 level > 3000 pg/ml and/or the development of ≥ 20 follicles larger than 12 mm in diameter on the day of HCG.

We included only patients who agreed to cryopreserve all embryos to avoid late OHSS and to avoid the possibility of lower pregnancy rates secondary to letrozole mediated lowering of oestradiol levels.

Exclusion criteria

Patients, with E2 levels of 3000- 3500 pg/ml, who refused to cryopreserve all embryos. Since our patients were given GnRH agonist for final oocyte maturation that could lower the risk of OHSS itself, patients with E levels >3500 Pg/ml were excluded.

All patients with E2 levels between 3000- 3500 pg/ml, who agreed to cryopreserve all embryos, were given HCG 5000 IU for triggering ovulation thereafter randomized by lottery into two equal groups. Group I (30 patients) received cabergoline 0.25 mg twice daily. Group II (30 patients) received letrozole 2.5 mg twice daily from the day of oocyte retrieval and for one week. Randomization was done with both the physicians and the patients blinded.

After oocyte retrieval patients were instructed to report any of the following symptoms; lower abdominal discomfort, nausea, vomiting, diarrhea, bloating, abdominal distention, passing very small amounts of urine, swollen and tender leg or respiratory difficulty. Otherwise, ultrasound was performed for all patients one week after oocyte retrieval to measure ovarian size and for detection of ascitis.

IVF protocol:

All patients received antagonist stimulation protocol. All patients in each group received 150 IU of recombinant FSH, Gonal-F (Serono, Switzerland) daily for 4 days starting from the second day of menstruation. The dose of gonadotropins was adjusted according to the ovarian response on transvaginal ultrasound and serum oestradiol concentration starting from day 5 of stimulation. The GnRH antagonist cetrorelix 0.25 mg (Cetrodite, Serono Laboratories, Aubonne, Switzerland) was started in all patients on a fixed day which is day 5 of stimulation and continued until day of HCG administration. I.M. injection of 5000 IU of HCG (Choriomon, IBSA, Switzerland) or subcutaneous injection of 0.2 mg triptorelin (Decapeptyl; Ferring, GmbH, Kiel, Germany) were administered when at least three follicles reached ≥ 17 mm in diameter. Ultrasound guided transvaginal oocyte retrieval was performed 3436- hours later. All embryos were frozen in order to decrease the risk of late OHSS.

Hormone assay

In the cycle preceding the stimulation cycle, AMH (ng/ml) was measured on any day of the cycle. Serum E2 (pg/ml), LH (iu/l) and progesterone (ng/ml) were measured on the second day of menstruation of the stimulation cycle before starting gonadotropins. E2 was then measured during the stimulation cycle to assist monitoring of the ovarian response. Serum E2 level was compared in the two groups before stimulation, at day of hCG and 6 days after initiation of cabergoline or letrozole.

The development of mild, moderate or severe OHSS was compared in both groups.

RESULTS

This study included 60 patients. Patients were randomly distributed with 30 patients in each arm. Demographic data of the study patients are listed in Table 2. There were no significant differences in the patient characteristics in the two groups.

The ovarian responsiveness and treatment outcomes are compared in Table 3. No significant differences obtained between the two groups in E2 measurements before starting ovarian stimulation, on day 6 of stimulation or on the day of HCG. But a statistically significant
different revealed on day 7 after oocyte retrieval where E2 level was significantly lower in the letrozole group compared to the cabergoline group.

Regarding OHSS, two cases (6.6%) developed mild OHSS and one case (3.3%) developed moderate OHSS in the cabergoline group. This was significantly lower than the number of cases that developed mild and moderate OHSS in the letrozole group which were 8 (26.6%) and 6 (20%) cases, respectively. On the contrary, no statistically significant difference obtained in cases that developed severe OHSS in both groups where only one case (3.3%) developed severe OHSS in the cabergoline group compared to two (6.6%) cases in the letrozole group.

Table 1: Patients' characteristics.

<table>
<thead>
<tr>
<th></th>
<th>Cabergoline group (n = 30)</th>
<th>Letrozole group (n = 30)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Y)</td>
<td>23.43 ± 3.115</td>
<td>24.53 ± 2.897</td>
<td>0.162</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>21.93 ± 6.726</td>
<td>23.70 ± 2.667</td>
<td>0.186</td>
</tr>
<tr>
<td>Basal FSH (IU/l)</td>
<td>4.12 ± 0.941</td>
<td>3.87 ± 1.008</td>
<td>0.325</td>
</tr>
<tr>
<td>Basal LH (IU/l)</td>
<td>5.46 ± 1.339</td>
<td>5.49 ± 1.166</td>
<td>0.927</td>
</tr>
<tr>
<td>AMH (ng/ml)</td>
<td>5.05 ± 1.245</td>
<td>5.37 ± 1.266</td>
<td>0.338</td>
</tr>
<tr>
<td>Duration of infertility (Y)</td>
<td>3.09 ± 1.435</td>
<td>3.67 ± 1.155</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Type of infertility

- Primary: 23 (%) in Cabergoline and 24 (%) in Letrozole (P = 0.759)
- Secondary: 7 (%) in Cabergoline and 6 (%) in Letrozole (P = 0.759)

Main causes of infertility

- Tubal disease: 11 (%) in Cabergoline and 10 (%) in Letrozole (P = 0.791)
- Male factor: 13 (%) in Cabergoline and 12 (%) in Letrozole (P = 0.798)
- Unexplained: 6 (%) in Cabergoline and 8 (%) in Letrozole (P = 0.549)

*significant P < 0.05

Table 2: Criteria of stimulation cycles.

<table>
<thead>
<tr>
<th></th>
<th>Cabergoline group (n = 30)</th>
<th>Mean ± SD</th>
<th>Letrozole group (n = 30)</th>
<th>Mean ± SD</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days of stimulation</td>
<td>(9.0 - 11.0)</td>
<td>10 ± 0.830</td>
<td>(8.0 - 11.0)</td>
<td>9.63 ± 0.928</td>
<td>0.112</td>
</tr>
<tr>
<td>Number of 75 IU FSH ampoules</td>
<td>(16 - 25.0)</td>
<td>18.97 ± 2.833</td>
<td>(15.0 - 23.0)</td>
<td>18.7 ± 2.667</td>
<td>0.711</td>
</tr>
<tr>
<td>E2 (pg/ml)</td>
<td>(13.6 - 44.6)</td>
<td>28.207 ± 8.780</td>
<td>(12.9 - 42.4)</td>
<td>28.110 ± 8.688</td>
<td>0.966</td>
</tr>
<tr>
<td>E2, at day 6 of stimulation</td>
<td>(1440.6 - 1811.2)</td>
<td>1699.7 ± 100.08</td>
<td>(1569.6 - 1992.7)</td>
<td>1732.8 ± 111.43</td>
<td>0.230</td>
</tr>
<tr>
<td>E2, at day of HCG</td>
<td>(3035.5 - 3480.7)</td>
<td>3221.9 ± 137.93</td>
<td>(3096.8 - 3469.1)</td>
<td>3277.0 ± 107.65</td>
<td>0.086</td>
</tr>
<tr>
<td>E2, 7 day after oocyte retrieval</td>
<td>(1466.2 - 1650.8)</td>
<td>1558.024 ± 59.24</td>
<td>(750.4 – 1050.9)</td>
<td>905.043 ±104.86</td>
<td>0.000*</td>
</tr>
<tr>
<td>No. of follicles on day of HCG</td>
<td>(24 – 28)</td>
<td>25.93 ± 1.28</td>
<td>(25 – 30)</td>
<td>26.57 ± 1.35</td>
<td>0.068</td>
</tr>
<tr>
<td>No. of oocytes per retrieval</td>
<td>(18 – 25)</td>
<td>20.6 ± 2.027</td>
<td>(20 – 25)</td>
<td>21.3 ± 2.351</td>
<td>0.222</td>
</tr>
<tr>
<td>OHSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>2 (6.6 %)</td>
<td>8 (26.6 %)</td>
<td></td>
<td></td>
<td>0.038*</td>
</tr>
<tr>
<td>Moderate</td>
<td>1 (3.3 %)</td>
<td>6 (20 %)</td>
<td></td>
<td></td>
<td>0.045*</td>
</tr>
<tr>
<td>Severe</td>
<td>1 (3.3 %)</td>
<td>2 (6.6 %)</td>
<td></td>
<td></td>
<td>0.561</td>
</tr>
</tbody>
</table>

*significant P < 0.05
accumulation of androgens.

or oocyte maturation through lowering of estradiol or phase to avoid any deleterious effect on folliculogenesis the day of oocyte retrieval and not during the follicular period less than 3 days.

It has been shown that levels of VEGF which is one of the vasoactive amines that play a role in the development of OHSS are reduced along with falling E2 levels during Coasting.

Coasting is a strategy to prevent OHSS by withholding gonadotrophins when a certain E2 level and/or a critical number of follicles are reached. When the E2 drops to a “safe” level, hCG is administered for final oocyte maturation. It is generally employed for a period less than 3 days. It has been shown that VEGF is one of the vasoactive amines that play a role in the development of OHSS are reduced along with falling E2 levels during Coasting.

In this study, we used the aromatase inhibitor letrozole which blocks the aromatization of androstenedione to estrogen to reduce estradiol concentrations and may help in preventing early OHSS. Letrozole was used from the day of oocyte retrieval and not during the follicular phase to avoid any deleterious effect on folliculogenesis or oocyte maturation through lowering of estradiol or accumulation of androgens.

Two randomized studies assessed the effect of letrozole administration in the luteal phase of IVF cycles in oocyte donors. Both confirmed that letrozole reduces the luteal E2 levels in stimulated cycles a prospective randomized controlled pilot study. Six oocyte donors were randomized after COH and successful egg retrieval to receive either 2.5 mg of letrozole or a placebo. Donors were tested for serum estradiol, progesterone and LH on the day of hCG administration and day 4, 7 and 10 after oocyte retrieval. In the second study, twenty oocyte donors were randomized after COH and successful egg retrieval to receive either 2.5 mg of letrozole or a placebo (folic acid tablets) for 5 days from the day of ovum pick-up. Donors were tested for serum estradiol, progesterone and LH the day of hCG administration and day 4, 7 and 10. Both studies showed significantly reduced serum E2 levels at 4, 7 and 10 days after oocyte retrieval compared to controls. The first study showed no difference in LH levels among treatment and control groups while the second study showed that letrozole appeared to significantly increased LH levels on days 7 and 10 after retrieval.

Similar to our study, Fatemi et al, used letrozole in the early luteal phase for prevention of OHSS in a 21-year-old patient which was at high risk for the development of OHSS during COH. On Day 9 of stimulation, E2 level was 5000 pg/ml and 50 follicles were visualized. Noteworthy, HCG 5000 IU was used for final oocyte maturation because of limited experience of the physician on duty. The patient was given letrozol 2.5 mg twice daily and cabergoline 0.5 mg daily directly post oocyte retrieval up to the day of embryo transfer. 52 oocytes were retrieved of which 38 were Metaphase II. 23 oocytes were fertilized with ICSI, and on day three 13 embryos were biopsied for PGD. On day 5 after oocyte retrieval, one genetically normal embryo was transferred and at 7 weeks of gestation, a viable singleton pregnancy could be visualized on ultrasound. The patients did not develop any early nor late OHSS.

Wang et al. conducted a study on 281 patients who were potential candidates for developing OHSS after COH in ART cycles using long GnRH agonist protocol. All participating patients met at least one of the following criteria: (1) Number of retrieved oocytes ≥ 20; (2) mean number of follicles with a diameter greater than 14 mm was ≥ 20; (3) serum E2 concentrations reached ≥ 8 000 pg/ml; (4) on the day of oocyte retrieval, the ovarian diameter was > 10 cm; and (5) presence of obviously symptoms of OHSS on the day of aspiration. Patients were given 6000–8000 IU of hCG for final oocyte maturation. The couples were counseled about the high risk of OHSS and all agreed to cancel fresh embryo transfer. Patients were divided into a treatment group (n = 161) and control group (n = 120). The patients in the treatment group were informed of treatment options: first group: received letrozole tab 2.5 mg twice daily for 5 consecutive days, second group: received mifepristone tab 25 mg twice daily for 3 consecutive days. Third group: received subcutaneous cetrotide 0.25 mg daily for 5 consecutive days. Fourth group: received the three drugs together at the same time. The control group: received no special medication. All patients started the medication on the day after oocyte retrieval. There was significantly lower E2 level on days 2, 5 and 8 after oocyte retrieval in the letrozole and three-drug combination therapy group than in the other three groups. There was no significant difference in serum LH concentration on the same days and progesterone concentration on day 8 after oocyte retrieval among the five groups.

A possible harmful effect of letrozole on oocyte maturation and embryo quality was revealed in previous studies. In context, Ehsan, et al. conducted a comparative study on one hundred and twenty patients who were potential candidates for developing OHSS after COH in assisted reproduction technology (ART) cycles using long GnRH agonist protocol. They compared the use of letrozole versus coasting in prevention of OHSS. Women
at risk for OHSS "i.e., with serum E2 >1634 pg/ml on day 8 of stimulation" were randomized to receive letrozole (2.5 mg/day if E2 level was ≥3000 pg/ml or every other day if E2 was <3000 pg/ml starting from day 8 of stimulation till the day before hCG) or to undergo coasting. Though number of metaphase II oocyte retrieved was similar in both groups, number of grade I egg and of grade I embryo was lower in letrozole group compared to coasting group44. Similarly, administration of AI in late follicular phase resulted in significantly lower number of metaphase II oocyte in stimulated rhesus monkey37.

On the other hand, it was observed that >50% drop of E2 from initial level does not compromise the oocyte quality and implantation but prevent OHSS33. Moreover, oestriadiol depletion in the vicinity of the oocyte did not impair its development, fertilization, development into morula, blastocyst and hatching blastocysts37–38. Additionally, the extremely high levels of E2 have a deleterious effect on gamete quality and/or uterine receptivity39, 40.

To avoid late OHSS and also to avoid any harmful effect of letrozole on the endometrium secondary to lowering of estradiol that could be reflected on implantation and pregnancy rate, we included only patients who agreed to cryopreserve all embryos.

In ART cycles, rapid changes in the hormonal levels occur during the luteal phase. Just before oocyte aspiration, supraphysiologic E2 concentrations are reached, which is followed by a dramatic fall in E2 after oocyte aspiration. There is a further fall in steroidal levels by day 9 of oocyte trigger as the trophic effect of HCG on the corpus luteum gets weaned off41. The impact of % E2 fall in the early and midluteal phase on pregnancy outcome during COH is controversial.

Stewart et al42 were the first to identify a significant difference in serum E2 concentrations between conception and nonconception cycles in fertile women undergoing donor insemination.

Using the long down-regulation protocol, Sharara et al43 measured the ratio of E2 on day of HCG to midluteal E2 and found that sharp decline in E2 resulted in a significantly lower implantation and pregnancy rates. This raised the speculation that the E2 fall would compromise the peri-implantation endometrial development.

Alike, Levi et al. used the same protocol and found that the sharper the drop in E2 levels, the lower was the possibility of successful IVF outcome44. It was speculated that insufficient exposure of the endometrium to E2 might lower or inhibit maintenance of the effects of some factors like leukemia inhibiting factor, interleukin-1, TNF-α, and interferone.

Also, the research by Ganesh et al45 revealed that E2 on day 7 after ET was significantly higher in the conception group as compared to the non pregnant group.

On the other hand, Friedler et al46 studied the luteal phase E2 levels and found no difference in the mean midluteal E2 levels and % of E2 decline in the conception versus non conception cycles.

Moreover, one meta-analysis compared the effect of adding E2 to progesterone versus progesterone alone for luteal phase support in GnRH agonist as well as antagonist cycles. It was concluded that addition of E2 to progesterone does not increase the pregnancy rate47.

So, despite the decline of E2 after oocyte retrieval, there is certain E2 level above which pregnancy rate could be maintained. Thus, we need to know whether letrozole use during the luteal phase causes additional decline in E2 that may compromise endometrial development and pregnancy rate.

Our results showed that the incidence of mild and moderate OHSS was significantly lower with cabergoline compared to letrozole. But, no significant difference was detected in the incidence of severe OHSS between the two groups.

In a case report, Fatemi et al tested the co-administration of letrozole and cabergoline in the early luteal phase for prevention of OHSS in a high risk patient undergoing ovarian stimulation for IVF. Neither early nor late OHSS was developed. On day 5 after oocyte retrieval, one genetically normal embryo was transferred. By the 7th week of gestation, a viable singleton pregnancy was visualized by ultrasound48.

In another trial, Wang et al. compared the use of letrozole, mifepristone, cetrotide and the three-drug combinations versus no use in the prevention of severe OHSS. No significant decrease in the incidence of severe OHSS in each of the four groups was obtained49.

Interestingly, Ehsan et al compared the use of letrozole versus coasting in the prevention of OHSS, whereas no severe OHSS developed and only 5% of cases developed mild to moderate OHSS in the letrozole group. On the other hand, in coasting group 3.3% of patients developed severe OHSS and 8.3% of cases developed mild to moderate OHSS. But the difference between the two groups in the incidence of mild and moderate OHSS did not reach statistical significance. Also, no significant difference in pregnancy rate was obtained between the two groups50.
CONCLUSIONS

Letrozole administration during the luteal phase of ART cycles can reduce the high E2 level in hyper-responding patients, but it cannot prevent the development of early OHSS in these patients. On the contrary, cabergoline can effectively prevent the development of early OHSS.

CONFLICT OF INTERESTS

There are no conflict of interest.

REFERENCES

19. Kol S, Mannaerts M, Itskovitz-Eldor. Triggering of preovulatory LH surge after treatment with the

40. Valbuena D, Martin J, de Pablo JL, Remohí J, Pellicer A, Simón C. Increasing levels of estradiol are deleterious to embryonic implantation because they directly affect the embryo. Fertil Steril 2001; 76(5): 962-968.

