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ABSTRACT 
 
Sophisticated, accurate fault detection and diagnosis of monitoring processes can 
minimize downtime, increase safety of automotive transmission and gear systems, and 
reduce costs. To tackle this problem, transmission systems data was studied and 
analyzed to automatically characterize normal system behavior and anomaly detection 
and fault diagnosis methods based on multivariate latent techniques. Predictive health 
monitoring (PHM) systems are currently gaining in popularity due to their effectiveness 
in providing robust information about the system condition and reducing maintenance 
costs. However, PHM systems require reliable monitoring techniques, such as 
vibration, acoustic emission, and oil debris analysis. These techniques have shown the 
need to apply intelligent algorithms in order to benefit from the advantage of each 
technique in classifying faults and predicting the onset of failure. This paper presents 
a soft sensor technique namely Principal Component Analysis (PCA) for monitoring 
different gear faults using vibration analysis. Experiments were conducted on a multi-
stage gearbox under five conditions, normal, external excitation at two positions, high 
temperature and high temperature with external excitation. The model is verified 
through additional experimental observations. 
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INTRODUCTION  

 
One of the main concerns of any automotive equipment is to ensure the health and 
safety of transmission gear system. The worst case in this circumstance is probably 
the loss of a mission but the more common interruption of gear functionality can result 
in compromised task objectives. Condition monitoring soft sensors hold information 
related to state-of-health (SOH) of its subsystems. Each parameter has information 
which represents a time-variant property (i.e. a status or a measurement) to be 
checked. Moreover, the tremendous increase in data volume and its complexity directs 
the need for more efficient and scalable data processing system. As a consequence, 
there is a continuous improvement of transmission gear monitoring applications in 
order to quickly respond to changes in automotive missions. 
 
Also, in some applications there is more demanding aspect such as saving man's life 
other than reliability [1]. Smith [2], has defined the causes of transmission vibration and 
its transmission path, including factors such as manufacturing error, design error and 
gear tooth deflection, which combine to introduce a transmission error (TE), which is 
the primary source of the vibration. 
 
Over the past decade, vibration analysis proved to be a trustworthy diagnostic 
technique that can provide reliable information. However, in the last 10 years 
researchers devoted a much effort to support Condition Based Maintenance CBM 
actions using vibration information [3-13].  
 
The work focused on the development of reliable features using a suitable signal 
processing techniques can be grouped in two groups; time domain vibration features 
including: statistical parameters, time synchronous averaging based methods, filter 
based methods, stochastic methods and other model based methods. The second 
group is the frequency domain and time frequency domain features including: first 
order; (FFT), correlation of spectrum, signal averaging, short time Fourier transform 
(STFT), continuous wavelet transform (CWT), discrete wavelet transform (DWT), 
discrete wavelet packet analysis (DWPA), time-averaged wavelet spectrum (TAWS) 
and time-frequency scale domain (TFS). Second order; power spectrum, Power 
cepstrum (logarithm of Power spectrum), cyclostationarity, spectrogram Wigner 
distribution and scalogram. Third order; Bicoherence spectrum, bilinearity and Wigner 
bi Spectra. Fourth order; Wigner tri Spectra [29]. 
 
The authors of this paper developed soft-sensor fusion algorithms to fuse vibration 
analysis information with other sensory data, such as acoustic emission and oil debris 
analysis to minimize false alarms that may occur in failure prediction [14-17]. Also, 
other researchers devoted efforts to build intelligent algorithms based on vibration 
features including Expert systems, ANN's, Genetic algorithm, and fuzzy logic [18 - 28]. 
Intelligent health monitoring systems incorporate AI algorithms, where AI can be 
defined as ''the science of making machines do things that would require intelligence 
if done by humans'' [33]. To develop an IHMS, the running system condition must be 
recognized and classified. Researchers have devoted considerable effort to the 
application of various different soft computing methods to develop IHMSs, and have 
shown that this can be achieved using methods such as neural networks, fuzzy logic 
and mathematical modelling based on parametric approaches. All of these methods 
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can provide important tools in the field of intelligent systems which can learn, adapt, 
and make decisions concerning the system they are in charge of [33]. 
 
Artificial neural networks (ANNs) have been used with different HMS techniques such 
as vibration and acoustic monitoring. An ANN requires input data of the healthy and 
faulty conditions to be pre-processed, and then these features are used to model the 
system’s behavior. Fenton et al [36] mentioned that there are two main basic network 
architectures: feed-forward and recurrent ANNs. Feed-forward ANNs do not have 
feedback between layers, and previous inputs are not remembered, whereas recurrent 
ANNs involve feedback between layers and previous inputs are remembered and can 
be used to reconstruct correlative memory. The two standard neural network 
architectures used in transmission diagnostics are the feed-forward back propagation 
network, and the Kohonen feature map which is also known as the self-organizing map 
(SOM) [37]. Fuzzy logic was developed by Zadeh in the 1960s to characterize types of 
knowledge that cannot be represented by classical Boolean algebra to cover 
approximate knowledge in describing the behavior of systems which are difficult to 
describe mathematically [33]. 
 
Currently, the authors of this paper is devoting their efforts in developing smart CBM 
systems that can use one analysis technique only such as vibration or acoustic 
emission analysis along with intelligent algorithms to predict the onset of failures; this 
is to reduce costs of different sensory requirements [30-32]. This paper builds on the 
author's previous work to develop an online wireless vibration analysis tool for testing 
automotive mechanical transmissions. The online operation of this system can lead to 
the wide spread of using such systems with other rotating machinery. 
 
Parametric methods based on mathematical modelling is to fit measured time series 
waveform data to a parametric time series model, and then extract features based on 
this model [34]. Two models are currently in use: the auto regressive (AR) and auto-
regressive moving average (ARMA) models. The advantage of mathematical modeling 
based on parametric methods over the neural networks model-based method is its 
ability to deal with time series data directly without the need for a signal pre-processing 
step to extract useful features that can be modeled to represent the system [14]. 
However, they can only be used to model a time series signal such as a vibration 
signal, and cannot be applied to combined information from several techniques 
(vibration, AE and ODA) such as in the case of fuzzy logic. 
 
In Addition, researchers have devoted considerable effort to the application of various 
different soft computing methods to develop heath monitoring systems HMSs for gear 
box transmission systems summarized in data mining techniques. These methods can 
provide important tools for the field of intelligent monitoring which can learn, adapt, and 
make decisions concerning the system they are in charge of TakehisaYairi et al. [45] 
evaluating a variety of dimensionality reduction algorithms and compare between 
them, without using the cross-validation. 
 
Artificial neural networks ANNs in combination with other soft computing methods have 
been the most predominant to date [42, 43]. However, ANN techniques are 
characterized as black box approaches which model the relationship between different 
sensory data and a desired response without giving any information about the process. 
In addition, issues associated with collinearity and dimensionality needs to be 
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specifically addressed in these techniques. Solving many of these limitations can be 
addressed through the use of multivariate statistical analysis, which is a data-driven 
modelling approach [43]. Iverson et al. [38, 39, 44] discuss several data driven software 
tools that successfully applied to space mission operations using data mining tool 
which searches for unusual data points, or outliers, in multivariate data sets in the 
spacecraft system data that may indicate malfunctioning system components. John 
MacGregor et al. [45] established the advantages applying of multivariate latent 
variable monitoring and fault diagnosis methods contrasted with other techniques as 
Independent Component Analysis (ICA), Artificial Neural Networks (ANN), and Support 
Vector Machines (SVM).  
 
The simplicity of multivariate statistical analysis approach is that there is no need for a 
fundamental model of the system and only data from normal operation needs to be 
used, which is generally available in some form for most machines. Among the 
approaches used in multivariate analysis are: two projection methods called principal 
component analysis PCA, projection to latent structure PLS [48, 49, 50]. Many 
applications of these two techniques have been successfully applied in other fields of 
process monitoring. 
 
This paper outlines the use of the multivariate latent approach, to develop a framework 
for monitor heath status of automotive mechanical transmissions gear system under 
study. Models based on PCA and PLSDA are developed so that automotive 
mechanical transmissions gear can be monitored using the latent space of these 
models. 
  
 
System Configuration 
 
 An automotive mechanical transmissions gear test rig is currently being developed for 
this ongoing research. The rig comprises 130mm centre distance gearbox. Table1 
provides the basic geometry specification for the gears. The system is driven by a 
7.5Kw variable speed electric motor controlled by an inverter to provide a speed 
variation of 1750 rpm. The load is applied via a mechanical breaking mechanism. 

 

 

Table 1. Gears basic geometry. 
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The rig can generate a load torque on the test gears in the range of 0 - 200Nm. The torque is 
measured using calibrated strain gauges installed on the shaft and the measured torque values 
are transmitted to the control program by telemetry in order to provide torque control of the 
loading mechanism on the mechanical transmissions. The test rig is shown in Figure 1. The 
testing system has been developed for this research work, and is capable of on-line monitoring, 
automatic measurement, and analysis. Also, any changes in the gears and bearing conditions 
due to degradation during the operation can be identified. The advantage of developing the 
system arises from its ability to enhance online analysis methods for vibration technique to 
provide robust information about the system’s condition. Two temperatures were measured: 
gearbox oil temperature and bearing temperature using RTD temperature sensors (10mv/C). 
The input shaft speed and motor current were also monitored as a precaution. The test rig 
operating conditions were monitored and it is flexibly changed according to the required test 
conditions using LabVIEW’s virtual instrument scalable architecture features. 
 
As shown in figure 1, the process is simply a multistage automotive gearbox. The gearbox is 
derived   by a 3-phase electrical motor. The system is loaded through a mechanical braking 
system and controlled with an AC motor inverter. The system is equipped with five sensors, 
two accelerometers at two different positions (input and output of the gear system), 
temperature sensor (immersed in the gearbox oiling system), wireless strain gauge for torque 
measurements (on the output shaft) and a proximity sensor for speed measurement (at the 
gearbox input shaft). 

 

 

1. Speed sensor 2. Accelerometer 1 3. Temperature sensor 4. Accelerometer 2 5. Torque 
sensor 

 

 
 

Fig. 1. Multistage gearbox System Scheme. 
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Fig. 2. 1. Inverter, 2. Electric motor, 3. Fixable coupling, 4. 130 mm center  

distance Gearbox, 5. Mechanical coupling, 6. Loading Mechanism. 
 
 

The Vibration analysis system incorporated a 24-bit NI wireless DSA data acquisition 
card (NI 9234 with cDAQ-9191) to acquire the vibration signal, speed and temperature. 
The vibration signals were acquired using two DJB Piezotronic constant current source 
accelerometers (model no. Acc103 -10mV/g) mounted adjacent to the tested gear 
bearings transversely to the gearbox casing, and a shaft speed sensor was used to 
acquire the shaft rotation reference. The sensors location diagram over the test rig is 
shown in Figure 2. The vibration signals are then acquired continuously and 
transmitted to the base unit using an IEEE 802.11b/g (Wi-Fi) wireless communication 
interface (frequency range 2.412–2.462 GHz). The system can send the data from a 
range up to 30 m for indoor measurements and 100 m for outdoor operation as long 
as the line of sight of the wireless signal is provided. The system can also provide 
Ethernet cabling measurements up to a distance of 100 m. The test rig sensor-
actuation system layout is shown in Figure 3. 
 

 
 

Fig. 3. The test rig sensors - actuation system layout. 
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MULTIVARIATE LATENT APPROCH (PCA) 
 
Principal component analysis decomposes the variance and covariance structure of a 
data matrix by defining linear combinations of the columns in the original matrix. 
Moreover, PCA extracts information from data sets by computing a smaller data set 
and other summary information that adequately captures most of the underlying 
features of the larger data set. The point that needs to be stressed is that the data can 
be reduced to a size which is more manageable but contains the features that are often 
of interest. PCA extracts a score matrix, T, and a loading matrix, P, from X. These 
matrices have the following dimensions [10, 13]:   
  

X: N × K  T: N × A   P: K × A         (1) 

 

The first column of T and P are called by their shorter forms, t1 and p1 respectively. 
The lower case letters indicate that these are vectors, upper case letters indicate 
matrices. Extracting only one principal component (that is, a single score vector and 
loading vector) gives:   

   

X = t1��
� + E1                                      (2) 

 
Extracting a second principal component:  
 

X = t1��
� + t2��

�+ E2                  (3) 
 
Principal components are extracted in same manner and then group these score and 
loading vectors to form matrices T and P: 

 
T = [t1 t2 . . . tA] and P = [p1 p2 . . . pA]          (4) 

 
The eigenvectors of the real symmetric matrix XTX give us exactly the loading matrix 
P. This is the loading matrix obtained by extracting all principal components. P is used 
to compute T: 

 
TPT = X     TPTP = XP        T = XP             (5) 

 
A more in-depth discussion, which also highlights some geometric concepts of PCA, 
can be found in [10]. The algorithm used to calculate the PCA is the NIPALS (Nonlinear 
Iterative Partial Least Squares) algorithm [10, 13]. 
 
 
RESULTS AND DISCUSSION 
 
This section discusses the results of the experimental study, showing the application 
of the PCA algorithm to real stored sensory data, for normal and anomalous operation 
periods.  

 
Measurements were driven through five conditions as shown in figure 4. It shows 
Kurtosis and Crest factors of the input gearbox shaft through the different conditions.  



50 MC      Proceedings of the 17th Int. AMME Conference, 19-21 April, 2016 

 

 

Fig. 4.  Kurtosis,  Crest factors and Temperature at the input gearbox shaft  
for 701 samples experiments. 

 
 

First, the system was run under normal condition (observations 1- 204), then external 
excitations were applied at two positions (input\ output shaft: 205- 320; 321- 360). The 
system was then subjected to a high temperature (361-633) and finally, the system 
was run at high temperature with an external excitation at first position (input shaft: 
634-701). 
 
One way of evaluating and clustering database information, such as gearbox data, is 
the multivariate projection methods such as PCA. The projection aspect has an 
advantage when dealing with large amounts of collinear variables, noise, missing data 
and of course provides the reduction of dimensionality. Control charts based on these 
methods have been outlined by Kresta et al. [69]. Principal component analysis PCA 
finds latent directions that maximize the variance of the process. First, we must 
construct a complete system to collect useful information and then fuse them to detect 
different states of the system. To build such a system, there is a need for a system 
which can: 

• Sense signals describing the multistage automotive gearbox system (Torque, 
speed, vibration…) 

• Interpret incoming sensed information & Facilitate decision making (normal, high 
temp. and excited system) 

• Detect process shifts (General wear, new events) 

• Control Charts to monitor important aspects. 
 
A total of 27 features were used to generate the input matrix “X”. All these features 
were obtained from time domain records (length 38000 cycles) of the torque, two 
positions vibration, temperature and speed. From each time domain record mean, min-
max, Kurtosis, crest factor, RMS, peak, exponential, variance, sum and ARMA 
coefficients values were calculated. Adding up the mentioned features, the final X-
matrix is calculated with a total of 27 features. Model configuration for PCA is illustrated 
in the following sections. All the models were built using SIMCA-P code developed by 
Umetrics [11]. 
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The multivariate PCA model is a linear model given in matrix form by:  X = TPT + EA 
[12, 21]. However, there exist non-linear PCA versions even by augmenting the original 
matrix with the non-linear factors or by building a non-linear relation between score 
factors [12]. To build the model using process variables, let X include variables 
containing the information in the sensory data. Figure 5 illustrates how the score plot 
is built for a simple case 3-variables and 2-scores. After determining the direction of 
maximum variation by iterative steps and get the second orthogonal direction by the 
same way after subtracting the first component, we rotate the new plane determined 
by the new score variables t1 and t2 and then monitor the movement of the process 
variables in the reduced dimensional space during printing.   
 

 

 
                        

Fig. 5: illustrates how the score plot is built for a simple case 3-variables 
 and 2-scores. 

 

 

The PCA model is based on building classes or clusters using existing information 
inside the data (unsupervised learning). The model is established using a set of 
experimental runs called the training set that represents the normal operation of the 
gearbox system. Finally, regression is made on the matrix X based on NIPALS 
algorithm. To explore the collected data a first model using PCA was built using all the 
dataset by cross-validation, now obtaining a two component model, with:R2X(cum): 
0.73,  Q2(cum) : 0.65. Figure 6 illustrates a scatter plot of the two score vectors (t1 and 
t2) of the PCA model using a set of 701 observations. These observations represent 
five states of the multistage gearbox system: Normal, external excitations at two 
positions, high temperature and high temperature with an external excitation. The 
score plot provides a clear vision of the dispersion of the data, with the normal process 
data being discriminated against the abnormal data along the first two components. 
This clustering is indicated by triangle points and manually highlighted with dotted 
circles in the t1 vs. t2 score plot in figure 6. It can be seen from the figure that the PCA 
model succeeds in classifying the five states of the system.  
 
More investigation carried out using control charts and contribution plots as shown in 
figure 7-11 to quickly assess which factors affect these different process shifts. Figure 
7 shows the contribution plots for normal state. One can notice that both vibration 
excitations represented by Kurtosis, Crest factor, RMS, mean, peak and min-max 
values are low. Also, number of cycles and temperature are low at the beginning of the 
run. 
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Fig. 6. illustrates a scatter plot of the two score vectors (t1 and t2) using a set of 
701observations. 

 

 
 

Fig. 7. Control chart for the contribution plots for normal state. 
 

 

Figure 8 shows the contribution plots for high temperature state. One can notice that 
both temperature and number of cycles are high. Also, excitations represented by 
Kurtosis, Crest factor, RMS, mean, peak and min-max values are still low.  
 
Figure 9 shows the contribution plots for external excitation at the input shaft state. 
One can notice that excitations represented by Kurtosis, Crest factor, RMS, mean, 
peak and min-max values at input shaft are higher than at output shaft measurements 
indicating the external excitation at the first position.  
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Fig. 8. Control chart for the contribution plots for high temperature. 

 
 

 
 

Fig. 9. Control chart for the contribution plots for external excitation at  
gearbox input position. 

 
 

Figure 10 shows the contribution plots for external excitation at the output shaft state. 
One can notice that excitations represented by Kurtosis, Crest factor, RMS, mean, 
peak and min-max values at output shaft are higher than at input shaft measurements 
indicating the external excitation at the second position.  
 
Figure 11 shows the contribution plots for external excitation at the input shaft state 
with high temperature state. One can notice that both excitations at position one and 
temperature are high indicating the vibration at the first position and high temperature.  
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Fig. 10. Control chart for the contribution plots for external excitation at  
gearbox output position 

 

 

 
 

Fig. 11. Control chart for the contribution plots for external excitation at  
gearbox input position with high temperature 

 
 

More analysis is made by examining the loading plot, which shows the relation between 
the different variables. Figure 12 shows the loading plot clarifying the relation between 
the 27 variables. In addition, the score and loading plots are superimposed; this means 
that variables lying in each quarter of the loading plot are contributing to the changes 
between the observations in the score plot. So, by investigating the loading plot (figure 
12), one can detect directly which variables are responsible or more affecting a 
specified group of data in the score plot.  
 
From these two figures, one can notice, how temperature and number of cycles 
parameters in the middle lower side of the loading plot contribute to the right lower 
swarm (high temp. state) of data in the score plot. In addition, vibration excitations  
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Fig. 12. PCA-X loading plot 
 

 

represented by Kurtosis, Crest factor, RMS, mean, peak and min-max values for both 
positions input and output variables are contributing to the external excitation states as 
lying in the right side. Moreover, one can notice the gradual appearance of the faults, 
which takes a specific direction in the latent space. This illustrates the power of the 
proposed method for the early detection of the upcoming events.  
 
A typical form in monitoring processes is to use a priori knowledge about the process 
by building the model based on normal data. Normal data are data gathered from a 
specific process under normal behavior including common cause variation. Then, the 
next step is to examine the model with different conditions (a validation data set). The 
final step is to detect new events or shifts from the original model using the contribution 
plots.  
 
An attempt has been made to improve model capability by removing the variables of 
least important to the model as seen from the loading plot like the torque, rpm, peak, 
RMS, mean, variance etc.., now obtaining a two component model based on Kurtosis, 
two Crest factor, temperature and number of cycles using 181 normal observations 
only as training set. The model parameters are: R2X(cum): 0.85,  Q2(cum) : 0.5. Figure 
13- 14 shows the score and loading plots of the new model after removing least 
important factors. It can be noticed the good dispersion of the data in both directions t1 
and t2.  

 
In this application, out of the 701 observations (181 normal, 520 faulty states), a 
training set of 181 observations (normal) were chosen to develop the PCA regression 
model. The developed PCA model was then tested on a test set including some 
selected observations (290-310) external excitation at position one (input shaft). 
 

It can be seen from figure 15 that the PCA model succeeds in classifying the new 
observations normal, and vibration at position one.  
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Fig. 13. Score plot of the normal 181 observations. 

 

 

Fig. 14. Loading plot of the normal state. 

 

 

Fig. 15. Score plot for prediction of new process events (high Vib. At position one). 

-2.0

-1.0

0.0

1.0

2.0

-4 -3 -2 -1 0 1 2 3 4

t[
2

]

t[1]

Test 1_All Monitoring Prameters Saving.M8 (PCA-X)

t[Comp. 1]/t[Comp. 2]

R2X[1] = 0.655073            R2X[2] = 0.193984            Ellipse: Hotelling T2 (0.95) 

24

25
26

27

28

29

3031
32

33

3435

363738

39
40

4142
43

4445
46

47

48

49

50

515253
54

55

56
57

5859
60

6162

6364

656667
68

6970

71

72
7374

7576

77

78
7980

8182

83

84

858687
88

89
90

91

92

93

94

95
96

97

98

99100

101

102

103104

105106

107

108109

110111
112113

114

115116117
118

119
120

121

122123
124

125126
127

128

129
130

131

132

133

134

135136
137138

139

140

141

142

143
144

145
146
147

148

149
150

151

152

153

154

155156

157

158

159160

161
162163164

165

166
167

168

169

170

171

172
173
174175

176

177
178

179

180

181

182

183184

185
186

187

188

189

190
191

192193194
195

196
197198

199

200

201

202 203
204

SIMCA-P+ 12.0.1 - 2013-06-07 01:23:23 (UTC+2) 

0.0

0.5

1.0

-0.5 -0.4 -0.3 -0.2 -0.1 -0.0 0.1 0.2 0.3 0.4 0.5 0.6

p
[2

]

p[1]

Test 1_All Monitoring Prameters Saving.M8 (PCA-X)

p[Comp. 1]/p[Comp. 2]

Colored according to model terms

R2X[1] = 0.655073 R2X[2] = 0.193984 

No. of Cyc

Temp.

Kurtosis
Crest Fact

Crest Fact

SIMCA-P+ 12.0.1 - 2013-06-07 01:23:50 (UTC+2) 

0

100

200

300

400

500

-1800 -1600 -1400 -1200 -1000 -800 -600 -400 -200 0

tP
S

[2
]

tPS[1]

Test 1_All Monitoring Prameters Saving.M8 (PCA-X), PS-Test 1_All Monitoring Prameters Saving

tPS[Comp. 1]/tPS[Comp. 2]

R2X[1] = 0.655073            R2X[2] = 0.193984            Ellipse: Hotelling T2 (0.95) 

24252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204

290291292293294295296297298299300301302303304305306307308309310

SIMCA-P+ 12.0.1 - 2013-06-07 01:56:47 (UTC+2) 

Vib.POS1 

 
Normal 



57 MC      Proceedings of the 17th Int. AMME Conference, 19-21 April, 2016 

 

Figure 16 shows the contribution plots for high vibration at position one. One can notice 
that the Kurtosis and crest factors of the first accelerometer data are responsible for 
this shift, alarming on the occurrence of external excitation at position one.  

 

 
Fig. 16. Control chart for the test set high Vib at position one. 

 
 
CONCLUSION  
 
The study has presented the application of a statistical soft sensor PCA to monitor the 
progression of gear faults in spur and helical gears. Measurements were collected 
using a wireless vibration measuring system on an automotive gearbox. Sensory 
system consists of two accelerometers at two different positions (input and output of 
the gear system), temperature sensor (immersed in the gearbox oiling system), 
wireless strain gauge for torque measurements (on the output shaft) and a proximity 
sensor for speed measurement (at the gearbox input shaft). The online information 
about the transmission condition can provide a solution for PHM systems. The model 
was tested under different conditions including: normal condition, external excitations 
at two positions (input/output shaft), high temperature and high temperature with 
external excitation and was able to successfully differentiate between them. 
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