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The similarity transformation (ST) method is applied to reduce the Lax pair for some 

nonlinear partial differential equations (NLPDEs) into a system of ordinary 

differential equations (ODEs) to obtain its similarity solutions. Then the ODE system 

is considered to find the analytical solutions of the PDE by plotting the acquired 

similarity solutions. The method is applied to the three different equations named as; 

Modified Boussinesq (MBQ) equation, Kadomtsev–Petviashvili (KP) equation, and 

(2+1) - Korteweg-de-Vries breaking type (KDV-BS) equation. The Lie 

transformation method is utilized to convert the modified Boussinesq equation’s Lax 

Pair into a system of ordinary differential equations and obtain the analytical 

solutions of this equation. Likewise, this method is used for the KP and (2+1)-

dimensional KdV Lax Pairs. The Lie vectors are optimized through the commutation 

operation. The reduction of the Lax pair instead of the original equation reveals a 

new solution. The applied method is effective in spreading the solution of NLPDEs. 
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1. Introduction  

     The solution of NLPDEs holds immense 

significance in research due to their widespread 

application in diverse fields such as fluid dynamics, 

biology, plasma physics, nonlinear optics, chemistry, 

engineering, and more [1-3]. This underscores the 

extensive use of nonlinear PDEs in explaining a 

diverse range of phenomena.  To construct the exact 

solutions of NPDEs, many effective methods have 

been proposed such as the inverse scattering method 

[4], the Bäcklund transform method [5], the Hirota 

method [6], the exp-function method [7], the extended 

Tanh- function method [8], and Lie group analysis [9, 

10]. The Lie group approach is becoming more and 
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more popular for studying nonlinear partial 

differential equations appearing in mathematics and 

science. We may create group invariant solutions of 

the PDEs, and find transformation symmetry groups 

and symmetry reductions using this method [11-14]. 

 

One of the most effective analytical tools for studying 

these equations is the use of similarity transformation 

methods (STMs), which also have the advantage of 

simplifying the analysis of the problems. Because of 

this, the field of similarity analysis has become more 

and more significant. It can be considered as a 

universal and effective tool for solving nonlinear 

differential equations analytically. To find the 

similarity reductions of a particular PDE, there are 

often a few efficient approaches, including the direct 
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method [15], the modified direct technique [16], the 

nonclassical Lie approach [17], and the classical Lie 

approach [18].  

The concept of the ST method is to obtain the 

similarity variables. Depending on the symmetry 

variables, the PDE is transformed to another PDE or 

to an ODE depending on independent variables, called 

similarity variables. The similarity solutions of 

NPDEs are produced by solving the reduction 

equations derived from similarity variables. 

This paper aims to reduce the Lax pair of the given 

equations to a system of ordinary differential 

equations using the Lie similarity transformation 

method to obtain optimal similarity solutions. The 

paper is organized as follows: The explicit solutions of 

the Modified Boussinesq equation are deduced in 

section 2. In section 3 we establish the solutions of the 

KP equation. In section 4 analytical solutions of (2+1)-

dimensional KdV breaking type soliton equation are 

obtained. The paper ends with conclusions in section 

5. 

2. Similarity solution of MBQ Lax Pair 

The Boussinesq equation, which also occurs in 

several other physical situations, defines how small-

amplitude shallow water waves propagate at a uniform 

pace in a water canal of constant depth. It also appears 

in other scientific applications and physical 

phenomena such as iron sound waves in plasma, 

nonlinear lattice waves, and vibrations in a nonlinear 

string [19, 20]. 

Wazwaz [21] used the Adomian decomposition 

method to construct periodic and soliton solutions of 

the Boussinesq equation. Peter A. Clarkson [22] 

presented some new similarity solutions of the 

modified Boussinesq equation by using a direct 

method of deriving similarity solutions of partial 

differential equations. B. Ren and Xue-Ping Cheng 

[23] used a consistent tanh expansion (CTE) method 

to study the modified Boussinesq equation. The 

modified Boussinesq equation is formulated as:  

 

       𝑢𝑡𝑡 + (3𝑢2 +
1

3
𝑢𝑥𝑥)𝑥𝑥 = 0                  (1)                        

 

Where 𝑢(𝑥, 𝑡) represents the wave profile while the 

independent variables x and t represent the spatial and 

temporal coordinates. 

 

 and the Lax pair [24] of this equation is:  

 

     {
𝜓𝑥𝑥 − (

3

4
𝑢2 + 3

2
∫ 𝑢𝑡𝑑𝑥) 𝜓 = 0

𝜓𝑡 = 𝑢𝜓𝑥 − 1

2
𝑢𝑥𝜓                    

                 (2) 

Where 𝑢 = 𝑢(𝑥, 𝑡) and  ( , )x t  . 

Applying Lie transformation to Lax pair (2) to 

convert it into a system of ODEs.  The Lax pair (2) 

possesses the following Lie infinitesimal vectors: 

 

         
1 2

3

, ,

.
2 2

V V
t

x u
V t

x t u




 

 

  
 

  






                                  

(3)   

These vectors can be commutated according to Lie 

brackets:    

        [𝑣𝑖, 𝑣𝑗] = 𝑣𝑖𝑣𝑗 − 𝑣𝑗𝑣𝑖 .                (4) 

 as presented in Table 1. 

Table. 1 Commutator Table for MBQ Lax pair. 

3V 
2V 

1V Lie 

vectors 

1V 0 0 
1V 

0 0 0 
2V 

0 0 
1V 

3V 

2.1.  Reduction of the MBQ Lax pair (2) using V1+V2 

Lie vector 

Using the combined vector 

       
1 2 .V V

t 


 


 
                        (5) 

This Lie vector reduces the Lax system (2) to the 
system of ODEs: 
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   23 3
( ) ( ) 0,

4 2

( )

( )

0.

r

r

g r f r g dx

f r f

f r 









      (6)     

Using the similarity variables for this lie vector: 

     , ( , ) ( ), ( , ) ( ).tr t x t e f r u x t g r            (7) 

Solving the system (6) using Maple yields: 

     
2( ) ,ref r c                                       (8) 

    
1

2
.

2
( )

x

c x r
g r


                                  (9) 

 

where 1c  and 2c  are integration constants. Back 

substituting in (7) with the similarity variables we 

obtain: 

 

     

      

1

2
( , ) .

2

x
u x t

c x t



                                        (10) 

This result is plotted in Fig. 1 as follows: 

                                  (a) 

                                       

  

 

                                          

                                          (b) 

Fig 1. Wave solutions of the lie vector for 

the MBQ equation at (a)  and (b) . 

3.  Solutions of the (2+1)-dimensional KP Lax 

system. 

   The KP equation is used to explain how plasmas 

in magnetic fields and water waves in (2 + 1)-

dimensional spaces move. This equation is very useful 

in many applications like plasma physics and gas 

dynamics [25-27]. The (2+1)-dimensional KP 

equation is given by: 

     

        ( 6 ) 3 0t x xxx x yyu uu u u             (11) 

where x and y represent spatial coordinates and t 

represents the temporal coordinate. 

 

Numerous research findings for the (2+1)-

dimensional KP equation was presented over the last 

few years. R. Sadat and A. A. Halim [28] applied 

Darboux transformation to Eq. (11) and found some 

new exact solutions, considered a special initial 

solution for auxiliary linear problem’s Lax pair.  

Three distinct methods names; extended tanh, Lie 

symmetry and homotopy perturbation were utilized in 

obtaining approximate and exact solutions for the (2 + 

1)-dimensional KP equation [29]. Yongyi Gu and 

Fanning Meng [30] derived analytic solutions 

equation (11) with two different systematic methods; 

the exp(−𝜓(𝑧))-expansion method and extended 

complex method.  

1 2V V

1 1c  2 0c 
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It is known that the KP Eq. (11) possesses the 

following Lax pair [31]: 

 

     

 1 0.

0,

4 3 6 3

y xx

t xxx x x yx

u

u u u





 

     

  

   
   (12)      

                                                                             
 where ( , , )u u x y t and ( , , )x y t  . 

 

3.1.  Similarity solutions of the KP Lax pair. 

   The Lie infinitesimals of the KP Lax pair (12) have 

the form:     

 
1 2 3

4

, , ,

2 2
.

3 3 3

V V V
t y

x y u
V t

x y t u




  

  

   
  

   

  



          (13)  

The commutation of these vectors is presented in 

Table 2: 

Table 2. Commutative product of KP Lax pair 

3.1.1.  Reduction of the system (12) with the Lie 

vector V4. 

    
4

2 2
.

3 3 3

x y u
V t

x y t u

   
  

   
           (14) 

 

 

    The similarity variables for the lie vector 4V  are 

obtained from the equation: 

        
1 2 2
3 3 3

.
dx dy dt du

x y t u
  


                           (15)    

Solving this equation, the similarity variables are: 

     
2

1 23
3 3

( , )
, , ( , , ) ,

( , , ) ( , ).

y x f r s
r s u x y t

t t t

x y t g r s

  



(16) 

 

 

Then the system (12) reduces to: 

 

       
2 2

3 3

4 11
3 3

3

2

4

2 1 1
0,

3 4 3 6 6

3
0.

r ss

r s sss s s r

y
g g f g

t t t

y x xy
g g g g f f g g f

t t t tt t



 

 

    

 (17) 

 

     This system of PDE has no closed-form solution. 

Then by using Maple software system (17) will 

possess three Lie vectors as follows: 

 

       
1 2 3, , .X X X g

r s g

  
  
  

       (18) 

 

    Using lie vectors 

 

        2 3 .X X g
s g

 
  

 
                             (19) 

    

The similarity variables will be 

 

    
( )

, ( , ) , ( , ) ( ).
s

F z
z r g r s f r s G z

e
        (20) 

 

Transform the system of PDE (17) using the 

similarity variables (20) to a system of ordinary 

differential equations of the form:       

2 3X X

4V 
3V 2V 

1V Lie vectors 

1V 0 0 0 
1V 

2

2

3
V 0 0 0 

2V 

0 0 0 0 
3V 

0 0 

2

2

3
V 1V- 4V 
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2 2
3 3

4 11
3 3

3

2

4

2 1 1
0,

3 4 6 6

3
0.

z

z z

y
F F FG

t t t

y x xy
F F F FG FG

t t tt t

 

 



   

      (21) 

 

Solving this system (21) of ODE by Maple reveals: 

 

 

 

2
34

42 1 2
3 3 3

2

2
3

2

9 4 2 9 24

.
36 9

( )

t y z

xy

t

c t y e xt y t

t y
G z

 
 
 
 



   


   (22) 

 

 

 
7

3

1

( ) 1

2( ) .

t G z
dz

yF z c e






                              (23) 

 

 

Where , ( ) ( , )r G z f r sz    and  

2

13
3

,
y x

s
t t

r  .  

 

Back substitution we obtain: 

 

2
3

( , )
( , , ) ,

f r s
u x y t

t
  

 

 
2 1 2

3 3 3
2

4 2
3 3

22
34

4

9 4 2 9 24

( , , ) .
36 9

y
t y

xy

t

c t y e xt y t

u x y t
t t y

 
 
 
 
 



   




(24) 

 

 

This result is plotted for different values of time and 

c2 in Fig. 2 as follows: 

 

(a) ( , , )u x y t at 
2 0,c  and 0.2.t   

 

            (b)  ( , , )u x y t  at 2 0,c  and 0.5.t        

 

 

Fig 2. Wave solutions of lie vector V4 for the KP 

equation at different values of time. 

 

3.1.2.  Reduction of the system (12) with the 

combined Lie vector V3+V4 

 

    
3 4

2 2
.

3 3 3

x y u
t

x y t u
V V




    
   

    
    (25) 

 

The similarity variables for combined Lie vector (25) 

are as follows: 
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1
3

2
3

2

3
, ,

( , )
( , , ) , ( , , ) ( , ) .

y x
r s

t t

f r s
u x y t

t
x y t g r s t

 

 

             (26) 

 

The Lax pair system (12) reduces to: 

 

     

1 1
3 3

1 8
3 3

2

2

3

2
0,

3 6
4

3
3 6 0.

r ss

r s sss s s r

y
t g t f g

t

y x xy
g g g g

t t t

g

g f g f f g



    

 

  

(27) 

 

Solving this system of PDE (27) yields: 

 

     
2

81
3 3 4

2

2

2

2
3

6

3

4
2

1

3 2
,

3

( , ) .

( , )

r t

xt r t C xye

y

rt

xC ye t

y

g r s C e

f r s

 
 

 
 
 






         (28) 

 

Back substitution: 

 

     

2

2
3

2
3

4
23 2

( , , ) .
3

y

t xC ye t
u x y t

t y


                (29) 

 

This solution is plotted in Fig. 3 for different 

constants as follows: 

                                (a) 

 

                             (b) 

 

    Fig 3. The solution of V3+V4 for KP equation at (a) 

2 0C  and (b) 
2 1, 0.5C t   

4.  Analytical solutions of (2+1)-dimensional KDV-

BS Lax pair. 

This equation have been presented in fields such as 

fluid flows, plasma physics, and solid-state physics 

[32-34]. 

Various techniques were developed to study exact 

solutions of (2+1) the KDV-BS equation such as Yi 

Zhang and et al. [35] used Hirota bilinear method to 

derive periodic wave solutions of this equation. Hajar 

F. Ismael and et al. created various exact solutions to 

the (2+1)-KdV equation by using a symbolic 

computational method, the simplified Hirota’s 

method, and a long-wave method [36]. Extended exp 

( −ϕ ( ξ) ) -expansion method [37] is used to obtain 

some exact solutions of the (2 + 1) and (3 + 1)-

dimensional constant coefficients KdV equations.  

Consider the (2+1)-dimensional KdV equation: 

 

            3 0,t xxxx
u uv u                         (30) 

 

        2 .yu v dx                                              (31) 

 

 

where ( , , ), ( , , )u u x y t v v x y t 
.
 Equation 

(28) was obtained by Boiti et al. in Ref. [38] by using 
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the weak Lax pair, also named as Boiti-Leon-Manna-

Pempinelli equation. 
The (2+1)-KDV-BS equation can be represented as: 

 

     0.4 2t xx y y x yv v dxv vv v              (32) 

 

The Lax pair of this equation [24] is: 

 

     
 

,

2 .

xx

t y x y

v

v dx v

 

   



  
                  (33) 

 

 
where ( , , )x y t 

. 

4.1.  Deduction of Lie symmetry generators of the 

Lax pair (33). 

System of equations (33) admits four Lie 

infinitesimals as follows: 

 

    

 

1

2

3

4

1

2

3

4

,

,

,
2

.
2

( )

( )

( )

( )

V F
t

V F
y

x
V y F v

x y v

x
V t t F v

x t v

y

y

y

y










 


 


 

 


 

   
  

   

   
    

   





 

  (34) 

         

The arbitrary functions ( )iF y , i=1...4, are optimized 

through the commutative products listed in Table 3. 

This leads to a system of ordinary differential 

equations in the unknown functions ( )iF y reported 

here: 

 

 

 

 

 

 

Table 3. Commutative product of (2+1) KdV 

4V
 3V

 2V
 1V

 

 

  
  

 

1V
 

0 0 0 
1V

 

0 
2V

 

0 0 
2V

 
0 0 

2V
 

0 
3V

 

0 0 0 
1V

 4V
 

 

 

  
1 1

3 2 3 2 2

4 4 1

0, 0,

0, 0,

( ), ( ),

( ).

y y

y y y

y y

F yF

F F F yF F

F yF F

y y

y

 

  

   



  


  

  (35) 

 

Solving this system of ODEs (35) leads to the values 

of functions ( )iF y , i=1...4, listed below: 

    
1

2 2

3 4

1 2

3 4

, ,

, .

,( ) ( )

( ) ( )

F F
y

F F

c
y c c y

y c y c

  

 

      (36) 

 
 

Inserting (36) in (34) gives: 

 

    

 

1 2

1
2

3 3

4 2 4

,

,

,
2

.
2

V
t

V
y y

x
V y v

x y v

x
V t t v

x t v

c

c

c

c c













 


 

 


 

   
  

   

   
    

   





 

 (37) 
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4.1.1.  Reduction of the system (33) using V1+V3 lie 

vector 

 

 

    1 3 2 3 .
2

x
V V y v

x y t v
c c 



    
     

    
    (38) 

 

 

The characteristic equation writes as: 

 

 

    

 2 3

.
1 1

2

dx dy dt d dv

y v
x

c c




   




            (39) 

 

 

Using the characteristic equation (39), create new 

dependent variables and a similarity variable. 

 

 

     

 

1
2

2 3

, ,

( , , ) ( , ) , ( , , ) ( , ) .

t t

c c tt

e e
r s

x y

v x y t f r s e x y t g r s e





 

 

 (40) 

Reduce the system (33) using the new dependent 

variables as follows: 

 

 

    

 

   

2
2

22

2

4 3

2 2

3 2 2

2
,

.
2

2

t
t

tt

r r r

r s s r s

t

t tt

e e
g e g f

x x

e e ee e
g g c g

x y x y y

g

g f f








  





 (41) 

 

 

The system (41) has no analytic solution, but it has 

four Lie vectors: 

 

 

1 2 3, , .X X X
s r g

g
  

  
               (42) 

 

Choose 
2 3X X to transform the system of PDE 

(41) into a system of ODE as written: 

                                                                                                                           

  

 2
2

2

2

4 3

3

2
,

0.
2

t
t

t

z z z
t

t

z

e e
FG

x x

e e
F F c F

x y

F F e






  

 



                   (43) 

 

Solving this system of ODE on Maple gives us: 

 

 

     

  2
32

1( ) ,

t
tx c y e e r

yF z C e



                               (44)    

                                 

     
   2

3 3 3

2 2

4 1 8 4
( ) .

4t tc c e y c y
G z

x y

e  
    (45) 

 

 

, ( , ) ( ) ( ), ( , )rz s g r s F z e G zf r s    and (40): 

 

 

 

    
   2

3 3 3

2 2

24 1 8 4
( , , ) .

4 t tc c y c ye
v x y t

x y

e 


 
 (46) 

 

To get ( , , )u x y t  substitute Eq. (46) in Eq. (31) 

 

     3
3 2

2 8( 4)8
( , , ) .

tt c ee
u x y t

xy xy


                   (47) 

 

The plot of this solution at different times is cleared in 

Fig.4: 

                                       (a) 
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                                (b) 

 

Fig 4. The wave solutions of ( , , )u x y t for V1+V3 of 

(2+1)-dimensional KDV at (a) 3 0,c  0t  and (b) 

3 0,c  3t   

 

4.1.2. Reduction of the system (33) using V4 

 

      4 2 4 .
2

x
V t t v

x t v
c c 



   
    

   
        (48) 

 

Consider the characteristic equation as: 

 

 

   

 2 4

.
1

2

dx dt d dv

t t v
x

c c




  

 

                   (49) 

 

 

Then the similarity variables created from the 

characteristic equation (49): 

 

     

2

2

2

2

, ,

( , )
( , , ) , ( , , ) ( , ).

c t

t
r y s

x

f r s
v x y t x y t e x g r s

x


 

 

 (50) 

 

Using these similarity variables (50) to reduce the 

system (33) into: 

 

 

    

2

4 2

2
2

4 2

2 2
2 .

2 ,ss s

s r s

t t
g g

x x

t
g c x g f g xg

x x

g g f

 
    

 

  
        (51) 

 

Solving this system of PDE (51) will give us two 

analytic solutions: 

 

 

    
 1 1

2

2

5 4
( , ) , ( , ) 0.

5 4

r C x C t
f r s g r s

x t

 
 

 
   (52) 

 

Back substitution: 

 

    1

2 2 2

( , )
( , , ) ,

5 4

Cf r s y
v x y t

x x t x
  

 
          

(53) 

 

 

Then substituting Eq. (53) into Eq. (31) leads to: 

 

 

    

5
5 arctanh

2
( , , ) .

5

x

t
u x y t

t

 
 
 

                 (54) 

 

The second solution will be: 

 

 

   
  1

4 2 2 2

2

5 ln 4 5 4 16
( , ) , ( , ) 0.

16

x rt x x rt C t
f r s g r s

t

  
       (55) 

 

 

Back substitution: 

 

     1

2
2

2 2

5 4
( , , ) ln 4 5 ,

16 16

Cx y
v x y t yt x

t t x
        (56) 

 

 

Then substituting Eq. (56) into Eq. (31) leads to: 

 

 

  

5
2 5 arctanh

21
( , , ) .

2 2 5

x
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ytx
u x y t x
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 
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  (57) 

76



 S. Salem,et.al / Similarity Analysis of Lax Pairs for a Class of Nonlinear Evolution Equations 

 

 

The two solutions are plotted in Fig. 5 as follows: 

 

 

       (a) 

5
5 arctanh

2
( , , )

5

x

t
u x y t

t

 
 
 

  at 0y   
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 at     

0.5t   

 

 

Fig 5. Solutions of the lie vector 4V for the (2+1) 

KdV equation. 

 

5. Conclusion 

The Lie similarity transformation method is applied 

on Lax pairs of three nonlinear evolution equations 

named Modified Boussinesq, Kadomtsev–

Petviashvili, and (2+1) - KDV-BS soliton equations.  

The Lie infinitesimals for equations’ Lax pairs are 

discussed and specialized by the aid of the commutator 

table. These Lax pairs are reduced through some 

combined Lie vectors revealing nonlinear ODEs. The 

ODEs’ solutions are obtained with the utility of the 

Maple tool. New solutions for the considered 

equations are deduced and graphed at different 

arbitrary functions. The obtained solutions are 

checked to satisfy the original equation. We concluded 

that the detected solutions are novel and the Lax pairs 

solutions’ are effective in uncovering new solutions of 

nonlinear evolution equations. 
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