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ABSTRACT 
 
The need for semi-autonomous or autonomousoperations, communication delay, short 
contact periods as wellas the need for survival in harsh environments poses 
uniquechallenges to mechanical transmission systems. Predictive health monitoring 
(PHM) systems are currently gaining in popularity due to their effectiveness in providing 
robust information about the system condition and reducing maintenance costs. 
However, PHM systems require reliable monitoring techniques, such as vibration, 
acoustic emission, and oil debris analysis. These techniques have shown the need to 
apply intelligent algorithms in order to benefit from the advantage of each technique in 
classifying faults and predicting the onset of failure. This paper presents a PHM system 
for monitoring different gear faults using vibration analysis and support vector machine 
(SVM) algorithms. Experiments were conducted on a multi-stage gearbox under three 
conditions, normal, external excitation and high temperature. The model is verified 
through additional experimental observations. 
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INTRODUCTION  

 
Monitoring the condition of the in-service mechanical transmission system is an 
important issue for reliability, where their components deteriorate over the time and 
affected much when subjected to varying loads. This is led in continues improve of 
maintenance strategies from breakdown and periodic maintenance to CBM and 
predictive maintenance in order to sustain reliability and reducing the periodic 
maintenance costs. Also, in some applications there is more demanding aspect such 
as saving man's life other than reliability [1]. Smith [2], has defined the causes of 
transmission vibration and its transmission path, including factors such as 
manufacturing error, design error and gear tooth deflection, which combine to 
introduce a transmission error (TE), which is the primary source of the vibration. 

 
Over the past decade, vibration analysis proved to be a trustworthy diagnostic 
technique that can provide reliable information. However, in the last 10 years 
researchers devoted a much effort to support CBM actions using vibration information 
[3-13].  
 
The work focused on the development of reliable features using a suitable signal 
processing techniques can be grouped in two groups; time domain vibration features 
including: statistical parameters, time synchronous averaging based methods, filter 
based methods, stochastic methods and other model based methods. The second 
group is the frequency domain and time frequency domain features including: first 
order; (FFT), correlation of spectrum, signal averaging, short time Fourier transform 
(STFT), continuous wavelet transform (CWT), discrete wavelet transform (DWT), 
discrete wavelet packet analysis (DWPA), time-averaged wavelet spectrum (TAWS) 
and time-frequency scale domain (TFS). Second order; power spectrum, Power 
cepstrum (logarithm of Power spectrum), cyclostationarity, spectrogram Wigner 
distribution and scalogram. Third order; Bicoherence spectrum, bilinearity and Wigner 
bi Spectra. Fourth order; Wigner tri Spectra [29]. 
 
The authors of this paper continued their research by developing multi sensors fusion 
algorithms to fuse vibration analysis information with other sensory data, such as 
acoustic emission and oil debris analysis to minimize false alarms that may occur in 
failure prediction [14-17]. Also, other researchers devoted efforts to build intelligent 
algorithms based on vibration features including Expert systems, ANN's , Genetic 
algorithm, and fuzzy logic [18 - 28]. Intelligent health monitoring systems incorporate 
AI algorithms, where AI can be defined as ''the science of making machines do things 
that would require intelligence if done by humans'' [33]. To develop an IHMS, the 
running system condition must be recognized and classified. Researchers have 
devoted considerable effort to the application of various different soft computing 
methods to develop IHMSs, and have shown that this can be achieved using methods 
such as neural networks, fuzzy logic and mathematical modelling based on parametric 
approaches. All of these methods can provide important tools in the field of intelligent 
systems which can learn, adapt, and make decisions concerning the system they are 
in charge of [33]. 
 
Artificial neural networks (ANNs) have been used with different HMS techniques such 
as vibration and acoustic monitoring. An ANN requires input data of the healthy and 
faulty conditions to be pre-processed, and then these features are used to model the 
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system’s behavior. Fenton et al [36] mentioned that there are two main basic network 
architectures: feed-forward and recurrent ANNs. Feed-forward ANNs do not have 
feedback between layers, and previous inputs are not remembered, whereas recurrent 
ANNs involve feedback between layers and previous inputs are remembered and can 
be used to reconstruct correlative memory. The two standard neural network 
architectures used in transmission diagnostics are the feed-forward back propagation 
network, and the Kohonen feature map which is also known as the self-organizing map 
(SOM) [37]. Fuzzy logic was developed by Zadeh in the 1960s to characterize types of 
knowledge that cannot be represented by classical Boolean algebra to cover 
approximate knowledge in describing the behavior of systems which are difficult to 
describe mathematically [33]. 
 
Currently, the authors of this paper is devoting their efforts in developing smart CBM 
systems that can use one analysis technique only such as vibration or acoustic 
emission analysis along with intelligent algorithms to predict the onset of failures; this 
is to reduce costs of different sensory requirements [30-32]. This paper builds on the 
author's previous work to develop an online wireless vibration analysis tool for testing 
automotive mechanical transmissions. The online operation of this system can lead to 
the wide spread of using such systems with other rotating machinery. 
 
Parametric methods based on mathematical modelling is to fit measured time series 
waveform data to a parametric time series model, and then extract features based on 
this model [34]. Two models are currently in use: the auto regressive (AR) and auto-
regressive moving average (ARMA) models. The advantage of mathematical modeling 
based on parametric methods over the neural networks model-based method is its 
ability to deal with time series data directly without the need for a signal pre-processing 
step to extract useful features that can be modeled to represent the system [14]. 
However, they can only be used to model a time series signal such as a vibration 
signal, and cannot be applied to combined information from several techniques 
(vibration, AE and ODA) such as in the case of fuzzy logic. 
 
In Addition, researchers have devoted considerable effort to the application of various 
different soft computing methods to develop heath monitoring systems HMSs for gear 
box transmission systems summarized in data mining techniques. These methods can 
provide important tools for the field of intelligent monitoring which can learn, adapt, and 
make decisions concerning the system they are in charge of TakehisaYairi et al. [45] 
evaluating a variety of dimensionality reduction algorithms and compare between 
them, without using the cross-validation. 
 
Artificial neural networks ANNs in combination with other soft computing methods have 
been the most predominant to date [42, 43]. However, ANN techniques are 
characterized as black box approaches which model the relationship between different 
sensory data and a desired response without giving any information about the process. 
In addition, issues associated with collinearity and dimensionality needs to be 
specifically addressed in these techniques. Solving many of these limitations can be 
addressed through the use of multivariate statistical analysis, which is a data-driven 
modelling approach [43]. Iverson et al. [38, 39, 44] discuss several data driven software 
tools that successfully applied to space mission operations using data mining tool 
which searches for unusual data points, or outliers, in multivariate data sets in the 
spacecraft system data that may indicate malfunctioning system components. John 
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MacGregor et al. [45] established the advantages applying of multivariate latent 
variable monitoring and fault diagnosis methods contrasted with other techniques as 
Independent Component Analysis (ICA), Artificial Neural Networks (ANN), and Support 
Vector Machines (SVM).  
 
The simplicity of multivariate statistical analysis approach is that there is no need for a 
fundamental model of the system and only data from normal operation needs to be 
used, which is generally available in some form for most machines. Among the 
approaches used in multivariate analysis are: two-projection methods called principal 
component analysis PCA, projection to latent structure PLS [48, 49, 50]. Many 
applications of these two techniques have been successfully applied in other fields of 
process monitoring. 
 
This paper outlines the use of the Support Vector Machine SVM approach, to develop 
a framework for monitor heath status of transmission system under study. 
 
 
SYSTEM CONFIGURATION 
 

An automotive mechanical transmissions gear test rig is currently being developed for 
this ongoing research. The rig comprises 130mm centre distance gearbox. Table1 
provides the basic geometry specification for the gears. The system is driven by a 
7.5Kw variable speed electric motor controlled by an inverter to provide a speed 
variation of 1750 rpm. The load is applied via a mechanical breaking mechanism. 

 

Table 1. Gears basic geometry. 

 

 

The rig can generate a load torque on the test gears in the range of 0 - 200Nm. The 
torque is measured using calibrated strain gauges installed on the shaft and the 
measured torque values are transmitted to the control program by telemetry in order 
to provide torque control of the loading mechanism on the mechanical transmissions. 
The test rig is shown in Figure 1. The testing system has been developed for this 
research work, and is capable of on-line monitoring, automatic measurement, and 
analysis. Also, any changes in the gears and bearing conditions due to degradation 
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during the operation can be identified. The advantage of developing the system arises 
from its ability to enhance online analysis methods for vibration technique to provide 
robust information about the system’s condition. Two temperatures were measured: 
gearbox oil temperature and bearing temperature using RTD temperature sensors 
(10mv/C). The input shaft speed and motor current were also monitored as a 
precaution. The test rig operating conditions were monitored and it is flexibly changed 
according to the required test conditions using LabVIEW’s virtual instrument scalable 
architecture features. 
 
As shown in Fig. 1, the process is simply a multistage automotive gearbox. The 
gearbox is derived by a 3-phase electrical motor. The system is loaded through a 
mechanical braking system and controlled with an AC motor inverter. The system is 
equipped with five sensors, two accelerometers at two different positions (input and 
output of the gear system), temperature sensor (immersed in the gearbox oiling 
system), wireless strain gauge for torque measurements (on the output shaft) and a 
proximity sensor for speed measurement (at the gearbox input shaft). 
 
 

 

1. Speed sensor 2. Accelerometer 1 3. Temperature sensor 4. Accelerometer 2  5. 
Torque sensor. 
 
 

 

 

Fig. 1. Multistage gearbox System Scheme. 
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The Vibration analysis system incorporated a 24-bit NI wireless DSA data acquisition 
card (NI 9234 with cDAQ-9191) to acquire the vibration signal, speed and temperature. 
The vibration signals were acquired using two DJB Piezotronic constant current source 
accelerometers (model no. Acc103 -10mV/g) mounted adjacent to the tested gear 
bearings transversely to the gearbox casing, and a shaft speed sensor was used to 
acquire the shaft rotation reference. The sensors location diagram over the test rig is 
shown in Figure 2. The vibration signals are then acquired continuously and 
transmitted to the base unit using an IEEE 802.11b/g (Wi-Fi) wireless communication 
interface (frequency range 2.412–2.462 GHz). The system can send the data from a 
range up to 30 m for indoor measurements and 100 m for outdoor operation as long 
as the line of sight of the wireless signal is provided. The system can also provide 
Ethernet cabling measurements up to a distance of 100 m. The test rig sensor-
actuation system layout is shown in Figure 3. 

 

 

Fig. 2. 1. Inverter, 2. Electric motor, 3. Fixable coupling, 4. 130 mm center distance 
Gearbox, 5. Mechanical coupling, 6. Loading Mechanism. 

 

 

 

Fig. 3. The test rig sensors - actuation system layout. 
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SUPPORT VECTOR MACHINES METHODOLOGY 
 
 
Support Vector Machines Methodology 
 
Support vector machines (SVMs) are a group of learning machines for solving pattern 
recognition problems efficiently. SVMs try to find the hyperplane, which separates 
optimally the training patterns according to their classes (i.e. hyperplane with maximum 
boundary margin). This is performed by using what is commonly known in machine 
learning as the “kernel trick” when using SVM’s.  Kernel function is chosen to map the 
data from its original space to feature space. It can be chosen arbitrarily so as to best 
suit the data and at the same time reduce the computational burden involved with 
generating the mapped values by direct evaluation. “Support vectors” correspond to 
those points that lie along the margin or closest to it. The maximum margin between 
classes is found by solving a quadratic optimization problem. SVMs have a good 
generalization performance over traditional approaches, since their training is based 
on the principle of structural risk minimization (SRM) (i.e. minimizing the upper bound 
on the expected risk), while the training traditional approaches are based on empirical 
risk minimization (i.e. minimizing the number of the training error).  SVMs have a high 
computational efficiency in terms of speed and accuracy.  They are also more 
preferable when dealing with high dimensional data as they are more robust than 
traditional approaches, which may over-fit the data. However, they still have negative-
aspects in terms of giving information about the system output and no physical 
explanation and interpretation of the process itself. The description of SVMs 
classification can be explained as follows:  
 

Consider the training data {xi ,yi}, where: i=1,…., N, yiϵ{+1,-1} corresponding to the 
class of xi (yi = 1 for class A, yi = -1 for class B). The principle of operation of SVMs 
classifier will be modified according to the type of the data samples as follows: 
 
 
Linearly Separable Data  
 
Figure 4 shows the hyper plane H which separates the two classes of data (separating 
hyper plane). This hyperplane H satisfies the following equality 

 
b	+	w�. x� = 0                                                                        (1) 

 
where: w is a normal vector on the hyperplane, and b is a bias representing the 
distance from the origin. 
 

 
Fig. 4. Optimal separating hyperplane of SVMs for separable data. 



31 MC      Proceedings of the 17th Int. AMME Conference, 19-21 April, 2016 

 

The training data corresponding to classes A and B satisfy the following inequalities 
respectively 
 
b + w�. xi≥ 1      and       b + w�. xi≤ −1                            (2) 
 
The two inequalities in (2) can be combined as follows: 
 
yi	(b + w�. xi) ≥ 1                                                             (3) 

 
The equalities of (3) define hyperplanes H1, and H2 respectively, and any training data 
belongs to class A or class B and lying on H1 or H2 is called support vectors (SVs). 
From figure 4 the geometry and the separating margin of hyperplane H is given by: 

 

m� = �
‖�‖                                                                          (4) 

 
 

The SVMs classifier tries to find the separating hyperplane with the largest margin 
(optimal hyperplane). This can be formulated as follows: 
 

Minimize 
�
� ‖w‖�                                                                   (5) 

 
ands.t. constraints in (3). 
 
Using the Lagrangian formulation of the problem  
 

Lp = 
�
� ‖w‖2 - ∑ α�

�
�  yi	(b + w�. xi) + ∑ α�

�
�                           (6) 

 
Lp will be minimized with respect to w, b and all the derivatives of Lp with respect to all 
the Lagrangian multipliers, αi will vanish. All of these multipliers are subjected to the 
following constraints:  

 
α� ≥ 1                                                                                          (7) 
 
The calculations can be simplified by applying Karush-Kuhn-Tucker (KKT) condition, 
which allows applying dual formulation of the problem. This implies that the maximum 
of Lp is subjected to same constraints in (7) and acquiring that the gradient of Lp with 
respect to w and b vanishes which results in (6) and (7): 

 
w = ∑ α��  yi xi                                                                           (8) 

 
∑ α�� yi= 0                                                                                  (9) 
 
Substituting (8) and (9) in (6) results in: 
 

LD = ∑ α��  -  
�
�∑ α��,� α� yiyj xixj                                           (10)    

 
s.t. constraints in (7) and (9). Once α is obtained from (10) (using a quadratic 
programming (QP) solver), the dimensions of the classifier w, b are determined using 
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(3) and (8). Substituting the obtained values of w and b in (11) allows the classification 
of any unknown sample. 
 
y unknown= sign(b + w�. x unknown)                                       (11)  
 
The number of variables in (10) is the number of the training data. All the training data 
associated with the Lagrangian multipliers satisfying the inequality of (7) are the SVs.  
The number of SVs is considerably less than the number of the training data. 
 
 
Non-Separable Data (Noisy Data) 
 
Figure 5 shows an example of non-separable data, which contains noise. The 

classification is performed by introducing a positive slack variable i
ξ which defines the 

distance between the margin and the input vector xi lying on the wrong side of the 
margin, and i =1,…., N, as well as introducing a penalty C due to errors. The larger the 
value of C, the larger is the margin mr and, hence, the smaller is the number of 
misclassified samples. Now the optimization problem is modified as follows: 

 

Minimize 
�
� ‖w‖2 + C ∑ ξ��

�                                           (12) 

 
s.t.     yi	(b + w�. xi) ≥ +1 − ξ� , for i=1,…..,N                     (13) 

 
and  ξ� ≥ 0  for all i                                                                  (14)   

 

 
 

Fig. 5. Optimal separating hyperplane of SVMs for non-separable data. 
 
 
The calculations can also be simplified by applying KKT condition as in (10) subject to 
the constraints in (9) where: 

 
c ≥ α� ≥ 0                                                                                           (15) 

 
The only difference between (7) and (15) is that there is an upper bound C on the 
Lagrangian multipliers. 
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Non-Linear Data 
 
In the case of non-linear input data, kernel functions are used. They map the nonlinear 
input data into a higher dimensional space, where linear separation is possible. Kernel 
functions also called "kernel trick" are defined as follows: 

 

k�x�, x� = 	φ(x�". φ�x�                                                        (16) 

 

#b + w�. k�x�, x� $ ≥ +1 , for   i = 1,……,N                         (17) 

 
Substituting (16) into KKT condition of (10) results: 
   

LD= ∑ α��  -  
�
�∑ α��,� α� yi yj	k�x�, x�                                       (18) 

 
s.t. constraints in (15) and (9).Again, α is obtained from (18) (using a quadratic 
programming QP solver) and the dimensions of the classifier w, b are determined using 
(8) and (17).  Substituting w, b in (11) allows the classification of any unknown sample. 
Figure 6 shows non-linear kennel function mapping philosophy and the two kernel non 
liner functions are: 
 

1. Polynomial: k�x�, x� = (x�%. x�+1)n , n > 0 

 
where: n is the degree of inner product kernel. 
 
2. Gaussian Radial basis function (RBF): 
 

k�x�, x� =	exp #σ)x�% − x�)
�$ , *> 0        (19) 

 

where: σ = +�
�,-and γ	is the kernel width parameter. 

 

 
 

Fig. 6. Kernel function (non linear case). 
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RESULTS AND DISCUSSION 
 
This section discusses the results of the experimental study, showing the application 
of the SVM algorithm to real stored sensory data, for normal and anomalous operation 
periods.  

 
Measurements were driven through three conditions as shown in Fig. 7. Figure 7 
shows Kurtosis, Crest factors and temperature of the input gearbox shaft through the 
different conditions. First, the system was run under normal condition (observations 1- 
100), then external excitations were applied at one position (input shaft: 101- 200). The 
system was then subjected to a high temperature (201-300).      

 

 

Fig. 7.  Kurtosis,  Crest factors and Temperature at the input gearbox shaft for 300 
samples experiments. 

 
There are several evaluation schemes for selection of training and testing sets 
including hold-out, leave-one-out, cross-validation and bootstrap. In our article the 
selection is based on hold-out method. So, the 300observations are divided into 225 
observations as training set and 75 observations as testing set. The division 
percentage is 75 % for training set to 25% for testing set.  
 
 
Nonlinear Support Vector Machines Results 
 
In this section, the generalization of the non-linear SVMs classification algorithm to the 
gearbox state-of-health data and its performance is investigated. The training 
technique generated in this design work is adapted to train 225 observations (80 
normal, 145 faulty) as training set (Set-1). Subsequently, the model is tested and 
validated on a subset (Set-T) of the remaining 75 observations (20normal, 55 faulty) 
and their corresponding normalized values are directly used as the input features for 
SVMs. The corresponding output y1 is (1 for a normal condition, 2 and 3 for faulty 
conditions). 
 
 
SVM Models Design 
 
The SVM models are designed during the training process by trial and error. The  
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training process involves different Kernel functions as well as several values of each 
Kernel parameters in order to obtain the SVM classifier with the best performance. The 
SVM and Kernel methods coded in MATLAB is used for the SVMs training and testing. 
 
 
Selection of Kernel Function and Kernel Parameters 
 
The SVMs classification technique is tested for two different Kernel functions during 
the training process namely, the polynomial and Gaussian RBF kernel functions of 
(19).According to the performance of these Kernel functions, the suitability of the SVMs 
as an intelligent classifier is judged. 

 
The selection of the optimum parameters for SVMs is done during the training process 
(Set-T). The SVM classifier with the best performance is obtained by testing different 
values of the Kernel parameters.  These parameters are varied in the following manner; 
γ is varied with values of 0.1, 0.2, 0.3, 0.5, 1, 3, 5.  The order of the polynomial Kernel 
n is varied in the range with steps of 2.  The penalty due to the error C is also varied 
with values of 1, 10, 100, 500 and 1000. The tolerance condition for the QP solver is 
0.0000001. The performance of the two SVMs is assessed on each of these values by 
calculating the training percentage performance efficiency defined by: 

 

/ = �0.		01	2345672	80��78�	86322�1�79
%0�36	�0.		01	2345672 	× 100                                (23) 

 
From these results, the SVM classifier with the highest training percentage 
performance efficiency is selected. The testing process is then performed, during 
which the generalization performance of the classifier is examined using testing set 
(Set-T) by evaluating the testing percentage performance efficiency. 
 
 
Training and Testing the Results 
 
Figure 8 shows the best performance of kernel functions during the training process of 
the training set (Set-1).The best performance is introduced in terms of the percentage 
training efficiency of equation (23), with respect to the variation of the kernel 
parameters γ, and n as well as the penalty due to the error C.  The corresponding 
number of SVs and the training time are also illustrated. 
 
From the results illustrated in Figure 8 the following clarification are worth noting: 
1. Effect of penalty due to the error C  

a. For the Kernel functions under investigation, the best performance is obtained 

at high values of C = 500 and 1000.  In addition, as C increases the training 

efficiency increases. 

b. The maximum training efficiency is 96.98% at C= 1000. 

2. Effect of the Kernel parameters  

a. For the polynomial Kernel, as n increases, both of the number of SVs and the 

training time decrease, while the training efficiency increases. The best 

performance for the polynomial Kernel function is 96.13% for C = 1000, n 

= 10.  
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Fig. 8. Best performance obtained during training of SVMs with for normal and faulty 
data and for different values of Kernel parameters for Gaussian and polynomial 

Kernel. 
 
 

b. For the Gaussian Kernel, as γ decreases, both of the number of SVs and the 

training efficiency increase, while the training time decreases. The best 

performance for the Gaussian Kernel function is 96.98% for C = 1000, γ = 0.1.  

3. Effect of the type of the kernel function 

a. The best training efficiency was obtained with the Gaussian Kernel function 

(96.98% during SVM training). 

b. The shortest training time was obtained for the polynomial Kernel function (7.4 
second during SVM training and the smallest number of SVs was obtained for 
both the polynomial and Gaussian Kernel function (10 SVs during SVM training). 

 
Figures 9 and 10 demonstrate samples of contour plots for non-linear SVM classifier 
using Gaussian Kernel functions. 
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C=1000, Gaussian, KO =2, lambda=1e-7 

 

Figure 9. Non-linear Gaussian SVMs contour plots. 
 

 
C=1000, Polynomial, KO =2, lambda=1e-7 

 
Figure 10. Non-linear Polynomial SVMs contour plot. 

 
 
CONCLUSION  
 
The study has presented a wireless vibration measuring system that was able to detect 
different conditions of gears in automotive gearbox and clearly identify its condition 
using two accelerometers at two different positions (input and output of the gear 
system) but only one was used in analysis, temperature sensor (immersed in the 
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gearbox oiling system), wireless strain gauge for torque measurements (on the output 
shaft) and a proximity sensor for speed measurement (at the gearbox input shaft)for 
model building and testing. The study has focused on monitoring the progression of 
gear faults in spur and helical gears, using multiclass SVM. The online information 
about the transmission condition can provide a solution for PHM systems. The system 
solved a major problem for application those sensing points are far from acquisition 
and analysis point. The system is being developed for use on 130mm automotive 
manual transmissions, but could be adapted for other transmission or machinery 
systems rotating machinery. The model was tested under different conditions 
including: normal condition, external excitations at one position (input shaft), high 
temperature and was able to successfully differentiate between them. 
 
For future applications, another data driven monitoring to explore, isthe use of 
supervised learning methods to help identify fault signatures. Among these methods 
Projection to latent structure discriminant analysis PLS-DA based technique, may be 
able to analyze the data and distinguish between different types of fault behavior and 
normal operation as linear and nonlinear classifiers.  
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