Open Access ISSN:2682-4558

Review Article

Recent Trends in The Management of Meniere's Disease

Rafeek Mohamed Abd Elkader¹, Hesham Mahmoud Samy¹, Mariam Ashraf Adeeb¹, Dalia Fahim Mohammed Fahim¹

¹ Department of Otorhinolaryngology, Faculty of Medicine, Minia University, Minia, Egypt

DOI: 10.21608/mjmr.2024.266525.1654

Abstract

Background: Meniere's disease is a chronic illness affecting the quality of life and productivity of patients with minimal diagnostic tools available, limited options of treatment and a lot of follow up difficulties. we discuss old and recent tools helping in the diagnosis and the treatment of Meniere's disease. Aim of the study: Discussing recent modalities in the management of Meniere's disease including diagnosis, treatment and follow up. Methods: A literature review of recent tools in the management of Meniere's disease. Conclusion: Post contrast magnetic resonance imaging of endolymphatic hydrops is a very important diagnostic tool in the definite diagnosis of Meniere's disease and we should consider intratympanic injection of gadolinium as another tool of contrast delivery in cases with no contraindications to this method. Follow up for Meniere's disease cases is so substantial in the management of these cases so recent mobile applications helping in that should be put into consideration. Another field that light should be directed to is the regeneration of vestibular hair cells, also this field is still under research but it has a very essential role in the treatment of Meniere's disease and more researches should be directed to this scope.

Key words: Magnetic resonance imaging, endolymphatic hydrops, intratympanic injection, follow up, vestibular hair cells regeneration.

Introduction

Ménière's disease (MD) is a condition affecting the inner ear that disrupts both hearing and balance. It is distinguished by symptoms such as dizziness, ringing in the ears, hearing loss caused by damage to the sensory nerves, feelings of nausea and vomiting, and a sensation of fullness in the ears .[1]

The prevalence of the condition can't be determined accurately due to the rarity of the condition and methodological limitations and it ranges from 3.5 to 513 per 100,000.[2]

Although the disease was discovered by prosper Meniere 150 years ago [3] still certain diagnoses are unavailable and definite or probable diagnosis as classified and revised by the Classification Committee of the Barany Society [4] [5] depends mainly on history and frequent audiometric evaluation which may be sometimes confusing specially with other

vestibular disorders and make diagnosis not made at one point in time; rather, it may take

months or even years to fully evaluate the clinical symptoms and signs leading to definitive diagnosis.[6]

The exact etiology of MD is still not completely clear. However, one of the most accepted pathophysiologies of MD is the presence of endolymphatic hydrops (EH) [7][8], and the presence of EH in patients with MD is an important tool in the diagnosis of the disease which will be discussed later.

MD is associated with severe disability, especially during acute attacks which may hinder work, domestic or even leisure activities due to sensory hearing loss or sudden episodic attacks of vertigo [9] [10], so searching for recent methods of treatment is very important.

Different classifications of Meniere's disease

1-Definite, probable and possible Meniere's disease:

Symptom Criteria	Certain Ménière's Disease > 2 vertigo episodes > 20 minutes' duration	Probable Ménière's Disease 1 vertigo episode > 20 minutes' duration	Possible Ménière's Disease Episodic vertigo without documented hearing loss Fluctuating or fixed sensorineural hearing loss with disequilibrium, but without definitive episodes		
Spontaneous vertigo					
Hearing loss	Audiometrically documented on at least 1 occasion	Audiometrically documented on at least 1 occasion			
Tinnitus or aural fullness	Present	Present	Not present		
Other causes	Excluded	Excluded	Excluded		

These criteria were established by the American Academy of Otolaryngology - head and neck surgery (AAO - NHS) in 1995 [11].

2-Definite and probable Meniere's disease:

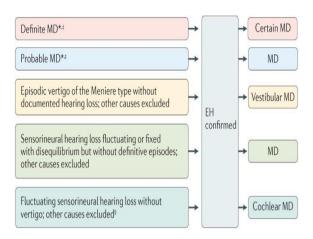

The previous criteria were revised by the classification committee of the Barany Society and four other national and international organizations in 2015 [6] [7].

Table 2 Revised diagnostic criteria of Meniere's disease				
Classifications	Criteria			
Definite	• 2 or more episodes of vertigo, 20 min–12 h			
	Fluctuating aural symptoms			
	• Not better accounted for by another vestibular diagnosis			
	Audiometrically documented hearing loss			
Probable	• 2 or more episodes of dizziness or vertigo, 20 min–24 h			
	Fluctuating aural symptoms			
	• Not better accounted for by another vestibular diagnosis			
Adapted from the Classification Committee of the Bârâny Society, The Japan Society for Equilibrium Research, the European Academy of Otology and Neurotology (EAONO), the Equilibrium Committee of the American Academy of Otolaryngology-Head and Neck Surgery (AAO-HNS), and the Korean Balance Society.				

3-Classification according to the presence of endolymphatic hydrops:

A new classification for Meniere's disease was proposed in 2016, which incorporates the use of endolymphatic hydrops imaging [1]. However, the terms "cochlear MD" and "vestibular MD" that were introduced by the Committee on Equilibrium of the American Academy of Ophthalmology and Otolaryngology in 1972 [12] were removed in the 1995 criteria set by the AAOHNS [11]. This removal was due to

doubts regarding the presence of endolymphatic hydrops in atypical types of Meniere's disease. Recent MRI investigations have demonstrated that both cochlear MD and vestibular MD should be incorporated into the diagnosis of MD due to the presence of EH in numerous atypical patients [1].

Nature Reviews | Disease Primers

Imaging of endolymphatic hydrops (EH) is highly beneficial for diagnosing Meniere's disease (MD). It particularly assists in distinguishing Meniere's disease from vestibular migraine, especially in patients who have auditory symptoms and are clinically suspected having vestibular migraine [13][14]. Furthermore, studies have demonstrated a gradual development of endolymphatic hydrops (EH) in patients with Meniere's disease (MD) through the use of sequential magnetic resonance imaging (MRI) scans Additionally, a relationship has been detected between the evolution of EH and the cochlear. deterioration of saccular. horizontal semi-circular canal functions [16][17][18]. Eccentric hypertrophy (EH) is observed in all individuals diagnosed with confirmed muscular dystrophy (MD). The information is referenced by footnotes 19 and 20.

Quantification and grading of endolymphatic hydrops

Quantification of endolymphatic hydrops by post-contrast MRI is very helpful in certain diagnoses of MD, various semi-quantitative grading criteria have been proposed, one of these gradings is as follows: [21]

- Normal cochlear duct: The cochlear duct is hardly visible and does not show enhancement. It is located inside the augmenting scala vestibuli and scala tympani (Figure 1a).
- Grade I cochlear hydrops refers to a condition where there is a slight enlargement of the cochlear duct, which does not show enhancement, into the scala vestibuli. This enlargement partially blocks the scala vestibuli. (See Figure 1b).
- Grade II cochlear hydrops refers to a condition where the scala vestibuli is completely blocked by the excessively swollen cochlear duct, as shown in Figure 1c.

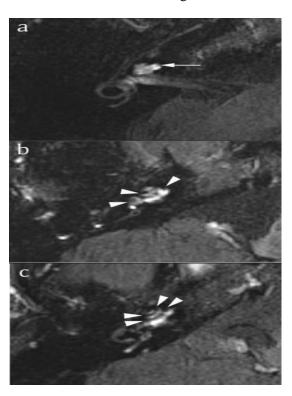


Figure 1: Cropped axial 3D-FLAIR image of the right ear, four hours after intravenous administration of a double dose of Gd, at the level of the mid turn of the cochlea. (a) Observe the distinct separation between the enhancing scala vestibuli and scala tympani (spaces filled with perilymph) with the nonenhancing cochlear duct or scala media (space filled with endolymph) evident as a thin hypo-intense line (arrowhead): indicating normal findings. (b) The non-enhancing dilated cochlear duct (arrowheads) is visible as a tiny non-enhancing protrusion into the enhancing scala vestibuli. The patient has cochlear hydrops classified as grade 1 according to the Baráth classification. (c) The expanded scala media or cochlear duct is displacing the scala vestibuli and can be observed as band-like areas of reduced intensity (arrowheads) in the middle and upper part

of the cochlea. The patient has grade 2 cochlear hydrops as per the Baráth classification [21].

Normal vestibule: The non-enhancing saccule and utricle can be clearly distinguished from the enhancing vestibule. The saccule, which is the smallest of the two structures, is situated in the anterior, inferior, and medial regions of the vestibule (Figure 2a).

Low-grade vestibular hydrops refers to a condition where the saccule, which is typically the smallest of the vestibular sacs, has increased in size and is now equivalent to or greater than the utricle, but they have not merged together yet (Figure 2b).

☐ Grade I vestibular hydrops refers to the expansion of the endolymphatic space in the saccule, utricle, or both. The perilymphatic area surrounding the bone vestibule can still be seen around the edges.

Grade II vestibular hydrops is characterized by significant distension of the saccule and utricle, with no apparent enhancement of the perilymphatic space surrounding them (Figure 2d).

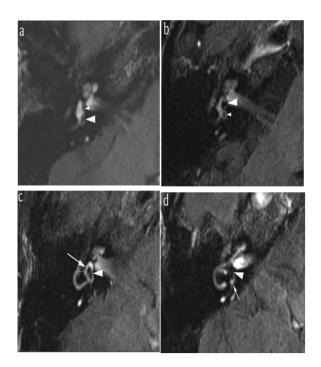


Figure 2: Cropped axial 3D FLAIR image of the right ear, four hours after intravenous administration of a double dose of Gd, at the level of the lower part of the vestibule. (a) The saccule (little arrowhead) and utricle (big arrowhead) may be easily distinguished. No evidence of vestibular hydrops is present. (b) In this instance, the saccule, which is typically the smaller of the two vestibular sacs, has

grown to be the same size as or larger than the utricle, but they have not yet merged together. According to the Baráth classification, which utilizes a three-stage grading system, this is considered to be within the normal range. Nevertheless, it is important to acknowledge that this is a relatively modest manifestation of vestibular hydrops, which can be classified as abnormal according to the fourstage grading system for vestibular hydrops. (c) The saccule and utricle have increased in size and merged together, although they are still surrounded by contrast enhancement in the perilymphatic area. Based on the Baráth classification, this is classified as grade 1 vestibular hydrops. However, when applying the four-stage grading method, this condition is classified as grade 2 vestibular hydrops. (d) Observe the expansion and merging of the saccule and utricle, without any contrasting structures around them (shown by the arrowhead). Only a small amount of contrast is apparent in the base of the posterior semicircular canal (arrow). According to the Baráth classification, which utilizes a three-stage grading system, this condition is classified as grade 2 vestibular hydrops. Applying the four-stage grading method, this condition is classified as grade 3 vestibular hydrops [21].

A more accurate technique for quantifying EH involves the utilization of Mimics software to create a three-dimensional model using inner ear MRI, allowing for the measurement of the endolymphatic hydrops index (EHI). This approach provides additional insights into the presence of endolymphatic hydrops in the superior and posterior semicircular canal, which are often overlooked by two-dimensional methods. The calculation of EHI is as follows: The equation EHI is defined as the difference between the total volume and the perilymph volume, divided by the total volume.

The calculation of EHI in this study showed a strong correlation with many factors, including the stage of Meniere's illness, the ratio of Summating Potential to Action Potential in Echocochleography, low-frequency pure tone audiometry, and the Asymmetric Ratio of Vestibular Evoked Myogenic Potential .[22] Magnetic Resonance Imaging (MRI) of enlarged vestibular aqueduct (EH) has provided valuable insights into the distinct impact on the and vestibular compartments. Furthermore, EH is frequently observed in the asymptomatic ears on the opposite side, with a significant occurrence rate of up to 65% [23][24]. According to a recent study, EH predominantly affected the cochleovestibular

system, with vestibular EH being somewhat more prevalent than cochlear EH [23].

Intravenous (IV) versus intratympanic (IT) gadolinium injection

The benefit of IT delivery is that it produces higher concentrations of GBC, while using a much lower total dosage (approximately 1:1,000) compared to i.v. delivery. This leads to a greater contrast between the endolymph and perilymph in the inner ear fluid spaces, allowing for a clearer visualization. As a result, the observer can more accurately assess the extent of endolymphatic hydrops.[25]

Another benefit of IT administration of GAD is its utilization as an initial predictive tool for drug distribution to the inner ear, namely for the distribution of gentamicin and steroids following intratympanic administration. This aids in treatment and enhances the quality of patients' lives.[25]

In addition, the injection of IT (intrathecal) GBC (Gadolinium-based contrast) reduces the probability of systemic toxicity, but it may be linked to local irritation and toxicity [26][27]. However, the existing published data indicate a lack of ototoxicity throughout both short and long durations of observation [28][29][30].

Nevertheless, the approach is subject to certain limitations. It can thoroughly examine endolymphatic hydrops specifically on the side where gadolinium was administered. Consequently, patients requiring examination of both ears must receive two injections. Additionally, the IT application is unsuitable for patients with middle ear illness, since it hinders the absorption of contrast.

Another drawback of IT injection is the insufficient transfer of the gadolinium agent from the tympanic cavity to the perilymph space through the round window in certain patients. Additionally, the extent of the contrast effect of perilymph following intratympanic gadolinium injection may exhibit greater variations between individuals compared to IV injection.[25]

Mobile applications aiding in the diagnosis of

As mentioned before one important corner stone in the diagnosis of MD is fluctuating

hearing loss documented by at least two PTA, nowadays there are many mobile applications for smartphones acting as daily portable audiometry enabling patients to test their hearing level during and in between attacks thus helping physicians in diagnosis.

Another application helping in the diagnosis and follow up is an application that enables patients to record nystagmus during vertigo attacks therefore helping the physician to diagnose by knowing the direction and character of nystagmus.

Regeneration of hair cells after gentamycin injection

Hair cells (HCs) are the sensory cells in the inner ear that are responsible for the detection of sound and maintenance of balance [31]. Each hair cell is surrounded by non-sensory supporting cells (SCs) that act like glia cells and create the necessary conditions for hair cells to perform their function.[32]

Hair cells (HCs) and supporting cells (SCs) originate from a shared precursor during development after the completion of cell division. The determination of whether a precursor becomes an HC or a SC relies on the presence of the Atoh1 transcription factor and the Notch-Delta signaling pathway. The expression of the Atoh1 transcription factor guides the precursor cells towards the HC fate. Hair cells (HCs) exert lateral inhibition on neighboring cells by activating the Notch-Delta signaling pathway [34][35]. This signaling system suppresses the production of Atoh1, causing the inhibited cells to develop as supporting cells (SCs).

Typically, in mammals, the utricular hair cells (HCs) are spread out over an epithelial sheet called the macula. Within the macula, there is a distinct band in the center known as the striola. The striola covers around 10-20% of the macula area and is specifically formed to fit the design of the macula. This observation was made using fluorescent protein in transgenic mice. The study revealed that the promoter responsible for the expression of proteolipid protein 1 (PLP1) is active in the extrastriolar areas, but not in the striola [36][37][38][39][40].

In contrast, stem cells (SCs) in reporter mice for Lgr5, a gene that is activated by Wnt signaling and stimulates cell growth, are found only in the striolar region during development [37][41][42]. Lgr5 is subsequently suppressed and is not present in the fully developed vestibular sensory epithelia of adult individuals [43, 44].

In mammalian vestibular organs, there are two types of hair cells: Type I and Type II. These two types differ in their shape, innervation patterns, and ion channel composition. Their physiological reactions vary in terms of rapidity [38]

Post-mitotic stem cells (SCs) maintain the ability to re-enter the cell cycle, however this capability is no longer present by P5 [38]. The loss of this ability is caused by the development of dense actin bands at the adherens junctions around the necks of SCs. The bands are believed to make the adult sensory epithelia more rigid and stable. The thickness of these bands in mammals is one reason why regeneration responses are suppressed in the mature mammalian utricle [38]. There is no subsequent stem cell division in the mature tissue after experiencing a loss of hematopoietic cells. The regenerated hair cells in the vestibular sensory epithelia of adult animals are formed through the direct transformation of supporting cells, as established by Golub et al. [45].

Based on the prior introduction, there are now four ways being investigated for the regeneration of vestibular hair cells:

	The	inductio	n of SC	conv	ersion	is	a
mecha	ınism	being	studied	to	regen	era	te
vestib	ular ha	ir cells.	Two appro	oache	s have	bee	n
explor	ed: vii	al-media	ited transc	ductio	n using	g tł	ne
Atoh1	gene a	and phari	macologic	al sup	pression	on (of
the No	otch sv	stem.					

Studies conducted on mature mice [46] and humans [47] have demonstrated that adenoviral vectors can transport Atoh1 to utricle explants. These studies involved the use of aminoglycoside to remove hair cells, and both indicated the development of cells that expressed the myosin (myo)7a marker, which is characteristic of hair cells.

Transcriptomic analysis in both cases showed an increase in the expression of numerous genes that are typical of HC, while genes associated with SC were found to have decreased expression. Nevertheless, a considerable number of HC genes remained unexpressed, and morphological examinations revealed the absence of structured hair bundles .

- Notch signaling inhibition in adult mouse utricle explants has been found to cause supporting cell conversion. Conversely, in the vestibular region of humans, the suppression of Notch activation did not result in the production of cells that express myo7a.[47]
- After destroying hair cells in DTR mice, studies using cell fate mapping techniques have demonstrated that PLP1-expressing supporting cells (SCs) in both early post-natal and mature animals (P60) exclusively transform into Type II hair cells. These transformed cells are identified based on their appearance, specific molecular markers, and thorough electrophysiological evaluation.
- Activating Wnt signaling has been suggested as a potential mechanism for promoting the growth of Lgr5+SCs, which lead to hair cell regeneration [37][48][49]. A combination of stimuli that seem to enhance the growth of Lgr5+ cells obtained from inner ear tissues, including those from primates and humans, and that encourages the development of daughter cells into hair cells has been documented [50]. Nevertheless, the stimulation of Wnt in mature utricles explants following hair cell loss did not result in the proliferation of supporting cells [51]. However, a limited quantity of stem cells that included mitotic markers were detected when both Wnt activation and inhibition of the Notch pathway were applied simultaneously.

Conflict-of-interest statement: The authors hereby declare that they have no competing interest.

Ethical approval: Ethical permission was taken from a local faculty of medicine research ethics committee (MUFMIRB) No:101/10/2022. In accordance with the protocol established by the committee, all of the patients gave their permission to retrieve their data for research following the confidentiality of their information was guaranteed. As a result, the study does not compromise the patient's health or safety in any way.

References:

- 1. Nakashima, T., et al., Meniere's disease. Nat Rev Dis Primers, 2016. 2: p. 16028.
- 2. Harris JP, Alexander TH. Current-day prevalence of Ménière's syndrome. Audiol Neurootol. 2010; 15(5): 318–322.

- 3. Menière, P. Maladies de l'oreille interne offrant des symptomes de la congestion cerebral apoplectiforme. Gaz Med de Paris. 1861; 16: 88.
- 4. Lopez-Escamez JA, Carey J, Chung WH, et al. Diagnostic criteria for Ménière's disease. J Vestib Res. 2015; 25(1): 1–7.
- 5. Goebel JA. 2015 Equilibrium Committee amendment to the 1995 AAO-HNS guidelines for the definition of Ménière's disease. Otolaryngol Head Neck Surg. 2016; 154(3): 403–404.
- 6 Basura, G.J., et al., Clinical Practice Guideline: Meniere's Disease. Otolaryngol Head Neck Surg, 2020. 162(2_suppl): p. S1-S55.
- 7. Paparella MM, Djalilian HR. Etiology, pathophysiology of symptoms, and pathogenesis of Meniere's disease. Otolaryngol Clin North Am. 2002;35(3):529-545.
- 8. Semaan MT, Megerian CA. Contemporary perspectives on the pathophysiology of Meniere's disease: implications for treatment. Curr Opin Otolaryngol Head Neck Surg.2010;18(5): 392-398.
- 9. Bronstein AM, Golding JF, Gresty MA, et al. The social impact of dizziness in London and Siena. J Neurol. 2010; 257(2): 183–190.
- 10. Stephens D, Pyykko I, Varpa K, Levo H, Poe D, Kentala E. Self-reported effects of Ménière's disease on the individual's life: a qualitative analysis. Otol Neurotol. 2010; 31(2): 335–338.
- 11. American Academy of Otolaryngology—Head and Neck Foundation, Inc. Committee on Hearing and Equilibrium guidelines for the diagnosis and evaluation of therapy in Ménière's disease. Otolaryngol Head Neck Surg. 1995;113:181-185.
- 12. Committee on Hearing and Equilibrium. Report of subcommittee on equilibrium and its measurement. Meniere's disease: criteria for diagnosis and evaluation of therapy for reporting. Trans. Am. Acad. Ophthalmol. Otolaryngol. 76, 1462–1464.(1972)
- 13. Gurkov R, Kantner C, Strupp M, et al. Endolymphatic hydrops in patients with

- vestibular migraine and auditory symptoms. Eur Arch Otorhinolaryngol 2014;271:2661–7.
- 14. Sun W, Guo P, Ren T, et al. Magnetic resonance imaging of intratympanic gadolinium helps differentiate vestibular migraine from Meniere's disease. Laryngoscope 2017. [Epub ahead of print].
- 15. Jerin C, Krause E, Ertl-Wagner B, et al. Longitudinal assessment of endolymphatic hydrops with contrast-enhanced magnetic resonance imaging of the labyrinth. Otol Neurotol 2014:35:880–3.
- 16. Gurkov R, Flatz W, Louza J, et al. In vivo visualized endolymphatic hydrops and inner ear functions in patients with electrocochleographically confirmed Me'nie're's disease. Otol Neurotol 2012;33:1040–5.
- 17. Gurkov R, Flatz W, Louza J, et al. Herniation of the membranous labyrinth into the horizontal semicircular canal is correlated with impaired caloric response in Meniere's disease. Otol Neurotol 2012;33:1375–9.
- 18. Gurkov R, Flatz W, Louza J, et al. In vivo visualization of endolymphatic hydrops in patients with Meniere's disease: correlation with audiovestibular function. Eur Arch Otorhinolaryngol 2011;268:1743–8.
- 19. Nakashima T, Naganawa S, Teranishi M, et al. Endolymphatic hydrops were revealed by intravenous gadolinium injection in patients with Meniere's disease. Acta Otolaryngol 2010;130;338–43.
- 20. Fiorino F, Pizzini FB, Beltramello A, et al. Reliability of magnetic resonance imaging performed after intratympanic administration of gadolinium in the identification of endolymphatic hydrops in patients with Meniere's disease. Otol Neurotol 2011;32:472–7
- 21. Baráth, K, Schuknecht, B, Naldi, AM, et al. Detection and grading of endolymphatic hydrops in Menière disease using MR imaging. Am J Neuroradiol. 2014; 35: 1387–92. DOI: https://doi. org/10.3174/ajnr.A3856.
- 22. Sun, Q., et al., Quantification of endolymphatic hydrops and its correlation with

- Meniere's disease clinical features. Clin Otolaryngol, 2021. 46(6): p. 1354-1361.
- 23. Pyykko I, Nakashima T, Yoshida T, et al. Meniere's disease: a reappraisal supported by a variable latency of symptoms and the MRI visualization of endolymphatic hydrops. BMJ Open 2013; 3:pii: e001555.
- 24. Naganawa S, Nakashima T. Visualization of endolymphatic hydrops with MR imaging in patients with Meniere's disease and related pathologies: current status of its methods and clinical significance. Jpn J Radiol 2014;32:191–204.
- 25. Yamazaki, M., et al., Comparison of contrast effect on the cochlear perilymph after intratympanic and intravenous gadolinium injection. AJNR Am J Neuroradiol, 2012. 33(4): p. 773-8.
- 26. Pyykko I, Zou J, Poe D, et al. Magnetic resonance imaging of the inner ear in Meniere's disease. Otolaryngol Clin North Am 2010;43:1059–80.
- 27. Zou J, Pyykko I, Bretlau P, et al. In vivo visualization of endolymphatic hydrops in guinea pigs: magnetic resonance imaging evaluation at 4.7 tesla. Ann Otol Rhinol Laryngol 2003:112: 1059–1065.
- 28. Louza JP, Flatz W, Krause E, et al. Short-term audiologic effect of intratympanic gadolinium contrast agent application in patients with Meniere's disease. Am J Otolaryngol 2012;33:533–7.
- 29. Louza J, Krause E, Gurkov R. Hearing function after intratympanic application of gadolinium-based contrast agent: A long-term evaluation. Laryngoscope 2015;125:2366–70.
- 30. Louza J, Krause E, Gurkov R. Audiologic evaluation of Me'nie're's disease patients one day and one week after intratympanic application of gadolinium contrast agent: our experience in sixty-five patients. Clin Otolaryngol 2013;38:262–6.
- 31. Fettiplace R: Hair Cell Transduction, Tuning, and Synaptic Transmission in the Mammalian Cochlea. Compr Physiol 2017, 7:1197-1227.

- 32. Gale JE, Jagger DJ: Cochlear supporting cells. In Oxford Handbook of Auditory Science-The Ear Edited by Fuchs P: Oxford University Press; 2010:307-327.
- 33. Basch ML, Brown RM, 2nd, Jen HI, Groves AK: Where hearing starts: the development of the mammalian cochlea. J Anat 2016, 228:233-254.
- 34. Daudet N, Gibson R, Shang J, Bernard A, Lewis J, Stone J: Notch regulation of progenitor cell behavior in quiescent and regenerating auditory epithelium of mature birds. Dev Biol 2009, 326:86-100.
- 35. Kiernan AE: Notch signaling during cell fate determination in the inner ear. Semin Cell Dev Biol 2013, 24:470-479.
- 36. Bucks SA, Cox BC, Vlosich BA, Manning JP, Nguyen TB, Stone JS: Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice. Elife 2017, 6.
- 37. Wang T, Niwa M, Sayyid ZN, Hosseini DK, Pham N, Jones SM, Ricci AJ, Cheng AG: Uncoordinated maturation of developing and regenerating postnatal mammalian vestibular hair cells. PLoS Biol 2019, 17:e3000326.
- 38. Eatock RA, Songer JE: Vestibular hair cells and afferents: two channels for head motion signals. Annu Rev Neurosci 2011, 34:501-534.
- 39. Burns JC, Cox BC, Thiede BR, Zuo J, Corwin JT: In vivo proliferative regeneration of balance hair cells in newborn mice. J Neurosci 2012, 32:6570-6577.
- 40. Gomez-Casati ME, Murtie J, Taylor B, Corfas G: Cell-specific inducible gene recombination in postnatal inner ear supporting cells and glia. J Assoc Res Otolaryngol 2010, 11:19-26.
- 41. Wang T, Chai R, Kim GS, Pham N, Jansson L, Nguyen DH, Kuo B, May LA, Zuo J, Cunningham LL, et al.: Lgr5+ cells regenerate hair cells via proliferation and direct transdifferentiation in damaged neonatal mouse utricle. Nat Commun 2015, 6:6613.
- 42. You D, Guo L, Li W, Sun S, Chen Y, Chai R, Li H: Characterization of Wnt and Notch-

- Responsive Lgr5+ Hair Cell Progenitors in the Striolar Region of the Neonatal Mouse Utricle. Front Mol Neurosci 2018, 11:137.
- 43. Cunningham LL: The adult mouse utricle as an in vitro preparation for studies of ototoxic-drug induced sensory hair cell death. Brain Res 2006, 1091:277-281.
- 44. Forge A, Li L: Apoptotic death of hair cells in mammalian vestibular sensory epithelia. Hear Res 2000, 139:97-115.
- 45. Golub JS, Tong L, Ngyuen TB, Hume CR, Palmiter RD, Rubel EW, Stone JS: Hair cell replacement in adult mouse utricles after targeted ablation of hair cells with diphtheria toxin. J Neurosci 2012, 32:15093-15105.
- 46. Taylor RR, Filia A, Paredes U, Asai Y, Holt JR, Lovett M, Forge A: Regenerating hair cells in vestibular sensory epithelia from humans. Elife 2018, 7
- 47. Jen HI, Hill MC, Tao L, Sheng K, Cao W, Zhang H, Yu HV, Llamas J, Zong C, Martin JF, et al.: Transcriptomic and epigenetic regulation of hair cell regeneration in the mouse utricle and its potentiation by Atoh1. Elife 2019, 8.
- 48. Sayyid ZN, Kim GS, Cheng AG: Molecular therapy for genetic and degenerative vestibular disorders. Curr Opin Otolaryngol Head Neck Surg 2018, 26:307-311.
- 49. Wang T, Chai R, Kim GS, Pham N, Jansson L, Nguyen DH, Kuo B, May LA, Zuo J, Cunningham LL, et al.: Lgr5+ cells regenerate hair cells via proliferation and direct transdifferentiation in damaged neonatal mouse utricle. Nat Commun 2015, 6:6613.
- 50. McLean WJ, Yin X, Lu L, Lenz DR, McLean D, Langer R, Karp JM, Edge AS: Clonal Expansion of Lgr5-Positive Cells from Mammalian Cochlea and High-Purity Generation of Sensory Hair Cells. Cell Rep 2017, 18:1917-1929.
- 51. Wu J, Li W, Lin C, Chen Y, Cheng C, Sun S, Tang M, Chai R, Li H: Co-regulation of the Notch and Wnt signaling pathways promotes supporting cell proliferation and hair cell regeneration in mouse utricles. Sci Rep 2016, 6:29418.