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ABSTRACT

Sophisticated, accurate fault detection and diagnosis of monitoring processes can
minimize downtime, increase safety of automotive transmission and gear systems, and
reduce costs. To tackle this problem, transmission systems data was studied and
analyzed to automatically characterize normal system behavior and anomaly detection
and fault diagnosis methods based on multivariate latent techniques. Predictive health
monitoring (PHM) systems are currently gaining in popularity due to their effectiveness
in providing robust information about the system condition and reducing maintenance
costs. However, PHM systems require reliable monitoring techniques, such as
vibration, acoustic emission, and oil debris analysis. These techniques have shown the
need to apply intelligent algorithms in order to benefit from the advantage of each
technique in classifying faults and predicting the onset of failure. This paper presents
a soft sensor technique namely Principal Component Analysis (PCA) for monitoring
different gear faults using vibration analysis. Experiments were conducted on a multi-
stage gearbox under five conditions, normal, external excitation at two positions, high
temperature and high temperature with external excitation. The model is verified
through additional experimental observations.
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INTRODUCTION

One of the main concerns of any automotive equipment is to ensure the health and
safety of transmission gear system. The worst case in this circumstance is probably
the loss of a mission but the more common interruption of gear functionality can result
in compromised task objectives. Condition monitoring soft sensors hold information
related to state-of-health (SOH) of its subsystems. Each parameter has information
which represents a time-variant property (i.e. a status or a measurement) to be
checked. Moreover, the tremendous increase in data volume and its complexity directs
the need for more efficient and scalable data processing system. As a consequence,
there is a continuous improvement of transmission gear monitoring applications in
order to quickly respond to changes in automotive missions.

Also, in some applications there is more demanding aspect such as saving man's life
other than reliability [1]. Smith [2], has defined the causes of transmission vibration and
its transmission path, including factors such as manufacturing error, design error and
gear tooth deflection, which combine to introduce a transmission error (TE), which is
the primary source of the vibration.

Over the past decade, vibration analysis proved to be a trustworthy diagnostic
technigue that can provide reliable information. However, in the last 10 years
researchers devoted a much effort to support Condition Based Maintenance CBM
actions using vibration information [3-13].

The work focused on the development of reliable features using a suitable signal
processing techniques can be grouped in two groups; time domain vibration features
including: statistical parameters, time synchronous averaging based methods, filter
based methods, stochastic methods and other model based methods. The second
group is the frequency domain and time frequency domain features including: first
order; (FFT), correlation of spectrum, signal averaging, short time Fourier transform
(STFT), continuous wavelet transform (CWT), discrete wavelet transform (DWT),
discrete wavelet packet analysis (DWPA), time-averaged wavelet spectrum (TAWS)
and time-frequency scale domain (TFS). Second order; power spectrum, Power
cepstrum (logarithm of Power spectrum), cyclostationarity, spectrogram Wigner
distribution and scalogram. Third order; Bicoherence spectrum, bilinearity and Wigner
bi Spectra. Fourth order; Wigner tri Spectra [29].

The authors of this paper developed soft-sensor fusion algorithms to fuse vibration
analysis information with other sensory data, such as acoustic emission and oil debris
analysis to minimize false alarms that may occur in failure prediction [14-17]. Also,
other researchers devoted efforts to build intelligent algorithms based on vibration
features including Expert systems, ANN's, Genetic algorithm, and fuzzy logic [18 - 28].
Intelligent health monitoring systems incorporate Al algorithms, where Al can be
defined as "the science of making machines do things that would require intelligence
if done by humans" [33]. To develop an IHMS, the running system condition must be
recognized and classified. Researchers have devoted considerable effort to the
application of various different soft computing methods to develop IHMSs, and have
shown that this can be achieved using methods such as neural networks, fuzzy logic
and mathematical modelling based on parametric approaches. All of these methods
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can provide important tools in the field of intelligent systems which can learn, adapt,
and make decisions concerning the system they are in charge of [33].

Artificial neural networks (ANNs) have been used with different HMS techniques such
as vibration and acoustic monitoring. An ANN requires input data of the healthy and
faulty conditions to be pre-processed, and then these features are used to model the
system’s behavior. Fenton et al [36] mentioned that there are two main basic network
architectures: feed-forward and recurrent ANNs. Feed-forward ANNs do not have
feedback between layers, and previous inputs are not remembered, whereas recurrent
ANNs involve feedback between layers and previous inputs are remembered and can
be used to reconstruct correlative memory. The two standard neural network
architectures used in transmission diagnostics are the feed-forward back propagation
network, and the Kohonen feature map which is also known as the self-organizing map
(SOM) [37]. Fuzzy logic was developed by Zadeh in the 1960s to characterize types of
knowledge that cannot be represented by classical Boolean algebra to cover
approximate knowledge in describing the behavior of systems which are difficult to
describe mathematically [33].

Currently, the authors of this paper is devoting their efforts in developing smart CBM
systems that can use one analysis technique only such as vibration or acoustic
emission analysis along with intelligent algorithms to predict the onset of failures; this
is to reduce costs of different sensory requirements [30-32]. This paper builds on the
author's previous work to develop an online wireless vibration analysis tool for testing
automotive mechanical transmissions. The online operation of this system can lead to
the wide spread of using such systems with other rotating machinery.

Parametric methods based on mathematical modelling is to fit measured time series
waveform data to a parametric time series model, and then extract features based on
this model [34]. Two models are currently in use: the auto regressive (AR) and auto-
regressive moving average (ARMA) models. The advantage of mathematical modeling
based on parametric methods over the neural networks model-based method is its
ability to deal with time series data directly without the need for a signal pre-processing
step to extract useful features that can be modeled to represent the system [14].
However, they can only be used to model a time series signal such as a vibration
signal, and cannot be applied to combined information from several techniques
(vibration, AE and ODA) such as in the case of fuzzy logic.

In Addition, researchers have devoted considerable effort to the application of various
different soft computing methods to develop heath monitoring systems HMSs for gear
box transmission systems summarized in data mining techniques. These methods can
provide important tools for the field of intelligent monitoring which can learn, adapt, and
make decisions concerning the system they are in charge of TakehisaYairi et al. [45]
evaluating a variety of dimensionality reduction algorithms and compare between
them, without using the cross-validation.

Artificial neural networks ANNs in combination with other soft computing methods have
been the most predominant to date [42, 43]. However, ANN techniques are
characterized as black box approaches which model the relationship between different
sensory data and a desired response without giving any information about the process.
In addition, issues associated with collinearity and dimensionality needs to be
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specifically addressed in these techniques. Solving many of these limitations can be
addressed through the use of multivariate statistical analysis, which is a data-driven
modelling approach [43]. Iverson et al. [38, 39, 44] discuss several data driven software
tools that successfully applied to space mission operations using data mining tool
which searches for unusual data points, or outliers, in multivariate data sets in the
spacecraft system data that may indicate malfunctioning system components. John
MacGregor et al. [45] established the advantages applying of multivariate latent
variable monitoring and fault diagnosis methods contrasted with other techniques as
Independent Component Analysis (ICA), Artificial Neural Networks (ANN), and Support
Vector Machines (SVM).

The simplicity of multivariate statistical analysis approach is that there is no need for a
fundamental model of the system and only data from normal operation needs to be
used, which is generally available in some form for most machines. Among the
approaches used in multivariate analysis are: two projection methods called principal
component analysis PCA, projection to latent structure PLS [48, 49, 50]. Many
applications of these two techniques have been successfully applied in other fields of
process monitoring.

This paper outlines the use of the multivariate latent approach, to develop a framework
for monitor heath status of automotive mechanical transmissions gear system under
study. Models based on PCA and PLSDA are developed so that automotive
mechanical transmissions gear can be monitored using the latent space of these
models.

System Configuration

An automotive mechanical transmissions gear test rig is currently being developed for

this ongoing research. The rig comprises 130mm centre distance gearbox. Table1
provides the basic geometry specification for the gears. The system is driven by a
7.5Kw variable speed electric motor controlled by an inverter to provide a speed
variation of 1750 rpm. The load is applied via a mechanical breaking mechanism.

Table 1. Gears basic geometry.

Gear number

Specifications 1 > 3 4 5

P W P w P w P ALY P W

Module (mm) 9.5 9.5 9.5 9.5 8 8 8 8 8 8

Gear Type (H-S) S S H H H H H H H H

Number of teeth 21 40 19 35 30 33 38 25 43 20

Face Width 25 25 | 25 | 25 | 25 | 25 | 25 | 25 | 30 | 30
(mm)

Gear Ratio 4.095 3.96 2.365 1.414 1
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The rig can generate a load torque on the test gears in the range of 0 - 200Nm. The torque is
measured using calibrated strain gauges installed on the shaft and the measured torque values
are transmitted to the control program by telemetry in order to provide torque control of the
loading mechanism on the mechanical transmissions. The test rig is shown in Figure 1. The
testing system has been developed for this research work, and is capable of on-line monitoring,
automatic measurement, and analysis. Also, any changes in the gears and bearing conditions
due to degradation during the operation can be identified. The advantage of developing the
system arises from its ability to enhance online analysis methods for vibration technique to
provide robust information about the system’s condition. Two temperatures were measured:
gearbox oil temperature and bearing temperature using RTD temperature sensors (10mv/C).
The input shaft speed and motor current were also monitored as a precaution. The test rig
operating conditions were monitored and it is flexibly changed according to the required test
conditions using LabVIEW'’s virtual instrument scalable architecture features.

As shown in figure 1, the process is simply a multistage automotive gearbox. The gearbox is
derived by a 3-phase electrical motor. The system is loaded through a mechanical braking
system and controlled with an AC motor inverter. The system is equipped with five sensors,
two accelerometers at two different positions (input and output of the gear system),
temperature sensor (immersed in the gearbox oiling system), wireless strain gauge for torque
measurements (on the output shaft) and a proximity sensor for speed measurement (at the
gearbox input shaft).

g S ummma P ST
A

1. Speed sensor 2. Accelerometer 1 3. Temperature sensor 4. Accelerometer 2 5. Torque
sensor

Fig. 1. Multistage gearbox System Scheme.
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Fig. 2. 1. Inverter, 2. Electric motor, 3. Fixable coupling, 4. 130 mm center
distance Gearbox, 5. Mechanical coupling, 6. Loading Mechanism.

The Vibration analysis system incorporated a 24-bit NI wireless DSA data acquisition
card (N1 9234 with cDAQ-9191) to acquire the vibration signal, speed and temperature.
The vibration signals were acquired using two DJB Piezotronic constant current source
accelerometers (model no. Acc103 -10mV/g) mounted adjacent to the tested gear
bearings transversely to the gearbox casing, and a shaft speed sensor was used to
acquire the shaft rotation reference. The sensors location diagram over the test rig is
shown in Figure 2. The vibration signals are then acquired continuously and
transmitted to the base unit using an IEEE 802.11b/g (Wi-Fi) wireless communication
interface (frequency range 2.412-2.462 GHz). The system can send the data from a
range up to 30 m for indoor measurements and 100 m for outdoor operation as long
as the line of sight of the wireless signal is provided. The system can also provide
Ethernet cabling measurements up to a distance of 100 m. The test rig sensor-
actuation system layout is shown in Figure 3.

Signal Conditioning s‘
|°.

Sensors \‘,‘;—? : e G“
‘_:%/ Speed Sensor

Temperature
Sensor

Actuators

e Speed Control
* Load Control

Accelerometer ! B
Torque
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Fig. 3. The test rig sensors - actuation system layout.
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MULTIVARIATE LATENT APPROCH (PCA)

Principal component analysis decomposes the variance and covariance structure of a
data matrix by defining linear combinations of the columns in the original matrix.
Moreover, PCA extracts information from data sets by computing a smaller data set
and other summary information that adequately captures most of the underlying
features of the larger data set. The point that needs to be stressed is that the data can
be reduced to a size which is more manageable but contains the features that are often
of interest. PCA extracts a score matrix, T, and a loading matrix, P, from X. These
matrices have the following dimensions [10, 13]:

X:NxK T:NxA P:KxA (1)

The first column of T and P are called by their shorter forms, t1 and p1 respectively.
The lower case letters indicate that these are vectors, upper case letters indicate
matrices. Extracting only one principal component (that is, a single score vector and
loading vector) gives:

X = tip] + Eq (2)
Extracting a second principal component:
X =tipl + topl+ E2 (3)

Principal components are extracted in same manner and then group these score and
loading vectors to form matrices T and P:

T=[tite...tAland P =[p1p2. .. pa] (4)

The eigenvectors of the real symmetric matrix X™X give us exactly the loading matrix
P. This is the loading matrix obtained by extracting all principal components. P is used
to compute T:

TPT=X TPTP=XP T=XP (5)

A more in-depth discussion, which also highlights some geometric concepts of PCA,
can be found in [10]. The algorithm used to calculate the PCA is the NIPALS (Nonlinear
Iterative Partial Least Squares) algorithm [10, 13].

RESULTS AND DISCUSSION
This section discusses the results of the experimental study, showing the application
of the PCA algorithm to real stored sensory data, for normal and anomalous operation

periods.

Measurements were driven through five conditions as shown in figure 4. It shows
Kurtosis and Crest factors of the input gearbox shaft through the different conditions.
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Fig. 4. Kurtosis, Crest factors and Temperature at the input gearbox shaft
for 701 samples experiments.

First, the system was run under normal condition (observations 1- 204), then external
excitations were applied at two positions (input\ output shaft: 205- 320; 321- 360). The
system was then subjected to a high temperature (361-633) and finally, the system
was run at high temperature with an external excitation at first position (input shaft:
634-701).

One way of evaluating and clustering database information, such as gearbox data, is
the multivariate projection methods such as PCA. The projection aspect has an
advantage when dealing with large amounts of collinear variables, noise, missing data
and of course provides the reduction of dimensionality. Control charts based on these
methods have been outlined by Kresta et al. [69]. Principal component analysis PCA
finds latent directions that maximize the variance of the process. First, we must
construct a complete system to collect useful information and then fuse them to detect
different states of the system. To build such a system, there is a need for a system
which can:
e Sense signals describing the multistage automotive gearbox system (Torque,
speed, vibration...)
e Interpret incoming sensed information & Facilitate decision making (normal, high
temp. and excited system)
e Detect process shifts (General wear, new events)
e Control Charts to monitor important aspects.

A total of 27 features were used to generate the input matrix “X”. All these features
were obtained from time domain records (length 38000 cycles) of the torque, two
positions vibration, temperature and speed. From each time domain record mean, min-
max, Kurtosis, crest factor, RMS, peak, exponential, variance, sum and ARMA
coefficients values were calculated. Adding up the mentioned features, the final X-
matrix is calculated with a total of 27 features. Model configuration for PCA is illustrated
in the following sections. All the models were built using SIMCA-P code developed by
Umetrics [11].
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The multivariate PCA model is a linear model given in matrix form by: X = TPT + Ea
[12, 21]. However, there exist non-linear PCA versions even by augmenting the original
matrix with the non-linear factors or by building a non-linear relation between score
factors [12]. To build the model using process variables, let X include variables
containing the information in the sensory data. Figure 5 illustrates how the score plot
is built for a simple case 3-variables and 2-scores. After determining the direction of
maximum variation by iterative steps and get the second orthogonal direction by the
same way after subtracting the first component, we rotate the new plane determined
by the new score variables t1 and t2 and then monitor the movement of the process
variables in the reduced dimensional space during printing.

t1

Large Hotelling
T?(Measure
variatio

X2v\

X1

(M easure of lack of model

Fig. 5: illustrates how the score plot is built for a simple case 3-variables
and 2-scores.

The PCA model is based on building classes or clusters using existing information
inside the data (unsupervised learning). The model is established using a set of
experimental runs called the training set that represents the normal operation of the
gearbox system. Finally, regression is made on the matrix X based on NIPALS
algorithm. To explore the collected data a first model using PCA was built using all the
dataset by cross-validation, now obtaining a two component model, with:R2X(cum):
0.73, Q2(cum) : 0.65. Figure 6 illustrates a scatter plot of the two score vectors (11 and
t2) of the PCA model using a set of 701 observations. These observations represent
five states of the multistage gearbox system: Normal, external excitations at two
positions, high temperature and high temperature with an external excitation. The
score plot provides a clear vision of the dispersion of the data, with the normal process
data being discriminated against the abnormal data along the first two components.
This clustering is indicated by triangle points and manually highlighted with dotted
circles in the t1 vs. t2 score plot in figure 6. It can be seen from the figure that the PCA
model succeeds in classifying the five states of the system.

More investigation carried out using control charts and contribution plots as shown in
figure 7-11 to quickly assess which factors affect these different process shifts. Figure
7 shows the contribution plots for normal state. One can notice that both vibration
excitations represented by Kurtosis, Crest factor, RMS, mean, peak and min-max
values are low. Also, number of cycles and temperature are low at the beginning of the
run.
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Fig. 6. illustrates a scatter plot of the two score vectors (11 and t2) using a set of
7010bservations.
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Fig. 7. Control chart for the contribution plots for normal state.

Figure 8 shows the contribution plots for high temperature state. One can notice that
both temperature and number of cycles are high. Also, excitations represented by
Kurtosis, Crest factor, RMS, mean, peak and min-max values are still low.

Figure 9 shows the contribution plots for external excitation at the input shaft state.
One can notice that excitations represented by Kurtosis, Crest factor, RMS, mean,
peak and min-max values at input shaft are higher than at output shaft measurements
indicating the external excitation at the first position.
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Fig. 8. Control chart for the contribution plots for high temperature.
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Fig. 9. Control chart for the contribution plots for external excitation at
gearbox input position.

Figure 10 shows the contribution plots for external excitation at the output shaft state.
One can notice that excitations represented by Kurtosis, Crest factor, RMS, mean,
peak and min-max values at output shaft are higher than at input shaft measurements
indicating the external excitation at the second position.

Figure 11 shows the contribution plots for external excitation at the input shaft state
with high temperature state. One can notice that both excitations at position one and
temperature are high indicating the vibration at the first position and high temperature.
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Fig. 10. Control chart for the contribution plots for external excitation at
gearbox output position
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Fig. 11. Control chart for the contribution plots for external excitation at
gearbox input position with high temperature

More analysis is made by examining the loading plot, which shows the relation between
the different variables. Figure 12 shows the loading plot clarifying the relation between
the 27 variables. In addition, the score and loading plots are superimposed; this means
that variables lying in each quarter of the loading plot are contributing to the changes
between the observations in the score plot. So, by investigating the loading plot (figure
12), one can detect directly which variables are responsible or more affecting a
specified group of data in the score plot.

From these two figures, one can notice, how temperature and number of cycles
parameters in the middle lower side of the loading plot contribute to the right lower
swarm (high temp. state) of data in the score plot. In addition, vibration excitations
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Fig. 12. PCA-X loading plot

represented by Kurtosis, Crest factor, RMS, mean, peak and min-max values for both
positions input and output variables are contributing to the external excitation states as
lying in the right side. Moreover, one can notice the gradual appearance of the faults,
which takes a specific direction in the latent space. This illustrates the power of the
proposed method for the early detection of the upcoming events.

A typical form in monitoring processes is to use a priori knowledge about the process
by building the model based on normal data. Normal data are data gathered from a
specific process under normal behavior including common cause variation. Then, the
next step is to examine the model with different conditions (a validation data set). The
final step is to detect new events or shifts from the original model using the contribution
plots.

An attempt has been made to improve model capability by removing the variables of
least important to the model as seen from the loading plot like the torque, rpm, peak,
RMS, mean, variance etc.., now obtaining a two component model based on Kurtosis,
two Crest factor, temperature and number of cycles using 181 normal observations
only as training set. The model parameters are: R2X(cum): 0.85, Q2(cum) : 0.5. Figure
13- 14 shows the score and loading plots of the new model after removing least
important factors. It can be noticed the good dispersion of the data in both directions 11
and to.

In this application, out of the 701 observations (181 normal, 520 faulty states), a
training set of 181 observations (normal) were chosen to develop the PCA regression
model. The developed PCA model was then tested on a test set including some
selected observations (290-310) external excitation at position one (input shaft).

It can be seen from figure 15 that the PCA model succeeds in classifying the new
observations normal, and vibration at position one.
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Fig. 13. Score plot of the normal 181 observations.
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Fig. 15. Score plot for prediction of new process events (high Vib. At position one).
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Figure 16 shows the contribution plots for high vibration at position one. One can notice
that the Kurtosis and crest factors of the first accelerometer data are responsible for
this shift, alarming on the occurrence of external excitation at position one.

Test 1_All Monitoring Prameters Saving.M8 (PCA-X), PS-Test 1_All Monitoring Prameters Saving
Score ContribPS(Obs {295, 296} - Average), Weight=p[1]p[2]
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Fig. 16. Control chart for the test set high Vib at position one.

CONCLUSION

The study has presented the application of a statistical soft sensor PCA to monitor the
progression of gear faults in spur and helical gears. Measurements were collected
using a wireless vibration measuring system on an automotive gearbox. Sensory
system consists of two accelerometers at two different positions (input and output of
the gear system), temperature sensor (immersed in the gearbox oiling system),
wireless strain gauge for torque measurements (on the output shaft) and a proximity
sensor for speed measurement (at the gearbox input shaft). The online information
about the transmission condition can provide a solution for PHM systems. The model
was tested under different conditions including: normal condition, external excitations
at two positions (input/output shaft), high temperature and high temperature with
external excitation and was able to successfully differentiate between them.
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