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Abstract 
The behavior of indoor microbial air community is not well understood due to complex functional characteristics of building and 

environmental stressors. This study aims to understand behavior of microbial air community in relation to work type, height level and 

environmental factors in a complex built environment. A field survey was conducted at random sites of a research institute. Air microbial 
(bacteria, fungi & actinomycetes), chemical (PM, NO2, SO2, NH3 & HCOH) and physical (T°C, RH%, noise, lighting & electromagnetic 

strength) parameters were measured using integrated and real-time instruments. The overall microbial concentrations averaged 4451 CFU/m3 

(95% CI: 3795-5107 CFU/m3), 916 CFU /m3 (95% CI: 745-1087 CFU /m3), 556 CFU /m3 (95% CI: 473-639 CFU/m3) and 197 CFU/m3 (95% 
CI: 140- 254 CFU/m3) for environmental bacteria, mesophilic bacteria, fungi and actinomycetes, respectively. Global index of microbial 

contamination was significantly high at the hospital and near surface ground level. Amplification index of microbial concentration was ≥1.5 at 

14% of total sites. Microbial concentrations decreased with increasing height level. Environmental stressors had complex interactions with 
microbial concentrations. Multiple linear regressions showed that ventilation influenced environmental bacteria. RH% and PM positively 

influenced mesophilic bacteria and fungal concentrations, respectively. Standardizing environmental factors could control microbial 

community in buildings.  
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_________________________________________________________________________________________________ 
 

1. Introduction 

Indoor environmental quality (IEQ) results from interaction of climate, topography, location and building design. After the 

global energy crises of the 1970s, buildings have been regulated to meet energy efficiency criteria [1] by reducing indoor air 

circulation. The harmful pollutants have increased because of poor indoor air quality [2]. People spend ~ 80–90% of their time 

indoors, and studies have indicated that a range of comfort and health related effects are linked to building characteristics [3, 

4]. Indoor environmental quality is affected by many factors like indoor air quality, physical factors (thermal, acoustic and 

visual) and occupant's behavior [5]. IEQ of a building has a direct effect on the comfort, health and productivity of the 

occupants [6]. To achieve a good indoor air quality (IAQ) it is necessary to monitor certain levels of pollutants. IAQ can be 

affected by different pollutants such as carbon dioxide, smoke, dust, total volatile organic compounds, ozone, 

microorganisms, chemical substances/ or any other elements negatively affects health and human comfort [7]. Indoor air 

pollutants can cause short term and long term health problems [8]. IAQ is characterized by significant variability of physical, 

chemical and microbiological parameters [9-14]. IAQ varies depending on location of the building, number of occupancy and 

outdoor and indoor air sources [15]. Microorganisms present in public buildings can influence their structural conditions and 

occupant’s health. Air is one vehicle that helps spread of biological contamination in indoor environments. Biological particles 

(bioaerosols) are ubiquitous in built environment [16]. Biological particles are particles of biological origin suspended in the 

air such as bacteria, fungi, viruses, microbial toxins, plant debris, pollen grains and enzymes [17] Biological particles are 

transported up in the air as free (single cells, spores or aggregates) or attached to non-biological particles [18-19]. Indoor 

microbial air communities have been studied in various indoor environments such as homes, offices, schools, hospitals and 

other private and public buildings [20-23]. The airborne microbial communities have shown variations in numbers and types, 

depending on the kind of indoor environment, sources of contamination and microclimatic factors [24]. The proliferation of 

indoor airborne microorganisms indicates possible risks [25-26] affecting human health [27] and wellbeing [28]. Airborne 

microorganisms in built environments can cause infectious diseases, respiratory diseases and sick building syndrome [29-32]. 

Indoor microbial air contamination (distribution, 
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concentration and diversity) is influenced by many factors including "outdoor atmosphere, ventilation, occupant’s microbiome 

and building design" [33-35]. Indoor microbial air quality is changed over short time periods, depending on particle size, 

occupancy density, vegetation cover, geographical characters and seasonal changes [36-38]. The composition of airborne flora 

greatly varies as a function of geographical locality, emission rate, meteorological situation and sampling time [39]. 

Meteorological conditions and air pollutants influence transport and viability of airborne microorganisms [40]. Complex 

interactions are found between environmental stressors and the survival of airborne microorganisms [41-42]. The transport 

mechanism of microbial community in indoor environment is not well understood [43] due to complex functional 

characteristics of buildings and environmental stressors. The association between microbial air community with work type 

and environmental stressors is essential to mitigate its detrimental-effects on health and materials. There is a knowledge gap 

of how air pollutants and physical stressors interacted with microbial air community in built environments. The present study 

aims to investigate microbial air quality of a complicated public building (a research institute) in relation to work type, height 

level and environmental factors (climatic & air quality). Understanding the behavior of indoor microbial community under 

different environmental stressors could determine problems that should be solved. The outcomes of the study are 1) to cover 

knowledge gap on microbial air quality nearby ground surface height level, and 2) to standard environmental factors could be 

used to improve indoor microbial community.  

 

2. Materials and methods 

2.1.Description of sampling sites 

Sampling was carried-out at 9 main separated-buildings of a multidisciplinary R&D research/educational institute in Egypt. A 

total of 132 sites (104 indoor and 28 outdoor) were randomly evaluated at all the buildings. The selected sites vary in respect 

to occupant’s density and activity, ventilation, nature of work, location and height level. The selected sampling sites included 

“laboratories, training halls, administration offices, hospital and workshops” (Fig. 1). The research institute is located in an 

urban area characterized by high population intensity, busy traffic streets, parking, commercial activities, workshops and other 

educational premises. A variety of permanent green cover is found inside the institute campus without a predominant green 

cover outside the institute. The main characteristics of the sampling sites are described in Table 

1. 

Fig. 1. Diagram of the R&D research institute buildings 

 
Table 1. The characteristics of the sampling sites under investigation 

Variable 

Site 

Chemical 

Labs 
Biological Labs 

Physical 

Labs 
Offices Hospital  Workshops 

Number of sites 29 41 3 15 3 clinics 13 

Nature of work Organic, 

Inorganic 
& Physical 

Chemistry, 

almost 
chemical 

materials 

are used. 

Basic 

microbiology, 
Biotechnology, 

Parasitology, 

Algae, Botany & 
Zoology media 

and materials are 

used. 

Physical 

equipment & 
Electron 

microscopy 

unit.  

Administration 

offices and 
training halls  

Dental clinic, 

Out-patient 
clinics & 

radiology and 

sonar unit.  

Wood, Aluminium, 

Glass, Painting, Car 
mechanic, Plumbing & 

Welding workshops 

Ventilation mode Mechanica
l + natural 

Mechanical + 
natural 

Mechanical 
+ natural 

Mechanical  Mechanical + 
natural 

Natural + some 
mechanical fans 

Cleanliness moderate good bad moderate good very bad 

Average number of 

occupants  
~ 4 ~ 4 ~ 4 ~ 6 ~ 8-25 ~ 20 

Area (m2) ~ 40-60 ~ 40‒50 ~ 20‒60 ~ 20‒40 ~ 40‒80 ~ 40‒120 

Height level from 

ground (m) 
‒3 ‒ 9  3‒20  6‒15  3‒6  ‒3‒12  0‒3  

           *Mechanical ventilation: Air conditioning systems + fans 
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2.2.Sampling strategy 

Sampling of microbial (bacteria, fungi and actinomycetes), physical (ToC, RH%, noise, lighting, electromagnetic strength and 

ventilation rate) and air pollutants (PM, NO2, SO2, HCOH and NH3) parameters was taken at representative sites along over 

the institute’s buildings. The sampling was taken on working days, with normal activities and the presence of the minimum 

occupancy density, and lasted ~ 4-5 hours between 10:00 AM and 15:00 PM. The sampling was collected 2 days/week on 

Monday and Tuesday from December 2019 to July 2022. Indoor sampling was taken at a height of 1.5m above the floor 

ground surface, and the outdoor (comparison) sampling was taken at places with available electricity~ 2m from the main gate 

of a building/or in corridor. Integrated sampling was used to determine concentrations of microorganisms, PM, HCOH, NH3, 

SO2 and NO2. Moreover the real time portable monitors (short term measurements) were used to measure ToC, RH%, dew 

point, air velocity, noise, lighting and electromagnetic field. 

 

2.3. Sampling of airborne microorganisms 

Indoor/ outdoor airborne microorganisms were collected using Andersen Two-stage viable cascade impactor (TE-10-160, 

Tisch Environmental Cleves, OH, USA) according to EN: 13098: 2000 [44]. It separates particles into fine (≤2.5 µm) and 

coarse (≥7 µm) size ranges, operating at flow rate of 28.3 l/min 

for 5 min to prevent overloading the plates. Malt Extract Agar supplemented with chloramphenicol, Trypticase Soya Agar 

supplemented with 0.25% cycloheximide, and Starch Casein Agar media were used to enumerate fungi, bacteria and 

actinomycetes, respectively. Two consecutive samples (one hour between each sampling trial) were collected during each 

sampling event due to short sampling time. 

 

2.4. Microbial analysis 

The plates of fungi and actinomycetes were incubated at 25C for 5 and 28 C for 7-14 days, respectively. Bacterial plates 

were incubated at 28oC for 48hr for growing environmental bacteria (environmental origin) and at 37oC for 24hr for growing 

mesophilic bacteria (human-related bacteria). The resultant colonies were counted and the positive hole-correction was 

applied to the raw colony forming unit (CFU) recorded on each plate prior to calculation of the colony forming unit per cubic 

meter of the air (CFU/m3) [45]. 

 

2.5.  Air pollutants  

Particulate matter (PM) was collected on a pre-weighed cellulose nitrate membrane filter (diameter 25 mm, pore size 0.45 

µm) with a vacuum pump calibrated to draw 15 l/ min for 4-5hr. The mass of PM was calculated and concentration was 

expressed as microgram per cubic meter of the air (µg/m3).  Sequential 4-5hr air samples for formaldehyde (HCOH) and 

ammonia (NH3) were collected using a vacuum pump calibrated to draw 0.5 l/ min. The concentration of formaldehyde was 

determined using the 3-methyl-2-benzothiazolone hydrazone hydrochloride [46]. Ammonia concentration was determined 

using dilute sulfuric acid as an absorbing reagent followed by reaction with Nessler's reagent [47]. Sulphanilamide 

diazotization and West and Gaeke methods were used to measure nitrogen dioxide (NO2) and sulfur dioxide (SO2), 

respectively. The sampling was carried-out using glass bubblers containing 50 ml of 0.1N sodium hydroxide and 0.1M 

sodium tetra-chloromercurate solutions to measure NO2 and SO2, respectively [46]. The samples were colorimetric measured 

using spectrophotometer (Unicom spectrophotometer model 300).  

 

2.6.  Physical parameters  

Noise was measured using Sound Level Meter (model RO-1350, Taiwan) located~1.5 m above the ground surface level and 

no close than 3 meter to any reflecting surface. Significant /or accidental anthropogenic emitted noise were excluded, and 

noise level was expressed as decibel-A (dBA). The lighting intensity was measured at ~4 points at each location using Light 

Meter (Light meter-TM-201, Taiwan). The lighting level was expressed as lux. Electromagnetic field measurements were 

performed using TES 593 electro-smog-meter (TES Electrical Electronic Corp, China). The TES 593 meter covers a wide 

range of frequencies (10 MHz - 8 GHz). The instrument was allowed to stabilize for ~3 min before reading. The electrical and 

magnetic fields were expressed as volt per meter (V/m) and millitesla (mT), respectively. 

Temperature (ToC) and relative humidity (RH %) were measured using thermo-hygrometer (Sato-PC 5000, made in China) 

and air velocity (m/s) by using anemometer (ABH-4225, made in Taiwan). Air exchange rate (ACH) is estimated by using 

equation (1) and ventilation rate (m3/h. p) is computed using equation (2). In general, the mechanical ventilation is the main 

mode operated to introduce fresh air indoors; however the natural ventilation is limited and insensible at almost sites.  

 

ACH =
𝑔𝑎𝑠

𝑉
                                                                                             𝑒𝑞 .1 

Ventilation rate (
m3

h
. p) =

ACH x room volume 

𝑁𝑝
                       𝑒𝑞 .2 

Where: 

ACH: air exchange rate/hour 

gas: total flow of fresh air introduced into room (m3/h). 

V: volume of room (m3). 

 

2.7.  Statistical analysis 

Shapiro-Wilk test was applied to verify normality of the data distribution. Descriptive statistics (range, mean, standard 

deviation and percentiles) and non-parametric tests were used to analysis the data. Mann Whitney U-test was used to ascertain 

the significance of differences between microbial air concentrations in different sites. Spearman's rank correlation test was 

used to determine the relationships between airborne microbial concentrations with environmental stressors. Multiple linear 



  A.H. Awad et.al. 

_____________________________________________________________________________________________________________ 

________________________________________________ 

 Egypt. J. Chem. 68, No.2, (2025) 

 

 

432 

regression models were used to figure-out the main independent factors affecting microbial concentrations (Statistical 

Package for Social Sciences, software version 22.0, IBM Corp., Chicago). A probability of less or equal to P≤ 0.05 was 

considered a significant.  

 

3. Results and Discussion 

3.1.  Microbial air contamination in relation to nature of work  

The summary of indoor/outdoor microbial airborne concentrations is shown in Table 2. Concentrations of environmental 

bacteria, mesophilic bacteria, fungi and actinomycetes ranged between 2.87x102 ‒ 1.6x104 CFU/m3, 1.1x101 ‒ 4.531x103 

CFU/m3, 7.1x101 ‒ 2.742x103 CFU/m3 and 1.8x101 ‒ 2.24x103 CFU/m3, respectively. The concentrations of environmental 

bacteria in the hospital significantly differed (p ≤0.014) with those detected in laboratories of chemistry and physics and 

offices. The concentrations of mesophilic bacteria significantly differed (p≤0.007) between the workshops and laboratories, 

higher concentrations shifted toward the workshops. Significant differences were found between fungal concentrations in the 

workshops with laboratories of chemistry and physics and hospital as well. Actinomycetes concentrations significantly 

differed in the workshops with both laboratories of biology and physics. The profile of microbial air quality was in order of 

hospital > chemistry labs > offices >biology labs > workshops > physics labs for environmental bacteria; workshops > 

hospital >offices > chemistry labs >physics labs > biology labs for mesophilic bacteria; workshops > chemistry labs > offices 

> biology labs>  physical labs> hospital for fungi, and workshops > offices >chemistry labs > hospital>biology labs> physical 

labs for actinomycetes. 

The profile of microbial air quality varied in respect to the nature of work. The workshops had the worst microbial air quality. 

This is because workshops are mainly located in the basement /or close to the ground surface and characterized by damp 

building’s materials. The highest concentration of environmental bacteria was found in the hospital. This is because it is 

located close proximity to a heavy traffic road with no access restriction and high human activities. Higher concentration of 

actinomycetes (~103 CFU/m3) in the workshops indicates a bad situation of microbial air quality. Actinomycetes are 

ubiquitously found in waste, soil and dust. Actinomycetes concentrations are usually low indoors but their concentrations tend 

to be high with abnormal situations such as moisture damaged buildings [48]. The presence of actinomycetes in indoor 

environment is an indication of air bio-contamination [49]. On the other hand fungi are commonly associated to the outdoor 

environment. Soil and vegetation are the main contributors of atmospheric fungi [50]. Moreover fungi are well grown in 

indoor air temperature ≥ 25oC, high relative humidity and poor cleanliness conditions [51-52].  

Airborne microbial concentrations are widely varied in relation to sources, occupant activities, building design and internal 

environmental conditions which facilitate/or limit the aerial transport and viability of microorganisms [53]. Variation of 

occupant’s density and activity, nature of work and interference of outdoor environmental conditions affected microbial loads, 

differently [54]. Airborne bacteria from outdoor environment enter indoor spaces through open doors and windows [55]. Air 

flow in rooms varies according to their design, manner of operation, ventilation type, size and shape [56]. Ventilation 

modifies characteristics of indoor air as natural ventilation increases infiltration of outdoor microorganisms, however 

mechanical ventilation reduces outdoor microbial infiltration [57]. The changes in climate conditions influence airflow, 

particularly in buildings with poor insulation and ventilation. Climate change consequently alters indoor microbial air quality 

[58], increasing contamination by human-sourced population.  

 
Table 2. Airborne microbial concentrations in respect to the nature of work 

 

Variable Biology labs Chemistry labs Physics labs Offices Workshop Hospital 

Environmental 

bacteria 

287‒16068 

(3440±2339) 

1934‒19378 

(6446±4513) 

2114‒2620 

(2385±208) 

1034‒8396 

(3952±2345) 

1533-7036 

(3399±1469) 

8200-10651 

(9363±1004) 

Mesophilic 

bacteria 

11‒2542 

(473±530) 

14‒2957 

(901±760) 

412‒616 

(498±86) 

14‒2360 

(1131±785) 

526‒4531 

(2016±1374) 

1011‒1506 

(1323±222) 

Fungi 71‒2742 
(467±421) 

142‒1743 
(641±371) 

253‒440 
(373±85) 

192‒1133 
(491±237) 

34‒2841 
(794±649) 

492‒2167 
(366±114) 

Actinomycetes 18‒438 

(96±77) 

24‒679 

(198±178) 

24‒84 

51±25) 

106‒457 

(243±114) 

35‒2241 

(665±540) 

107‒204 

(151±50) 

      Range, (mean ± sd) 

 

3.2. Microbial–contamination in relation to height level 

In the present study the height level of buildings was divided into 4 stages 1) stage-0 (‒3‒4m); 2) stage-1 (˃4‒10m); 3) stage-

2 (˃10‒16m) and 4) stage-3 (˃16‒30 m). In general the microbial air concentrations showed a decreasing trend with 

increasing height above ground surface (Table 3). Microbial air concentrations significantly differed (p ≤0.0146) in stage-0 

with other stages, the higher concentration shifted toward the stage-0 (‒3‒4m). The mean concentrations of environmental 

bacteria, mesophilic bacteria, fungi and actinomycetes were 5394 CFU/m3, 1850 CFU/m3, 803 CFU/m3 and 427 CFU/m3 at 

stage-0 (‒3‒4m), respectively and their concentrations reached 2457 CFU/m3, 390 CFU/m3, 303 CFU/m3 and 75 CFU/m3 for 

the corresponding microbial parameters at stage 3 (˃16‒30 m (Table 3). This is due to almost human activities are performed 

near the ground surface level; the direct effect of soil and vegetation [59-60] and increase ventilation rates with increasing 

height level. Airborne bacterial community decreased roughly with increasing height in green spaces [61]. Surface-upper air 

currents can be well mixed by atmospheric turbulence and dilution [62], decreasing microbial concentrations with height 

elevation above the ground surface. Vertical microbial variation reflects the effect of outdoor local sources and their microbial 

loads. Bowers et al. [63] found that higher bacterial diversity in mountain due to the influence of surrounding vegetation. The 

https://pubmed.ncbi.nlm.nih.gov/?term=Robinson+JM&cauthor_id=33236934
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height of planetary boundary layer differs with season; airborne microorganisms can be accumulated in lower surfaces in cold 

season than other seasons [64]. Moreover, temperature inversion constitutes an effective barrier for particles diffusion, raising 

PM pollution index nearby the ground surface [65].  

 
Table 3. Air microbial concentrations in respect to height level 

 

Variable 

Height level 

Stage-0 

(‒3‒4m) 

Stage-1 

(˃4‒10m) 

Stage-2 

(˃10‒16m) 

Stage-3 

(˃16‒30m) 

Environmental 
bacteria 

1594‒19378 
(5394±3755) 

1034‒19104 
(4785±3672) 

287‒8200 
(3217±1836) 

1538‒3679 
(2457±702) 

Mesophilic bacteria 524‒4531 

(1850±1093) 

18‒2616 

(709±663) 

209‒1827 

(562±573) 

18‒1696 

(390±482) 

Fungi 361‒2841 
(803±545) 

107‒1287 
(497±267) 

71‒2742 
(505±539) 

131‒542 
(303±130) 

Actinomycetes 35‒2254 

(427±536) 

23‒457 

(146±114) 

0.0‒438 

112±109) 

35‒142 

(75±34) 

Range, (mean ± sd) 

 

3.3. Air bio-contamination indices 

Global index of microbial contamination (GIMC/m3), mesophilic bacterial contamination index (IMC) and amplification 

index (AI) are used to determine indoor bio-contamination [66]. Figure 2 (a‒d) illustrates the summary of microbial indices. 

The GIMC values ranged between 358‒22110 GIMC/m3, with the highest values were found in the hospital (11204 

GIMC/m3) and stage-0 (8474 GIMC/m3) in respect to the nature of work and the height level, respectively.  

IMC values were found in the range of 0.0‒1.9; with mean values were less than 1, and the highest values were found in the 

workshops (0.8) and stage-0 (0.51). IMC index indicates the presence of obligated mesophilic bacteria in the indoor 

environment due to hypoventilation and overcrowding. On the other hand AI values ranged between 0.1‒3.7, with an order of 

magnitude was hospital ˃ workshops ˃ physics labs ˃ offices ˃ chemistry labs ˃ biology labs in respect to the nature of work 

(Fig. 2 b); and stage 0 ˃ stage-1 ˃ stage- 2 ˃ stage-3 in respect to the height level (Fig. 2d). AI values exceeded 1.5 at ~14% 

of the total sampling sites, indicating an accumulation of microorganisms in indoor environment. However the results of AI 

values confirmed that the outdoor environment was considered the main indoor microbial contributor in ~86% of the 

investigated sites.  

 

Fig. 2 a‒d. Bio-contamination indices regarding to work type (a & b) and height level (c &d) 
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3.4. Interpretation of microbial concentrations 

The overall airborne microbial concentrations at all the investigated sites averaged 4451 CFU/m3 (95% CI: 3795-5107 CFU 

/m3), 916 CFU /m3 (95% CI: 745-1087 CFU /m3), 556 CFU /m3 (95% CI: 473-639 CFU /m3) and 197 CFU /m3 (95% CI: 140- 

254 CFU /m3) for environmental bacteria, mesophilic bacteria, fungi and actinomycetes, respectively. Interpretation of 

airborne microbial data is difficult due to lack of universally accepted normative and reference values [67]. Considering the 

upper 95% confidence interval (CI), the concentrations of environmental bacteria, mesophilic bacteria, fungi and 

actinomycetes were >5000 CFU/ m3, 1087 CFU /m3, 639 CFU /m3, and 254 CFU /m3, exceeding the threshold limit values 

that have been set by some authors and international agencies. Fungal concentration ˃ 500 CFU/m3 indicates abnormal 

conditions in indoor environment [68]. The European Biological Agent’s Expert recommends indoor airborne bacterial and 

fungal concentrations for living and public buildings of 5000 CFU /m3 [69]. In this study and according to the European 

Commission Standards for non-industrial premises microbial concentrations could be classified as very high (˃1000 CFU/m3) 

for bacteria and medium (100‒500 CFU /m3) for fungi [70]. Airborne microbial concentrations exceeded the threshold limits 

have been set by the Korean Ministry of the Environment (800 CFU/m3) for bacteria [29] and Indonesia Ministry of Health 

(700 CFU/m3) for fungi [71]. The WHO has set a guideline for bacterial load not to exceed 500 CFU /m3 in indoor 

environment [72]. Higher airborne fungal concentration in indoor environment could be a signal of the existence of a moisture 

problem and presence of internal sources. The indoor/outdoor ratios of microbial concentrations exceeded 1 at different sites 

(Fig. 2 b & d), indicating the presence of internal microbial sources. Moreover an indoor environment can be considered 

unusual when the microbial concentrations are at least an order of magnitude higher than that commonly occur in control 

environment [73].  

3.5. Evaluation of air pollutants  

Figure 3 shows the mean ± sd concentrations of air pollutants in respect to the nature of work. The concentrations of PM, 

HCOH, SO2, NO2 and NH3 ranged within 56.7‒757µg/m3, 0‒1080 µg /m3, 0‒1460 µg/m3 and 0‒359 µg/m3 and 0-939 µg/m3, 

respectively. The highest mean concentrations of HCOH (374 µg/m3) and NH3 (316 µg/m3) were found in laboratories of 

biology. HCOH is usually used as sterilizing agent and NH3 is related to cleaning products which are frequently applied in 

biological labs. PM and NO2 were detected in the highest concentrations in the workshops, whereas the highest mean 

concentration of SO2 was found inside the hospital environment (Fig. 3). The variations of outdoor-origin air pollutant (PM, 

SO2 and NO2) concentrations inside buildings confirm differences in infiltration rate and function of indoor/outdoor sources. 

Generally higher air pollutant concentrations were detected in sites–located close to busy traffic road with no restricted access 

to the buildings. Concentrations of NO2 felt in the limit value set by the WHO (200 µg/m3) and SO2 exceeded the WHO´s 

limit value of 104 µg/m3 at almost sampling sites [74]. PM concentrations did not exceed the Egyptian limit value (230µg/m3) 

[75]. HCOH concentrations exceeded the WHO limit value of 100µg/m3 [74].  NH3 felt within the reference value of 175 

µg/m3 has set by the HSE [76], except for the biological labs and workshops. 

 

 
Fig. 3: The mean ± sd concentrations of air pollutants in respect to work type 

 

 

3.6. Evaluation of physical parameters 

Table 4 shows the measurements of indoor physical parameters. The measurements are widely varied in regarding to location, 

human activity and building characteristics. Noise levels ranged between 48‒87 dBA, with a mean value exceeded e the 

minimum acceptable level (60 dBA) in ~ 78% of total sampling sites. Noise is mainly related to its high background value 

from traffic, air conditioning systems and audible equipment. Traffic is the main variable affected noise level indoors, 

confirming bad restriction and isolation of buildings under investigation. Lighting values ranged within 41‒1480 lux in all 

sites. Lighting was insufficient to achieve the minimum acceptable level of 300 lux [77] in ~50% of the investigated sites. 

Wind speed values are found in the range of 0‒1.4 m/s indoor buildings. The wind speed profile was: biology labs ˃ 

chemistry labs ˃ physics labs ˃ offices ˃ hospital ˃ workshops (Table 4). Mechanical ventilation is always operated in the 

summer season while natural ventilation in the winter season. Air velocity rates were lower inside buildings than the standard 
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limit has set between 0.15 to 0.50 m/s [78]. Engineering countermeasures should be taken to increase up wind speed inside 

buildings to be 0.2 ‒ 0.3 m/s in order to ensure adequate air flow rate [79].  

Indoor temperature, relative humidity and dew point measurements ranged between 17‒35.6oC, 29.5‒66.5% and 2.2‒22.7oC, 

respectively (Table 4). Temperature and relative humidity values were not comfort in some sampling sites. The average values 

of temperature and relative humidity were 25.9 oC (95% CI: 24.58‒ 27.22oC) and 50.4% (95% CI: 45.5‒55.3%) in offices and 

29.2oC (95% CI: 22.41‒ 35.9 oC) and 48.9% (95% CI: 41.88‒55.92%) in the workshops, respectively. The acceptable 

temperature guidelines are within 20‒23oC in offices in temperate climate zone [80] and 20–22°C a situation of thermal well-

being [81]. The ranges of relative humidity are coincided with the standard has recommended by ASHRAE 30%‒ 60% for 

thermal comfort in offices [79]. The dew points averaged 17.2oC (95% CI: 9‒ 23.2 oC) in the workshops. The OSHA [82] 

recommends indoor dew points within 4‒ 16.5oC which it is compatible with dew point measurements (5‒17oC), except in the 

workshops (17.2 oC, 95% CI: 9‒23.2 oC) and hospital (4.8 oC, 95% CI: 4.3‒5.2 oC).  

Electric and magnetic strengths are widely varied between 1.5‒ 242 V/m and 0.5‒ 437 mT, respectively (Table 4). The 

magnetic field was found to be above the threshold limit values of 0.5 mT (8-hr reference period/day) and 5 mT (for short 

period) [83]. However the electric field did not exceed the limit values of 10000 V/m and 30000 V/m for a working day and 

short period of time, respectively [83]. Electromagnetic field strength is related to equipment’s size and power, operation 

mode and location of equipment. Obstacle and distance away from the source decrease electromagnetic field strength [84]. 

Such conditions are varied during in situ sampling according to the location’s characteristics.  

 
Table 4: The range and mean values of air physical parameters 

 

Variable Biology labs Chemistry labs Physics lab Offices Workshops Hospital 

ToC 
(18.4‒25) 
[21.4±1.8] 

(18.4‒25.5) 
[22±2] 

(17‒20) 
[18±0.95] 

(19‒30) 
[25.9±2.6] 

(18.3‒35.6) 
[29.2±6] 

(17‒20) 
[17.4±0.57] 

RH% 
(30‒56.3) 

[44±6.5] 

(31.2‒58) 

[43±7.8] 

(39‒46.7) 

[42±3.3] 

(29.5‒66.5) 

[50.4±9.7] 

(39‒58.4) 

[48.9±6.2] 

(38.8‒42) 

[40.8±1.4] 

Dewpoint 

(ToC) 

(2.2‒14.7) 

[8.6±2.9] 

(2.6‒15) 

[8.8±2.6] 

(3.8‒9.2) 

[4.7±1.6] 

(8‒19.6) 

[15±3.2] 

(7.1‒22.7) 

[17.2±5.3] 

(3.6‒9) 

[4.8±0.4] 

E-field (V/m) 
(2‒242) 

[38.8±56] 

(1.5-224) 

[24±48] 

(2.5‒64.6) 

[25.7±27] 

(1.8‒62) 

[18.5±20] 

(1.1‒108) 

[27±30.6] 

(1.5‒5) 

[3±4.2] 

M-flux (mT) 
(1.5‒190) 
[60±45.7] 

(0.5‒437) 
[77.5±95] 

(18.7‒47.8) 
[35±12] 

(12.5‒152.5) 
[68.8±44] 

(15.7‒140) 
[62±40] 

(49‒106) 
[76.9±23] 

Noise (dBA) 
(53.8‒78) 

[65.5±5] 

(48‒85) 

[68±8] 

(52‒61) 

[35±12] 

(55‒72) 

[66±4.9] 

(61‒87) 

[73±7.4] 

(60‒68) 

[64±3.4] 

Lighting 

(Lux) 

(138.9‒1394) 

[517±285.8] 

(175‒925) 

[586±241] 

(452‒1480) 

[904±44.5] 

(79.9‒454) 

[374±279] 

(41‒617) 

[159±80] 

(133.7‒289) 

[218.9±64] 

Wind velocity 

(m/s) 

(0.2‒1.4) 

[0.62±0.3] 

(0‒1.5) 

[0.5±0.3] 

(0‒1) 

[0.44±0.3] 

(0‒1.3) 

[0.57±0.3] 

(0‒0.3) 

[0.14±0.21] 

(0‒0.9) 

[0.3±0.15] 

Range, (mean ± sd) 

 

3.7. Interactions of air microorganisms and environmental stressors 

Table 5 shows the correlations between indoor/outdoor environmental stressors and microbial air concentrations. A wide 

range of correlations were found depending on type of microorganism, environmental stressor and location. Air pollutants 

“HCOH, NH3, NO2 and SO2” had detrimental /toxic effects on the survival of airborne microorganisms (Table 5). Significant 

negative correlations were found between HCOH (p≤0.05) and all microbial parameters, as HCOH is frequently used as a 

disinfectant agent. NO2 reacts with water molecules to form nitric and nitrous acids; actively react with water protein [85]. 

NO2 had a toxic effect on airborne microorganisms through denaturation of moieties [86]. However SO2 leads to form a more 

toxic compound of H2SO4 which becomes lethal to microorganisms [87].  

PM negatively correlated with indoor airborne microorganisms, except with actinomycetes. However PM positively 

correlated with the outdoor microorganisms (Table 5). These correlations could be attributed to different dust and microbial 

sources, sizes and composition of PM. PM includes abundant organic matters, nitrate and sulfate [88]. PM in indoor 

environment has smaller sizes and more toxic compounds than that in outdoor environment. Fine dust particles contain mainly 

soot, metals and secondary toxic compounds [89], However coarse particles contain minerals species from soil and biological 

origin particles [90], which may support microbial growth and survival. The composition of PM differently affects microbial 

survival. This is because PM may cause deleterious effect on microbial metabolism /or favor their adsorption to PM [91]. PM 

is highly related to bacterial concentration [92] and it carries microbial particles in the atmosphere [93].  

Physical parameters showed less obvious interactions with air microorganisms than air pollutants. Negative correlations were 

found between lighting, air speed and air pressure with indoor microbial concentrations (Table 5). Temperature and relative 

humidity affect microbial concentrations differently, due to the movement of water molecules depends on relative humidity 

and temperature. Relative humidity negatively influenced microbial concentrations. Significant positive correlations were 

found between temperature with mesophilic bacteria, fungi and actinomycetes. High humidity (70–80%) favors airborne 

microbial survivability [94] and air pressure dilutes microbial concentrations [95]. Previous studies have shown that 

temperature ≥ 24oC decreases survival of airborne bacteria [96]; however others have shown that higher temperature increases 

survival of airborne bacteria [39]. Changes in RH%, ToC and wind speed significantly influence microbial survivability. 

Bacterial concentrations were insignificantly correlated with temperature, relative humidity, dust level and carbon dioxide in 
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Korea care-centers [29]. Significant and in-significant positive associations were found between relative humidity with indoor 

bacterial and fungal growth [97- 98].  

Wind speed negatively influences the spread and accumulation of microorganisms [99]. Wind speed can bring exogenous 

microbes to indoor environment [100] and helps atmospheric dilution. In this study wind speed showed positive correlations 

with concentrations of ambient fungi and actinomycetes. This confirms the importance of passive discharge mechanism in 

release of small spores (actinomycetes) and bacteria [101]. Mechanical and natural ventilation modes reduce/or increase 

indoor microbial contents. Mechanical ventilation has higher air exchange rate than natural one, decreasing indoor microbial 

contents [102]. Air exchange rate, particle size and human behavior affect infiltration of airborne microorganisms [103]. The 

sufficient air exchange rate/or direct air flow reduce contaminated air [104].  

Weak positive correlations were found between noise levels and microbial types, except the environmental bacteria. Human 

activities and occupancy numbers raise both noise level and re-suspended dust load. Re-suspended dust may be considered a 

contributor for air microorganisms. Light wavelengths affect survival of bacteria associated dust, as visible/or ultraviolet 

lights reduce bacterial counts [105]. Surface bacterial counts decreased as light intensity increased [99]. Light produces air 

ions (negative and positive ions) which evoke a wide range of physiological and biochemical changes of microorganisms, 

increasing their decay rate [106]. Visible light has a lethal effect on microorganisms [107], depending on particle size, photo-

sensation and relative humidity [108]. Some sampling sites have UV light which possibly involves free radicles, damaging 

DNA and enzymes of airborne microorganisms. 

The degree of electromagnetic pollution is influenced by the microenvironment. Higher electrostatic charges are generated in 

low humidity, alters electromagnetic nature of microclimatic conditions [109]. Electric and magnetic fields can differently 

attract microorganisms. Positive and negative correlations were found between airborne microorganisms with magnetic and 

electric fields, respectively. Electrical field acts as a removal mechanism for particles, depending on particle size and localized 

electrical field strength [110]. Vertical electrical field reduced airborne microbial concentrations [111] and a positive 

correlation was found between air microbial concentration and magnetic field [112]. Electrical force increased the rate of 

physical decay of microorganisms through increasing electrostatic agglomeration and deposited faster to the ground [113]. It 

is suggested that the positive correlations between magnetic field and airborne microorganisms may be attributed to magnetic 

strength is not able of attracting microorganisms but it may stimulate their growth. PM showed positive correlation with all 

microbial parameters in the outdoor environment. Moreover outdoor airborne actinomycetes showed different correlations 

trend with environmental stressors, and more studies are needed to understand their behavior in the air environment (Table 5). 

Multiple-linear regression analysis confirmed that environmental bacteria & actinomycetes were mainly affected by 

ventilation rate. Ventilation rate reduces microorganisms-related human origin by diluting air and introducing outdoor-

environmental associated microorganisms [114]. RH% (p ≤ 0.004) and magnetic field (p ≤0.05) positively affected the 

survival of mesophilic bacteria and actinomycetes, respectively. PM (p≤0.037), HCOH (p≤0.034) and SO2 (p≤0.008) affected 

the survival of fungi. In general the behavior of airborne microorganisms is influenced by different variables which induce 

selecting pressure on microbial composition. Statistical analysis showed that not all independent variables were necessary to 

impact airborne microorganisms. Particulate matter, temperature, lighting, ventilation rate and electrical field could be 

standardized to control microbial air quality in complex public buildings. 

 
Table 5. Spearman's rank correlations between microorganisms and environmental stressors indoor/ outdoor environments 

 

Variable Environ-bacteria Meso-bacteria Fungi Actinomycetes 

In Out In Out In Out In Out 

SPM-µg/m3 ‒0.12 0.28 ‒0.05 0.19 ‒0.23* 0.07 0.05 0.27 

HCHO-µg/m3 ‒0.28* ‒0.27 ‒0.35* ‒0.21 ‒0.35* ‒0.36 ‒0.35 ‒0.03 

NH3- µg/m3
 ‒0.37* ‒0.17 ‒0.48* ‒0.36 ‒0.25* ‒0.27 ‒0.08 0.22 

SO2- µg/m3
 ‒0.11 ‒0.17 ‒0.37* ‒0.25 ‒0.37* -0.49* ‒0.44* ‒0.58* 

NO2-µg/m3
 ‒0.31* ‒0.03 ‒0.16 ‒0.11 ‒0.24* ‒0.04 -0.11 0.12 

T°C 0.04 0.02 0.30* 0.20 0.19* 0.06 0.40* 0.48* 

RH% ‒0.15 0.02 ‒0.12 ‒0.05 ‒0.26* ‒0.03 ‒0.01 0.30 

Pressure-Pa ‒0.08 ‒0.06 ‒0.12 ‒0.15 0.01 ‒0.34 0.08 0.09 

Wind speed- m/s ‒0.05 ‒0.28 ‒0.3* ‒0.16 ‒0.14 0.08 ‒0.27* 0.11 

Dew point-T°C ‒0.14 ‒0.04 0.13 ‒0.04 ‒0.03 ‒0.17 0.21* 0.34 

E-strength -V/m ‒0.08 ‒0.24 ‒0.11 ‒0.32 ‒0.03 ‒0.03 ‒0.11 0.08 

M-strength- A/m 0.15 ‒0.10 0.02 ‒0.31 0.02 ‒0.24 0.08 0.19 

Noise-dBA 0.08 ‒0.03 0.03 ‒0.03 0.11 0.01 0.14 0.30 

Lighting- Lux ‒0.12 ‒0.24 ‒0.23* ‒0.24 0.01 ‒0.20 ‒0.25* ‒0.17 
                 * p≤0.05 

 

4. Conclusion 

Indoor microbial air quality is varied under field conditions in respect to locality and environmental parameters. Microbial air 

quality was the worst in sampling sites-located near-ground surface as well as sites with hypoventilation and overcrowding. 

The highest values of GIMC/m3 were found in the hospital environment and the near-ground surface in respect to the nature of 

work and height level-elevation, respectively. Considering the upper 95% confidence interval (95%CI), concentrations of 

environmental bacteria, mesophilic bacteria, fungi and actinomycetes were >5000 CFU/ m3, 1087 CFU /m3, 639 CFU/m3, and 

254 CFU/m3, exceeding the threshold limit values that have been set by some international agencies. The variation of outdoor-

origin air pollutant (PM, SO2 and NO2) concentrations in indoor environment confirms the differences in infiltration rates and 
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function of indoor/outdoor sources. Complex interactions were found between airborne microbial concentrations and 

environmental factors. The behavior of microorganisms in the air environment is influenced by different variables which 

induce a selecting pressure on microbial composition. Air chemical pollutants showed more obvious influence on the survival 

of microorganisms than climatic and physical factors. Ventilation rate, electrical field, lighting and air chemical pollutants 

tended to decrease airborne microbial concentrations. Relative humidity and temperature affected the survival of airborne 

microorganisms in indoor environment, differently. PM, ToC, lighting, ventilation rate and electrical field factors could be 

standardized to determine microbial air quality in the built environment. Management plan should be developed to minimize 

infiltration and remove indoor sources. Concentration and diversity of antibiotic resistance genes and specific microbial types 

are needed to study in the future. 
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