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ABSTRACT 
 
This paper employs the classical finite element method in simulation of crack 
propagation problems in a linear elastic and isotropic medium under mixed loading 
conditions. Two crack problems are considered; an inclined edge crack in a plate under 
tensile loading, and a shifted crack in a beam under three - point bending loading. The 
critical energy release rate criterion determines the threshold of propagation. The 
maximum tangential stress criterion determines the direction of crack propagation. 
Strain energy release rates are calculated using the virtual crack closure technique 
(VCCT). Deformation field is plane strain. The crack tip region is meshed with non-
singular 8-noded isoparametric quadrilateral elements. Realization of all numerical 
computations and demonstration of results are completely composed and written in 
MATLAB language. Results showed acceptable accuracy when compared with 
analytical ones, experimental work and those obtained by commercial ANSYS APDL 
program. 
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NOMENCLATURE 
 

� Crack length. ���  
Equivalent stress intensity 
factor of the initial crack. 

��  Critical crack length. ����  
Equivalent stress intensity 
factor of the propagated 
crack. ∆�  Incremental crack length. K  Element stiffness matrix. �  Elasticity matrix. N  Matrix of shape functions. 

d  
Element nodal 
displacement vector. 

��  
Applied concentrated load in �- direction. 

�  Young’s modulus. ��  
Applied surface traction in �- 
direction. 

�� Effective Young’s modulus. (�, �) Local normal and tangential 
coordinate system. 

���  Percentage error in 
computation of ��. (�, �) Local Cartesian coordinate 

system. F  Element force vector. �  Poisson’s ratio. 

�  and �� 
Nodal forces in �- and �- 
directions respectively. 

!, and	#  
Element Cartesian stress and 
strain vectors. 

$�, $��, and $% 
Mode I, Mode II and total 
strain energy release rates. 

&', &�, 
and ('� 

Radial, tangential and shear 
stresses in polar coordinates 
system. $��, $���, 

and $%� 
Critical values of $�, $��, 
and $%. 

&�)  Material yield point. 

�� and ��� Mode I and II stress 
intensity factors. 

*�  Crack deflection angle. 

���  Fracture toughness. Δ  Length of an element edge. 

,, and -  
Displacement fields in �- 
and �- directions, 
respectively. 

./ and .0 
Nodal displacements in �- and �- directions, respectively. 

 
ABBREVIATION 
 ��1 Finite element method. 233� Virtual crack closure 

technique. 4��1 Linear elastic fracture 
mechanics. 

Q8 Eight-noded isoparametric 
quadrilateral element. 56� Stress intensity factor.   

 

 
INTRODUCTION 
 
In the framework of the finite element method, simulation of crack propagation is 
possible [1-2]. Crack propagation is a moving singularity problem [3]. Strain and stress 
fields around crack tip are singular [4]. Two problems arise; modeling singularity 
around the crack tip and creation of new crack surfaces as the crack tip advances. 
Special family of high order finite elements was developed to implement stress 
singularities in the vicinity of the crack tip [5]. They were called singular elements. 
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None-corner nodes of a singular element are displaced from their regular positions 
towards corner nodes which are meshing the crack tip. In case of eight-noded 
isoparametric quadrilateral element (Q8), the amount of this shift is the quarter length 
of an element edge. Creation of new crack surfaces necessitates simultaneous re-
meshing of the continuum with every increment of the propagated crack. The extended 
finite element method (X-FEM) is one of the recent numerical methods that overcome 
the problem of re-meshing [6-7]. 
 
This paper deals with the numerical simulation of the crack propagation problem in a 
linear and elastic medium under mixed loading conditions. The inertia forces are 
neglected so crack propagation is considered as a quasi - static. Two crack problems 
are considered; the first is an inclined edge crack in a finite plane under tensile loading, 
and the second is a shifted crack in a beam under three-point bending loading. Both 
cracks are under mixed loading conditions; i.e. opening and shearing or sliding modes. 
Tearing mode is not considered in this work. For a crack to propagate, it should satisfy 
a fracture criterion and select a direction for its propagation. The simple fracture 
criterion [8] determines the threshold of propagation. Besides, the maximum tangential 
stress criterion defines the direction of crack propagation [9]. Strain energy release 
rates are calculated using the virtual crack closure technique (VCCT) [10]. The stress 
intensity factors (SIFs) are calculated as functions of strain energy release rates [11]. 
 
In this work, propagation direction of each crack problem is invariant. A crack neither 
bifurcates nor branches. A crack either advances or arrests; depending on whether the 
fracture criterion is exceeded or not. Thus, simulation of crack propagation doesn’t 
require simultaneous re-meshing with every crack increment. Accordingly, each crack 
problem is meshed twice. The first mesh is used to calculate the initial crack 
characteristics and the crack deflection angle. Crack deflection angle is the acute angle 
between the initial crack and the expected path of its propagation. Before re-meshing, 
the propagation path is laid on the initial model as a line emanating from the crack tip 
and oriented to the initial crack by the calculated crack deflection angel. The second 
mesh, while discretizing the main model, aims to divide the crack path into a number 
of structured Q8 elements. Each element edge on the path represents an amount of a 
crack increment if the fracture criterion is satisfied. For every increment of the crack, 
all crack characteristics are calculated and compared with fracture criterion to 
determine whether the crack would advance or arrest.  
 
To model the creation of new crack faces corresponding to a crack increment, the 
element nodes on the crack path are duplicated and elements connectivity matrix are 
changed accordingly to decouple the two adjacent element on the both sides of the 
crack path and allow the motion of the crack tip. This procedure is accompanied by 
continuous update of nodal coordinates, element stiffness matrices and global force 
vector. Deformation field is assumed to be a plane strain. The classical displacement-
based finite element method is used to calculate deformation, strain and stress fields 
[12-13]. The model is meshed with eight-noded isoparametric quadrilateral elements 
(Q8). The crack tip region is meshed with non-singular (Q8) elements. The mesh of 
non-singular Q8 elements is too dense to compensate the singularity of stress fields 
around crack tip.  
 
Realization of all numerical computations and demonstration of results are completely 
composed and written in MATLAB® language. Meshing the computational domains 



4 SM   Proceedings of the 17th Int. AMME Conference, 19-21 April, 2016 

 

 

 

and crack tip region are performed by a free downloadable program; AUTOMESH-2D 
[14]. The AUTOMESH-2D generates quadrilateral four – noded elements (Q4). 
Transformation from Q4 to Q8 elements is performed by a special function written in 
MATLAB language. To verify the correctness of the written program, the results of SIFs 
in case of the single edge notch test specimen and the three – point bend test 
specimen are compared with analytical ones. In addition, the results of SIFs are 
compared with those obtained by the commercial ANSYS APDL program. Moreover, 
the results of propagation of the shifted crack in John and Shah beam are compared 
with their experimental work and the theoretical work of Rabczuk and Belytscho [15]. 
 
 
STRESS FIELD AROUND THE CRACK TIP 
 
According to [4], stress fields around a crack tip are singular. Taking the crack tip as 
an origin of a local polar coordinates system (7, *), Fig. 1, the expressions of radial &', 
tangential &�, and shear stress ('� are written as the following: 

 

&' = ��
√2;7 <cos @

*
2A B1 + sinG @*2AHI +

���
√2;7 <sin @

*
2A B1 − 3 sinG @*2AHI (1.a) 

&� = ��
√2;7 cosL @

*
2A − 3 ���

√2;7 sin @
*
2A 	cosG @

*
2A (1.b) 

('� = ��
√2;7 sin @

*
2A 	cosG @

*
2A +

���
√2;7 <cos @

*
2A B1 − 3 sinG @*2AHI (1.c) 

 
Where �� and ��� are stress intensity factors (SIF) corresponding to opening and 
shearing modes respectively. They measure the severity of stress fields in the vicinity 
of crack tip, [11]. 
 
 
FRACTURE CRITERIA 
 
Under mixed loading mode, crack propagates if a fracture criterion is satisfied. Reeder  

[8] proposed simple, linear, bilinear, power law, exponential Hackle, exponential 
��
��� 

and interaction criteria. In this work, the simple criterion is selected to govern the onset 
of crack propagation. According to the simple criterion, the crack starts to grow when: 
 

$� = $�� $�� = $��� $� + $�� = $% = $%� (2.a, b, c) 

 
The energy release rate is related to SIF according to the following relations, [9]: 
 

$� = ��G��  $�� = ���G��  (3.a, b) 

 



5 SM   Proceedings of the 17th Int. AMME Conference, 19-21 April, 2016 

 

 

 

Analogically to equations (3), it may be convenient to consider the concept of the 
equivalent SIF in case of the mixed mode condition as the following: 

 

$% = ���G��  ��� = M��G +���G (4.a, b) 

 
By investigation of equations (2), the simple criterion of fraction may be rewritten in 
terms of fracture toughness of the material ��� as the following: 
 

��� = ��� ��G + ���G = ���G  (5.a, b) 

 
In the present work, equations (5) are considered as a threshold criterion for crack 
propagation, because the fracture toughness ��� is abundantly tabulated in material’s 
data book [16]. 
 
 
MAXIMUM TANGENTIAL STRESS CRITERION 
 
If the fracture criterion was exceeded, the crack would propagate. According to the 
criterion of maximum tangential stress [4, 9], crack would propagate along the direction 
perpendicular to that of maximum tangential stress. The direction of crack path is 
determined by defining the crack deflection angle; *�, as shown in Fig. 2. The angle *� 
represents the angular position of plane where shear stress is zero. It is calculated by 
nullifying the equation of shear stress, equation (1.c), and considering the condition of 
maximizing the equation of tangential stress, equation (1.b). Thus, conditions of 
numerical computations of the direction of crack propagation are: 
 

�� sin *� + ���(3 cos *� − 1) = 0 
OG&�O*G P�Q��

< 0 (6.a, b) 

 
Maximum tangential stress at the crack deflection angle is: 
 

&�ST = 1
√2;7 		B�� cosL @

*�2 A − 3��� sin @*�2 A cosG @
*�2 AH (7.a) 

If the value of radial stress at crack deflection angle; i.e. &'(*�) is small compared to &�ST , the equivalent SIF of the propagated crack would be calculated as the following, 
see Fig. 2: 

���� = &�ST √2;7 (7.b) 

 

By substituting of equation (7.a) into (7.b), the ���� is related to �� and ��� by the 

following equation [9]: 
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���� =		�� cosL @*�2 A − 3��� sin @*�2 A cosG @
*�2 A (7.c) 

 

The propagating crack still advances as long as the value of ���� is larger than or equal 

to the fracture toughness of the material. Thus, the condition of crack arrest is: 
 

���� < ��� (8) 

 
 
THE PRINCIPAL OF VIRTUAL CRACK CLOSURE TECHNIQUE (VCCT) 
 
According to Raju [5], the energy release rates in case of non-singular eight – noded 
quadrilateral isoparametric element (Q8) are calculated according to the following 
equations: 
 

$� = − 1
2∆ U��V(-S − -SW) + ��X(-Y − -YW)Z (9.a) 

$�� = − 1
2∆ U� V(,S − ,SW) + � X(,Y − ,YW)Z (9.b) 

 

It should be noted that, edges of elements 6, [, 6′ and [′ should be perpendicular to the 
direction of crack extension. Hence, in case of inclined crack as shown in Fig. 3(b), a 
local (�, �) coordinate system should be fixed at the crack tip ]. The �- axis in the 
direction of crack extension, and �- axis is perpendicular to it. In case of an inclined 
crack, expressions of strain energy release rates are written as the following: 
 

$� = − 1
2∆ U�0V^.S0 − .SW0 _ + �0X^.Y0 − .YW0_Z (10.a) 

$�� = − 1
2∆ U�/V^.S/ − .SW/ _ + �/X^.Y/ − .YW/ _Z (10.b) 

 
The forces - so do deformations - in (�, �) system are related to those in (�, �) system 
by the following transformation: 
 

�/V = � V cos * + ��V sin * �0V = −� V sin * + ��V cos * (11.a, b) 

 
Raju [5] showed that the use of singular Q8 elements gives more accurate results than 
those related to non-singular Q8 ones. However, he used coarse mesh in his 
computations. Moreover, Henshell and Shaw [17] had concluded their work by 
declaring that special finite elements for crack tips are not necessary for plane 
stress/strain analysis. Hence, the author in this work has used fine mesh of Q8 element 
in computations of strain energy release rates. 
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SUMMARY OF THE CLASSICAL DISPLACEMENT-BASED FINITE ELEMENT 
METHOD 
 
Basics of the classical displacement-based FEM are extensively explained in many 
reference books, [12-13]. In this section, main principals are briefly written. Interested 
reader should refer to the listed references. The horizontal and vertical displacements 
within Q8 element are: 
 

,(�, �) = à,a -(�, �) = à-a ] = 1,2, … 8 (12.a) 

 
where ,a and -a are nodal displacements in �- and �- directions respectively, à are 
shape function.  
 
Cartesian components strain vector # = de e� f �g% are: 

e = O,
O� e� = O-

O� f � = O,
O� +

O-
O� (12.b) 

 
Cartesian components of stress vector are: 

! = h# = hij (12.c) 

 
Where i is the strain-displacement matrix. The element stiffness matrix, force vectors 
in case of surface traction; ��, and element equilibrium equation are calculated 

according to: 
 

k = li%hi
m

n2 o = lp% < 0��Iq
n5 kj = o (12.d) 

 
Where 2 is element’s volume, and 5 is element’s surface where traction is applied 
Evaluations (12. ns,G) are formed numerically using 2×2 Gauss numerical integration 

rule. Locations of gauss points are shown in figure 4.b. 
 
 
VALIDATION OF SIF RESULTS 
 
This section aims to verify the computations of SIFs in case of the single edge notch 

test and three-point bend test specimens. The analytical values of ��T0TY�/a�TY are 

calculated according to Tada et. al. [18]. Percentage errors in computation of �� are 
calculated according to the following equation: 
 

��� = 	�� − ��T0TY�/a�
��T0TY�/a� × 100 (13) 

 
Specimens investigated in this work are made of high-strength steel; AISI 4340 steel. 
Mechanical properties of steel 4340 are listed in Table 1 [16]. Units are selected to be 
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a Newton d`g for the force and millimeters duug for the length. The following rules in 
selecting numerical values of loads and crack length are considered: (1) A specimen 
is loaded under its yield point to avoid the formation of plastic strains. So, the principals 
of linear elastic fracture mechanics (LEFM) are applied. (2) A crack has a length that 
exceeds the critical crack length ��. So, the crack would propagate spontaneously as 
soon as the fracture toughness of the material is exceeded. (3) A load is selected to 
overcome material’s fracture toughness. 
 

Table 1. Mechanical properties of AISI 4340 steel. 

�, U v
SSwZ � &�), U v

SSwZ ���, U v
SSx/wZ ��, duug 

210000 0.3 860 3130.655 16.8 
 
 
Single Edge Notch Test Specimen 
 
Figure 5(a) shows dimensions and boundary conditions of the single edge notch test 

specimen. Crack length is 20		uu. Specimen’s width and length are 70	uu and 

140	uu, respectively. Nodes of the bottom surface are completely constrained. Top 

surface nodes are under vertical tensile traction of �� = 480 v
SSw. Left and right 

surfaces are traction-free and they are not constrained. 
 
The deformed finite element mesh used in the present work (600 elements and 1579 nodes) and in the ANSYS APDL program (2110 elements and 6584 nodes) are 
shown in Fig. 5(b) and (c) respectively. Results of �� are listed in Table 2. ANSYS’s 
result is closer to the analytical one, however, its mesh is denser than that is used in 
the present work. Due to unsymmetry of the single edge carcked specimen, a sliding 

mode SIF appears in FEM computations; i.e. ��� = −15.2734	 U` uux
w⁄ Z	obtained from 

the present work and ��� = −23.1047 U` uux
w⁄ Z obtained from ANSYS APDL. This 

effect doesn’t appear in the analytical solution found in [18] page 52. 
 

Table 2 Validation of �� , U` uux
w⁄ Z results. 

 Single edge notch ��� , % Three - point bend ��� , % 

Analytical 6.1084 × 10L  3.3292 × 10L  

ANSYS 6.0781 × 10L −0.4982 3.1633 × 10L −5.2524 

Present Work 6.0714	 × 10L −0.6060	 3.1444 × 10L −5.5504 

 
 
The Three – Point Bend Test Specimen 
 
Dimensions of the three-point bend test specimen are shown in Fig. 6(a). Specimen’s 

length and height are 280	uu and 70	uu, respectively. The crack length is 20	uu; it 
is located at the mid length of the specimen. The specimen is hinged to right and left 
rigid supports at the mid height of each surface. A point vertical load �� = −4900	d`g 
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is applied at the mid length of the top surface as shown in the figure. The bottom 
surface is a traction-free and is not constrained.  
 

Mesh densities are 630 elements with 1641 nodes in the present work, Fig. 6(b), and 7356 elements with 22650 nodes in ANSYS APDL, Fig. 6(c). Results of �� calculated 
in the present work and ANSYS program are very close to the analytical one, Table 2. 
However, ANSYS required denser mesh to reach such accuracy. 
 
 

PROPAGATION OF AN INCLINED EDGE CRACK IN A PLATE UNDER TENSILE 
TRACTION 
 
Specimen of the inclined crack is shown in Fig. 7(a). Results of crack characteristics 
are listed in Table 3. According to equation (4.b), the equivalent SIF is ��� = 5.205 ×
10L	d` ux

wg⁄ ; this value violates the condition of equation (5.a). Hence, the crack starts 
to propagate at the angle *� = −26.193°, as shown in Fig. 7. According to equation 

(7.c), the equivalent SIF of the propagating is ���� = 5.5 × 10L	d` ux
wg⁄ , which violates 

the condition of equation (8). Hence, the crack continues to propagate until it separates 
the specimen completely.  

 
Table 3. Numerical results of crack characteristics in case of the inclined edge crack 

specimen. 

$� , d` uu⁄ g $�� , d` uu⁄ g �� , B` uuLG⁄ H ��� , B` uuLG⁄ H *� 
110 7.48 5.036 × 10L 1.314 × 10L −26.193° 

 
 
SHIFTED CRACK IN A BEAM UNDER THREE-POINT BENDING TEST SPECIMEN 
 
This section deals with the propagation of cracked John and Shah beam problem 
presented in the work of T. Rabczuk and T. Belytscho [15] and Gonzalo Ruiz et. al. 
[19]. Figure 8(a) illustrates the geometry of the shifted cracked beam under three -point 

bending test. The crack is shifted by 50.08	uu from the left support. The mechanical 
properties of the beam’s material are � = 29000	d` uuGg⁄  and $%� = 0.0311	d` uu⁄ g. 
In the present work, the applied force is �� = 350	d`g selected to cause crack energy 

release of $% = 0.0540	d` uu⁄ g that exceeds the critical value of fracture toughness of 
the beam. The results of crack deflection angle calculated in the present work and by 
ANSYS APDL are listed in Table 4. Present work mesh and ANSYS’ one are shown in 
Fig. 8(a) and (b) respectively.  
 

 
Table 4 Calculation of crack deflection angle for John and Shah cracked beam 

problem. 

 
T. Rabczuk and T. 

Belytscho [15], Fig. 9(a) 
Present work. ANSYS 

*� 30° 29.76° 26.14° 
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COMPARISON WITH EXPERIMENTAL WORK 
 
This section compares the crack pattern in the experimental work of John and Shah 
that presented in [15] and the simulation results of the present work and ANSYS APDL 
commercial program. Figure 9(b) illustrates the crack pattern of the shifted crack beam 
under the quasi-static loading conditions. The observed angle of crack deflection is 
about 30° which is very close to that calculated in the present work (29.76°), Table 4. 
In addition, the observed crack pattern is very close to simulation results that presented 
in this work, Fig. 10. 
 
Figure 11 illustrates simulation results of ANSYS APDL program of John and Shah 
cracked beam problem. To simulate crack propagation in the framework of ANSYS 
technology, the predefined crack path is meshed with interfacial elements (INTER202). 
Such elements are conformed to solid four-noded isoparametric structural elements 
(PLANE182). If the higher order interfacial elements such as (INTER203), which are 
conformed to eight-noded isoparametric structural elements (PLANE183), are used, a 
cohesive zone model that controlling crack propagation must be used. The problem of 
the cohesive zone model is not considered in this work. 
 
 
CONCLUSION 
 
This work presents the following conclusions: (1) Using fine structured mesh of non-
singular Q8 elements around the crack tip gives accurate values of crack 
characteristics using the VCCT. (2) Cracks, propagating in an elastic and isotropic 
medium neither deviate, bifurcate nor arrest. (3) Creation of a new pair of crack faces 
can be simulated by duplication of the nodes behind the advancing crack tip and 
performing the corresponding changes in the element connectivity matrix. Simulation 
process should be accompanied with continuous update of nodal coordinates, stiffness 
matrix and load vector. 
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Fig. 1. Polar stress fields around a crack 

tip. 
Fig. 2. The crack deflection angle 

 

 

  
(a) (b) 

 
Fig. 3. Arrangements of Q8 elements around a crack tip in order to fulfill VCCT 

requirements in case of (a) a horizontal and (b) an inclined crack. 
 

 

  
(a) (b) 

 
Fig. 4. Isoparametric quadrilateral Q8 element in (a) (�, �) and (b) normalized (�, �) 

coordinates system and location of Gauss points �a. 
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(a) (b) (c) 
Fig. 5. (a) Single edge notch test specimen model. Deformed FE mesh; (b) Present 

work and (c) ANSYS. Deformations are multiplied by 20 for illustrative purposes. 
 

 

(a) (b) 

 
 (c) 

Fig. 6. (a) The three – point bend test specimen; Deformed FE mesh (b) Present 
work and (c) ANSYS. Deformations are multiplies by 20 for illustration purposes. 

    

(a) (b) (c) (d) 
Fig. 7 (a) Direction of crack propagation. Propagated crack at the (b) 10th, 20th, and 

30th simulation loop. 
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(a) (b) 

 

 
 (c) 

Fig. 8 (a) John and Shah cracked beam problem. Deformed FE mesh; (b) Present 
work and (c) ANSYS. Deformations are multiplies by 50 for illustration purposes. 

 

 

(a) (b) 
Fig. 9. Work of Rabczuk and Belytscho in case of quasi-static loading; (a) 

simulation and (b) experiment. 
 

  
(a) (b) 

 

 
 (c) 

Fig. 10. Present work simulation of John and Shah cracked beam problem at; (a) 10th 
loop, (b) 20th loop and (c) 30th loop. Deformations are multiplied by 50 for illustrative 

purposes. 
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(a) (b) 

 

 
 (c) 

 
Fig. 11. ANSYS APDL simulation of John and Shah cracked beam problem at; (a)  

250th, (b) 400th and (c) 600th sub-step of ANSYS computations. Deformations 
are multiplied by 50 for illustrative purposes. 


