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ABSTRACT 
 
A theoretical analysis is followed to calculate the dynamic stress intensity factors 
(DSIFs) due to existence of an interfacial crack near the right edge of a non-circular 
cavity, in transversely isotropic piezoelectric bi-materials. The model is subjected to 
dynamic incident anti-plane shearing (SH-wave). Green’s functions are constructed 
based on complex variable and conformal mapping methods. DSIFs at the crack inner 
and outer tips are obtained by conjunction and cracks-deviation techniques. The 
boundary value problems are solved by applying the orthogonal function expansion 
technique. Based on FORTRAN language program, numerical calculations with an 
elliptic cavity are provided for different elliptic axial length ratios, different wave 
numbers and different piezoelectric parameters. For calibration, a comparison is 
accomplished between the present model and similar model with a crack emerging 
from a circular cavity edge. Calculating results showed the influences on DSIFs and 
how affected the efficiency of piezoelectric devices and materials. 
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INTRODUCTION 

 
Piezoelectric smart materials are utilized widely in modern science technology. The 
electro-mechanical coupling response of these materials helps to establish plentiful 
styles of devices such as sensors, actuators and power supplies. However, faults and 
brittleness are occurring during manufacturing, polling process and service procedures 
due to materials stiffness and brittleness nature. That led researchers to investigate 
the defects behaviors and influences, and how they harm the efficiency of those 
devices. 
 
At the last few years, the defects existed in piezoelectric materials have been analyzed 
in various arrangements and loading conditions. For example, Wu [1] developed an 
effective method to investigate the elastic field and the electric field of a crack in a 
confocal elliptic piezoelectric inhomogeneity embedded in an infinite piezoelectric 
medium, using the conformal mapping and the theorem of analytic continuation. The 
matrix is subjected to the remote anti-plane shear and in-plane electric field. Chen et. 
al. [2] investigated the dynamic stress concentration and scattering of SH-waves by 
bi-material structures that possess an interface elliptic cavity, by using the complex 
function method to construct Green’s function. Liu and Wang [3] analyzed the electro-
elastic interaction of a screw dislocation and a notch in a piezoelectric bi-material using 
the conformal mapping and the image-dislocation approach. Liu and Lin [4] contracted 
a suitable Green's function for scattering of SH-waves and dynamic stress 
concentration by an interacting interface crack and a circular cavity near bi-material 
interface, for an elastic half space with a circular cavity impacted by an out-plane 
harmonic line source loading at the horizontal surface.  
 
Liu and Chen [5] investigated the problem of SH-wave scattering by radial cracks of 
any limited length along the radius originating at the boundary of an elliptical hole, 
using complex function and Green's function methods. Chen et. al. [6] presented a 
novel efficient procedure to analyze the elliptical inhomogeneity problem in 
piezoelectric materials under electromechanical loadings, which include a point force 
and a point charge or a far-field anti-plane shear and in-plane electric field, using 
Green’s function and conformal mapping. Sasaki et. al. [7] performed a two-
dimensional electro-elastic analysis on transversely isotropic piezoelectric materials 
containing an arbitrarily shaped boundary under out-of-plane mechanical and in-plane 
electrical loads at infinity, using the complex variable function method and the 
conformal mapping technique. Guo et. al. [8] studied the fracture problem of a semi-
infinite crack in a piezoelectric strip using complex variable function method and 
conformal mapping technique, under the anti-plane shear stress and the in-plane 
electric load. 
 
In transversely isotropic piezoelectric bi-materials, the objective is to evaluate 
theoretically the dynamic stress intensity factors (DSIFs) due to existence of an 
interfacial crack near the right edge of a non-circular cavity. A previous case was 
studied due to the existence of two symmetrically interfacial cracks near a non-circular 
cavity [9]. This model is subjected to dynamic incident anti-plane shearing (SH-wave). 
Based on complex variable and conformal mapping methods, Green’s functions are 
constructed and the DSIFs at the crack inner and outer tips are obtained by conjunction 
and cracks-deviation techniques. The boundary value problems are solved by applying 
the orthogonal function expansion technique. Numerical examples with an elliptic 
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cavity are provided for different elliptic axial length ratios, different wave numbers and 
different piezoelectric parameters, based on FORTRAN language program. 
Calculating results clarified the influences of the physical parameters, the structural 
geometry and the wave frequencies on the dimensionless DSIFs and how affected the 
efficiency of piezoelectric devices and materials. 

 
 

GOVERNING EQUATIONS 
 
Consider two transversely isotropic semi-infinite piezoelectric media ��� and	����, 
located in the ��-plane and the positive � axis is the polling direction. There exists an 
interfacial crack near the right edge of a non-circular cavity, subjected to dynamic SH-
wave as shown in Fig.1. The crack length is � and the distance between the cavity 
edge and the crack inner tip is		. The positions of the crack’s inner and outer tips are 
η
 and	η�, respectively. The general expression of the time-harmonic and the two-

dimensional field are [9,10,11]: 
 

     �∗��. �. �� = 	���. �����ω�	. (1) 

 
where �∗ is the desired field variable and ω is the incident wave frequency. For the 

sake of convenience, the exponential ���ω� is omitted [12]. In the absence of body 
forces and free charges, the governing equations of linear piezoelectricity under the 
SH-wave effect are [9,10,11]: 

 

     ���∇�� + �
�∇�∅ + �ω�� = 0.						�
�∇�� − κ

∇�∅ = 0	.   (2) 

 
where ���, �
� and κ

 are shear elastic modulus, piezoelectric constant and dielectric 
constant of piezoelectric medium, respectively; while �, ∅ and � are out-of-plane 
displacement, electric potential and mass density of the medium, respectively. 

Introducing complex variables		� +  � = !�η�,		� −  � = !�η�""""""", the external field of a 
non-circular cavity in the	��-plane can be transformed into one of a unit circle in     η	-
plane, based on conformal mapping method, if only !#�η� ≠ 0 in the mapping domain 
[9,12]. The plane expressed by column coordinate system (%. &) centered at the origin-', where	η = %	��( and )* = 1 is the circular cavity radius as shown in Fig.1. So, the 
anti-plane shear stresses (,-. and	,(.) and the in-plane electric displacements 
(/- 	and	/() for a piezoelectric solid, can be expressed by: 

 

     ,-. = 011
|34�η�| 567

6η ��( + 67
6η8 ���(9 + :;<

|34�η�| 56∅
6η ��( + 6∅

6η8 ���(9	. 
     ,(. = �011

|34�η�| 567
6η ��( − 67

6η8 ���(9 + �:;<
|34�η�| 56∅

6η ��( − 6∅
6η8 ���(9	. (3) 

 

     /- = :;<
|34�η�| 567

6η ��( + 67
6η8 ���(9 − κ;;

|34�η�| 56∅
6η ��( + 6∅

6η8 ���(9	. 
     /( = �:;<

|34�η�| 567
6η ��( − 67

6η8 ���(9 − �κ;;
|34�η�| 56∅

6η ��( − 6∅
6η8 ���(9	. (4) 

 
Also, Eq.2 can be simplified further as: 

 

     
6=7
6η6η8 = 5�>

� 9� !#�η�!#�η�""""""""!�η.η8�.						 6=?
6η6η8 = 0	.   (5) 
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where @ = !	A�/�∗	 is the wave number, while �∗ = ����1 + C�	is the effective 

piezoelectric stiffness and C = �
��/���κ

	is the dimensionless piezoelectric 

parameter of the medium. The electric potential can be defined by: 
 

     ∅ = :;<
κ;; � + D    (6) 

 
 
GREEN'S FUNCTIONS AND BOUNDARY VALUE PROBLEMS 
 
Under dynamic incident SH-wave at an arbitrary point η* with angle &* on the 

horizontal interface, the fundamental solutions on Green's functions of elastic 
displacement E7	and electric potential E∅	for a semi-infinite piezoelectric medium can 

be constructed as [2,5]: 
 

   E7 =	 �
�	0∗ F*�
�G@H!�η� − !Gη*IHI + ∑ �K	FK�
��@|!�η�|� ∙ MN 3�η�

|3�η�|O
K +PKQ*

N 3�η�
|3�η�|O

�KR	. (7) 

 

   E∅ = :;<
κ;; E7 + �

�	0∗ ∑ �	Kη	�K + SKη8	�K�PKQ* 	.	 (8) 

 

where FK�
�
 is Hankel function of the first kind. Green's function in the notch E∅0 can be 

defined by: 
 

     E∅0 = �
�	0∗ T/* + ∑ �/Kη	K + UKη8	K�PKQ
 V	.    (9) 

 

Consider that the dynamic incident SH-wave directed with an angle W*	in medium	���. 
The interfacial crack is existed near the right edge of the circular cavity in the equivalent 
mapping plane as shown in Fig.1. Superscripts	X, XX and � are used to express variables 
in	���, ����	and the cavity respectively. So, the boundary continuity conditions across 
the medium cavity interface, which assumed to be traction free and electrically 
permeable, should be in the following forms [12,13]: 
 

     Y/-� = /-0 .							/-�� = /-0 .					E∅� = E∅0 .						E∅�� = E∅0 .						,-.� = 0.							,-.�� 	= 0Z.				|η|∈1	. (10) 
 
Unknown coefficients �K. 	K. SK. /K. UK	and	/* in Green’s functions can be calculated 
by applying the boundary continuity conditions above with the orthogonal function 
expansion technique and the following relations about Hankel function [2,9,12]:  
 

 					 6
6η NFK�
��@|!�η�|� M 3�η�

|3�η�|R
KO = >

� FK�
�
� �@|!�η�|� M 3�η�
|3�η�|R

K�
 !#�η�	. 
     

6
6η8 NFK�
��@|!�η�|� M 3�η�

|3�η�|R
KO = − >

� FK^
�
� �@|!�η�|� M 3�η�
|3�η�|R

K^
 !#�η�""""""""	.                  
     

6
6η NFK�
��@|!�η�|� M 3�η�

|3�η�|R
�KO = − >

� FK^
�
� �@|!�η�|� M 3�η�
|3�η�|R

�K�
 !#�η�	. 
     

6
6η8 NFK�
��@|!�η�|� M 3�η�

|3�η�|R
�KO = >

� FK�
�
� �@|!�η�|� M 3�η�
|3�η�|R

�K^
 !#�η�""""""""	. (11) 
 
So, the next relations can be obtained: 
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     /K = − κ;;
κ_ SK.						UK = − κ;;

κ_ 	K	. (12) 
 

     
:;<
κ;; ∑ �K	FK�
��@|!�η�|� ∙ MN 3�η�

|3�η�|O
K + N 3�η�

|3�η�|O
�KR − /*PKQ*  

     + �
�	0∗ 51 + κ;;

κ_ 9 ∑ G	K���K( + SK��K(IPKQ
 = − :;<	�
�	κ;;0∗ ∙ F*�
�G@H!�η� − !Gη*IHI. (13) 

 

   @ `∑ �KFK�
�
� �@|!�η�|� M 3�η�
|3�η�|R

K�
PKQ* − ∑ �KFK^
�
� �@|!�η�|� M 3�η�
|3�η�|R

�K�
PKQ* a!#�η���(   

−@ `∑ �KFK^
�
� �@|!�η�|� M 3�η�
|3�η�|R

K^
PKQ* − ∑ �KFK�
�
� �@|!�η�|� M 3�η�
|3�η�|R

�K^
PKQ* a!#�η�""""""""���(  

− :;<	K	�
0∗= 	∑ G	K���K( + SK��K(IPKQ
 = − >	�

b	0∗ 	F�
�
�G@H!�η� − !Gη*IHI ∙ c 3�η�"""""""�3Gη_I"""""""""
H3�η��3Gη_IHd!#�η���( 

 − >	�
b	0∗ 	F�
�
�G@H!�η� − !Gη*IHI ∙ c 3�η��3Gη_I

H3�η��3Gη_IHd !#�η�""""""""���(	. 
(14) 

 
where κ* is the permittivity dielectric constant of gas or vacuum inside cavity. 

Multiplying both sides of Eq.13 and Eq.14 by factor	���e(, f = 0. ±1. ±2. … and 
integrating them from 0 to 2j	about	&, the final expressions have the form of infinite 
linear algebraic system of equations about the unknown coefficients [9,12]: 

 
     ∑ �K	klKPKQ* + ∑ 	K	mlKPKQ
 + ∑ SK	nlKPKQ
 + /*	ol = pl	.												q = 1. 2	. (15) 

 
in which 
 

 k
K = :;<
�r	κ;; s FK�
��@|!�η�|� ∙ MN 3�η�

|3�η�|O
K + N 3�η�

|3�η�|O
�KR�r

* ���e(t&. 
 k�K = >

�r s `FK�
�
� �@|!�η�|� cN 3�η�
|3�η�|O

K�
d − FK^
�
� �@|!�η�|� ∙ cN 3�η�
|3�η�|O

�K�
da�r
* !#�η�	��(���e(t&   

									− >
�r s `FK^
�
� �@|!�η�|� cN 3�η�

|3�η�|O
K^
d − FK�
�
� �@|!�η�|� ∙ cN 3�η�

|3�η�|O
�K^
da�r

* !#�η�""""""""	���(���e(t&. 
 m
K = 51 + κ;;

κ_ 9 �
�r	0∗ s ���K(	���e(t&�r

* .					&						m�K = − :;<	K	�
�r	0∗= s ���K(	���e(t&�r

* .
 

 n
K = 51 + κ;;
κ_ 9 �

�r	0∗ s ��K(	���e(t&�r
* .							&							n�K = − :;<	K	�

�r	0∗= s ��K(	���e(t&�r
* .

 

 o
 = − 

�r s 	���e(t&�r

* .					&						o� = 0.
 

 p
 = − :;<	�
�r	0∗κ;; s F*�
�G@H!�η� − !Gη*IHI	���e(t&�r

* .
 

 p� = − >	�
�r	0∗ s F�
�
�G@H!�η� − !Gη*IHI ∙ c 3�η�"""""""�3Gη_I"""""""""

H3�η��3Gη_IHd !#�η���(	���e(t&�r
*

 
 									− >	�

�r	0∗ s 	F�
�
�G@H!�η� − !Gη*IHI ∙ c 3�η��3Gη_I
H3�η��3Gη_IHd !#�η�""""""""���(	���e(t&.�r

*

 

 
By truncating, the polynomials in Eq.15 to the Nth term, and meanwhile by taking	v =0. ±1. ±2. …	± w, expressions can be reduced to a finite linear algebraic system of 
equations with �4w + 2� equations and �4w + 2� unknown coefficients. By solving the 
reduced expressions, the unknown coefficients can be calculated. The practical 
calculating indicates that satisfied calculations can be obtained only by taking	w = 8.  
 
 
DYNAMIC ELECTRO-ELASTIC FIELDS 
 
Different impedances at the interface joining the piezoelectric bi-materials caused  
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scattering phenomena. The dynamic electro-elastic and scattering fields can be given 
as follows [2,5]: 
 
(1) Incident elastic displacement and electric potential fields in	���: 

 

     ���� = �* �zk M− �@X
� {!�η���|_ + !�η�"""""""���|_}R	 .								∅��� = :;<~

κ;;	~ ���� . (16) 

 
where �* is the magnitude of incident displacement wave. 
 
(2) Reflecting and scattering electro-elastic fields in	���: 

 

     ��-� = �
 �zk M− �>~
� {!�η���|; + !�η�"""""""���|;}R.							∅�-� = :;<~

κ;;	~ ��-� . (17) 

 

     ���� = ∑ 	�K����PKQ�P FK�
��@�|!�η�|� M 3�η�
|3�η�|R

K + ∑ 	�K�-��PKQ�P FK�
��@�|!�η�|� M 3�η�
|3�η�|R

K	. 
     ∅��� = :;<~

κ;;	~ ���� + �
�	0~∗ N∑ 5		K����

η	�K + 	SK����
η8	�K9PKQ
 + ∑ 5		K�-��

η	�K +PKQ

	SK�-��

η8	�K9O (18) 
 
where �
and W
 are the magnitude and angle of reflecting displacement wave, 
respectively. 
 
(3) Refracting and scattering electro-elastic fields in	����: 

 

     ��?� = �� �zk M− �@XX
� {!�η���|= + !�η�"""""""���|=}R.								∅�?� = :;<~~

κ;;	~~ ��?� . (19) 

 

     ��?�� = ∑ 	�K�?��Pv=−∞ FK�
��@XX|!�η�|� M !�η�
|!�η�|R

v	. 
     ∅�?�� = :;<~~

κ;;	~~ ��?�� + �
�	0~~∗ N∑ 5		K�?��

η	�K + 	SK�?��
η8	�K9PKQ
 O . 

(20) 
 
where ��and W� are the magnitude and angle of refracting displacement wave, 
respectively. 
 
(4) For electric potential inside the circular cavity, the cavity is assumed to be vacuum 
or filled with homogeneous gas of dielectric constant	κ*, and free of forces and surface 
charges: 

 

     ∅0���� = �
�	0~∗ N	/*���� + ∑ 5	/K����

η	K + 	UK����
η8	K9PKQ
 O. 

     ∅0�-�� = �
�	0~∗ N	/*�-�� + ∑ 5	/K�-��

η	K + 	UK�-��
η8	K9PKQ
 O. 

     ∅0�?�� = �
�	0~~∗ N	/*�?�� + ∑ 5	/K�?��

η	K + 	UK�?��
η8	K9PKQ
 O. 

(21) 
 
The total electro-elastic fields for the two media ��� and	���� respectively: 
 

     �� = ���� + ��-� + ����	.						∅� = ∅��� + ∅�-� + ∅���	. (22) 
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     ��� = ��?� + ��?��	.																∅�� = ∅�?� + ∅�?��. (23) 
 
All unknown coefficients for incident, reflecting and refracting fields can also be 
calculated with the help of the orthogonal function expansion technique by applying 
the boundary continuity conditions across the medium cavity interface, which should 
be in the following forms: 
 
     �/-� = /-0 .							/-�� = /-0 .					∅� = ∅0 .						∅�� = ∅0 .						,-.� = 0	.							,-.�� 	= 0�.				|η|∈1	. (24) 

 

For the incident unknown coefficients	�K����. 	K����. SK����. /K����. UK����. /*����
, the next relations 

can be obtained: 
 

     	/K���� = − κ;;	~
κ_ 	SK����.							UK���� = − κ;;	~

κ_ 		K����	. (25) 
 

     
:;<~
κ;;	~ ∑ 	�K����	FK�
��@�|!�η�|� ∙ MN 3�η�

|3�η�|O
KR		PKQ�P + 51 + κ;;	~

κ_ 9 �
�	0~∗

∑ G		K�������K( + 	SK������K(IPKQ
  

     −	/*���� = − :;<~
κ;;	~ 	�* �zk M− �>~

� {!�η���|_ + !�η�"""""""���|_}R (26) 
 

     @� ∑ 	�K����FK�
�
� �@�|!�η�|�PKQ�P M 3�η�
|3�η�|R

K�
 !#�η���( 

     −@� ∑ 	�K����FK^
�
� �@�|!�η�|�PKQ�P M 3�η�
|3�η�|R

K^
 !#�η�""""""""���( 

     − :;<~ K	�
0~∗= ∑ G		K�������K( + 	SK������K(IPKQ
 = 

     	@��* �zk M− �>~
� {!�η���|_ + !�η�"""""""���|_}R . Y��|_ 	!#�η�	��( + ���|_ 	!#�η�""""""""	���(Z	. (27) 

 
The infinite linear algebraic systems of equations are as follows: 
 

     ∑ �K����	klKPKQ�P + ∑ 	K����	mlKPKQ
 + ∑ SK����	nlKPKQ
 + /*����	ol = pl 	.												q = 1. 2	. (28) 

 
in which 
 

 k
K = :;<~
�r	κ;;	~ s FK�
��@�|!�η�|� ∙ MN 3�η�

|3�η�|O
KR ���e(t&�r

* .	 
 k�K = >~

�r s FK�
�
� �@�|!�η�|� M 3�η�
|3�η�|R

K�
 !#�η���(���e(t&�r
*  

									− @�2j � FK^
�
� �@�|!�η�|� � !�η�
|!�η�|�

K^

!#�η�""""""""���(���e(t&�r

*
. 

 m
K = 51 + κ;;	~
κ_ 9 �

�r	0~∗ s ���K(	���e(t&�r
* 	.					&						m�K = − :;<~ K	�

�r	0~∗= s ���K(	���e(t&�r
* . 

 n
K = 51 + κ;;	~
κ_ 9 �

�r	0~∗ s ��K(	���e(t&�r
* .								&						n�K = − :;<~ K	�

�r	0~∗= s ��K(	���e(t&�r
* . 

 o
 = − 

�r s 	���e(t&�r

* .					&						o� = 0. 

p
 = − �
�� 	�*2j	κ

	� 	� �zk c−  @�2 {!�η���|_ + !�η�"""""""���|_}d . ���e(t&�r
*

. 
 p� = >~7_	�

�r s �zk M− �>~
� {!�η���|_ + !�η�"""""""���|_}R . ��|_ 	!#�η�	��(		���e(t&�r

*  

 						+ >~7_	�
�r s �zk M− �>~

� {!�η���|_ + !�η�"""""""���|_}R . ���|_ 	!#�η�""""""""	���(		���e(t&�r
* 	. 
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The incident unknown coefficients can be calculated by truncating the polynomials in 
Eq.28 with the sequence described before in Eq.15. Also, the same procedures can 
be followed to calculate the unknown coefficients for reflecting 

field	�K�-��. 	K�-��. SK�-��. /K�-��. UK�-��. /*�-��	and the unknown coefficients for refracting 

field	�K�?��. 	K�?��. SK�?��. /K�?��. UK�?��. /*�?��
. 

 
 
INTEGRAL EQUATION AND DSIFs  
 
The conjunction and crack-deviation techniques are used to evaluate the integral 
equation and calculate DSIFs at the crack inner and outer tips. The piezoelectric bi-
materials' conjunction is shown in Fig.2. The interface intervals in mapping plane can 
be defined as: 
 

     cΓ
 ∈ T)*. )* + 	V. & = 0;													Γ� > )* + 	 + �. & = 0;
Γ� > )*. & = j; 																															S ∈ T)* + 	. )* + 	 + �V. & = 0.d	.      (29) 

 

To apply the crack-deviation technique, two negative shear stresses −,(.�  and −,(.��  
are estimated at the crack location. The continuity conditions of shear stresses 
excluding the areas of the crack and the cavity can be expressed by [5,9,13]: 
 

     ,(.� �'n&* + D
�%*. &*� = ,(.�� �'n&* + D��%*. &*�.			��	Γ
.Γ�	�vt	Γ�	.      (30) 

 
where D
�%*. &*� and	D��%*. &*� are two additional stresses applied at the well-bounded 
interfaces. Returning to Eq.3, it can be concluded that [9]:  
 

     ,(.� = ,(.��� + ,(.�-� + ,(.���	.						,(.�� = ,(.�?� + ,(.�?��	. (31) 

 
in which: 
 

 ,(.��� = >~0~∗	7_
�|34�η�| N�zk M− �>~

� {!�η���|_ + !�η�"""""""���|_}R . Y��|_ 	!#�η�	��( − ���|_ 	!#�η�""""""""	���(ZO. 
 ,(.�-� = >~0~∗	7;

�|34�η�| N�zk M− �>~
� {!�η���|; + !�η�"""""""���|;}R . Y��|; 	!#�η�	��( − ���|; 	!#�η�""""""""	���(ZO. 

 ,(.��� = �>~0~∗
�|34�η�| ∑ 	�K���� `FK�
�
� �@�|!�η�|� M 3�η�

|3�η�|R
K�
 !#�η���(PKQ�P  

         +FK^
�
� �@�|!�η�|� M 3�η�
|3�η�|R

K^
 !#�η�""""""""���(a +	 :;<~
�	0~∗	|34�η�| ∑ Gv		K�������K( − v	SK������K(IPKQ
  

         + �>~0~∗
�|34�η�| ∑ 	�K�-�� `FK�
�
� �@�|!�η�|� M 3�η�

|3�η�|R
K�
 !#�η���(PKQ�P  

         +FK^
�
� �@�|!�η�|� M 3�η�
|3�η�|R

K^
 !#�η�""""""""���(a +	 :;<~
�	0~∗	|34�η�| ∑ Gv		K�-�����K( − v	SK�-����K(IPKQ
 . 

 ,(.�?� = >~~0~~∗ 	7=
�|34�η�| N�zk M− �>~~

� {!�η���|= + !�η�"""""""���|=}R . Y��|= 	!#�η�	��( − ���|= 	!#�η�""""""""	���(ZO. 
 ,(.�?�� = �>~~0~~∗

�|34�η�| ∑ 	�K�?�� `FK�
�
� �@��|!�η�|� M 3�η�
|3�η�|R

K�
 !#�η���(PKQ�P  

           +FK^
�
� �@��|!�η�|� M 3�η�
|3�η�|R

K^
 !#�η�""""""""���(a + :;<~~
�	0~~∗ 	|34�η�| ∑ 5v		K�?�����K( − v	SK�?����K(9PKQ
 . 

 
The continuity conditions of elastic displacements can be expressed by [9,13]: 
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     ���%. &� + ��?;��%. &� + �������%. &� = ����%. &� + ��?=��%. &� + ��������%. &� .   (32) 
 
where: 
 

 ��?;� = s D
�%*. 0�	
Γ;&Γ= E7� �%. &; %*. 0�t%* + s D
�%*. j�	

Γ� E7� �%. &; %*. j�t%*	.  

 ��?=� = − s D��%*. 0�	
Γ;&Γ= E7���%. &; %*. 0�t%* − s D��%*. j�	

Γ� E7���%. &; %*. j�t%*	.       

 ������ = − s ,(.� �%*. 0�	
� E7� �%. &; %*. 0�t%*	.       

 ������� = s ,(.�� �%*. 0�	
� E7���%. &; %*. 0�t%*	.       

 
Gathering all the equations above, the integral equation can be calculated as follows 
[9,13]: 
 
 s D
�%*. 0�	
Γ;&Γ= TE7� �%. &; %*. 0� + E7���%. &; %*. 0�Vt%* 

 + s D
�%*. j�	
Γ� TE7� �%. &; %*. j� + E7���%. &; %*. j�Vt%* = ��?���%. &� − �����%. &� 

 − s {,(.� �%*. 0� − ,(.�� �%*. 0�}	
Γ;&Γ= E7���%. &; %*. 0�t%* 

 + s {,(.� �%*. j� − ,(.�� �%*. j�}	
Γ� E7���%. &; %*. j�t%* 

 + s ,(.� �%*. 0�	
� E7� �%. &; %*. 0�t%* + s ,(.�� �%*. 0�	

� E7���%. &; %*. 0�t%*	.										& = 0. j	. (33) 
 
Finally, the dimensionless DSIFs	�@��) at η
and η� can be defined by: 

 

     @��η; = 

�_� � lim-_→�_^� D
�%*. 0�A2�%* − )* − B� . (34) 

 

     @��η= = 

�_� � lim-_→�_^�^� D
�%*. 0�A2�%* − )* − B − A� . (35) 

 

where the characteristic length � = A�/2		and ,* = @��*��∗	refers to shear stress 

magnitude of the incident wave [5,13]. 
 
 
NUMERICAL EXAMPLES AND DISCUSSIONS 
 
To examine the influences of different parameters on the DSIFs, some calculations 
are provided based on FORTRAN language program for Eq.34 and Eq.35, for a 
piezoelectric bi-materials media with an elliptic cavity. The conformal mapping function, 
which transforms the domain outside an ellipse in ��-plane into one outside a unit 
circle in η	-plane, is given by [2,5,9]: 
 

     � +  � = !�η� = �^�
� 5η + ���

�^�η�
9	. (36) 

 
in which a and b represent the two semi-axis’ lengths of the ellipse along the �-axis 
and the �-axis, respectively. 
 
First, for calibration of program efficiency, a comparison of DSIFs at η� is accomplished 

between the present model and the reference [13] model with crack emerging from the 
circular cavity edge as shown in Fig.3. The document model solved without using 
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complex variable and conformal mapping methods. It can be noticed that the DSIFs of 
the two models increased progressively to reach values around 1.00. It is expectable 
and physically true that if letting	� �⁄ → ∞	, one can finds that DSIFs	→ 1 [10,11,14]. 
 
The DSIFs of the present model gave lower values than the document model. The two 
curves did not coincide. So, using complex variable and conformal mapping methods 
in the current paper solution cause the wide change in DSIFs. Also, the distance 	 is 
used very small �	/� = 0.001� but still existed as a separation between the crack and 
the cavity. It can be concluded that, depending on the medium’s geometry and the 
sequence of calculations, the relation between the crack and the cavity is altered 
causing the changes occurred to the values of the DSIFs. 
 
Variations of DSIFs at η
and η� for different semi-axis’ percentages of the ellipse are 

shown in Fig.4 and Fig.5 respectively. The outer tip gave the larger values of DSIFs 
than the inner tip (about 85%-95%). The peak of the curves occurred at almost the 
same	@�� percentages for the two tips’ curves. Then, the DSIFs continue to decrease 
rapidly with 	@�� increment. But when �/� = 1.5, the decrement is occurred slowly. 
While the peak value of the curves decreased with the increment of semi-axis’ 
percentages at η
, it increased at η�. So, the increment of the semi-axis’ percentages 

led to the decrement of both the curve’s peak at inner tip and the variation of DSIFs 
with	@��. But, the increment led to increment of the curve’s peak at outer tip. 
 
Variations of DSIFs at η
and η� for different �/� percentages are shown in Fig.6 and 

Fig.7 respectively. The semi-axis’ percentage is	�/� = 0.8. On both tips, the curve for 
percentage �/� = 0.5 showed a very little increase of DSIFs with the increment of	@��. 
While the percentage	�/� increased, the curve showed higher oscillation and decrease 
the DSIFs rapidly. On the outer tip, while the percentage �/� increased, the peak value 
of the curve increased and the DSIFs decreased rapidly. 
 
Variations of DSIFs at η
and η� with �/� for different semi-axis’ percentages of the 

ellipse are shown in Fig.8 and Fig.9 respectively. The outer tip gave the larger values 
of DSIFs than the inner tip. The peak of the curves occurred at almost the same	�/� 
percentages for the two tips’ curves. In the inner tip, the peak value decrease with the 
increment of �/� percentage. In the outer tip, the peak value decrement is a little small. 
The DSIFs curves continue to decrease rapidly with the �/� increment. But, the values 
of DSIFs are larger for �/�	 = 	1.5 for the two tips’ curves. So, the DSIFs decreased 
with the increment of the	�/�, for different semi-axes’ percentages and the semi-axes’ 
percentage of the ellipse �/�	 = 	1.5 gave the smaller Peaks and the larger values of 
DSIFs for the two tips. 
 
Variations of DSIFs at η
and η� with �/� for different incident wave frequencies �C�� 
are shown in Fig.10 and Fig.11 respectively. The curves at both tips are almost 
coincide while C� changes. On both tips, the DSIFs curves continue to decrease rapidly 
while	�/�	 > 	2. So, for different incident wave frequencies, the variations of DSIFs are 
not affected quite clear and they are decreased with the increment of	�/�. It can be 
concluded that, the rise of the incident wave number harms the efficiency of 
piezoelectric devices and materials used, especially when the crack length is longer 
than twice the cavity’s semi-axis	�. 
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CONCLUSIONS 
 
In transversely isotropic piezoelectric bi-materials, a theoretical analysis is established 
to calculate the DSIFs due to existence of an interfacial crack near the right edge of a 
noncircular cavity. The model is subjected to dynamic SH-wave. Green’s functions are 
constructed based on complex variable and conformal mapping methods. The DSIFs 
at the crack’s inner and outer tips are obtained by conjunction and crack deviation 
techniques. Numerical calculations are provided with an elliptic cavity based on 
FORTRAN language program. Calculating results illustrated that, depending on the 
medium’s geometry and the sequence of calculations, the relation between the crack 
and the cavity is altered causing the changes occurred to the values of the DSIFs. The 
outer tip gave the larger values of DSIFs than the inner tip in all cases of study. For 
the variations with the wave number, the increment of the semi-axes’ percentages led 
to the decrement of both the curve’s peak at inner tip and the variation of DSIFs. But, 
the increment led to the curve’s peak increment at outer tip. For different incident wave 
frequencies, the variations of DSIFs are not affected quite clear. The DSIFs decreased 
with the increment of the crack length ratio for both the different semi-axes’ 
percentages and the different incident wave frequencies. The rise of the incident wave 
number harms the efficiency of piezoelectric devices and materials used, especially 
when the crack length is longer than twice the cavity’s semi-axis	�. 
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Fig.1. Piezoelectric bi-materials with an 
interfacial crack near a non-circular cavity 

and equivalent mapping plane 

 
 
 

Fig.2. Piezoelectric bi-materials' 
conjunction with two semi-non-circular 
notches and equivalent mapping plane 

 
 
 
 

 
 

Fig.3. Comparison of DSIFs between different two models under vertical incidence 
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Fig.4. Variations of DSIFs at η
with @�� 

for different semi-axis’ percentages of 
the ellipse 

 
 

Fig.5. Variations of DSIFs at η�with @�� 

for different semi-axis’ percentage of the 
ellipse 

 

 
 

Fig.6. Variations of DSIFs at η
with @�� for 

different �/�	percentages 

 
 

Fig.7. Variations of DSIFs at η�with @�� 

for different �/�  percentages 
 

 
 

Fig.8. Variations of DSIFs at η
with �/� 

percentage for different semi-axis’ 
percentages 

 
 

Fig.9. Variations of DSIFs at η�with �/�  

percentage for different semi-axis’ 
percentages 
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Fig.10. Variations of DSIFs at η
	with A/a  

percentage for different wave 
frequencies 

 
 

Fig.11. Variations of DSIFs at η�	with A/a  

percentage for different wave frequencies 

 


