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Abstract

Grape diseases and pest infestations threaten the economic viability of grape production, necessitating
early detection and intervention. Leveraging advancements in machine learning and computer vision,
researchers are developing automated systems that accurately identify and classify grape diseases, con-
tributing to improved disease management strategies. This study proposes an automated framework for
classifying and detecting grape leaf diseases, integrating an enhanced metaheuristic optimization algo-
rithm with deep learning techniques. To address the class imbalance present in the Grape dataset, a
Conditional Generative Adversarial Network (CGAN) is employed as a data augmentation technique,
generating synthetic images to balance the representation of each class. Two pre-trained convolutional
neural network (CNN) models, AlexNet and ResNet18, are then utilized to extract deep features from the
augmented images. A fusion method aggregates the extracted feature vectors, which are subsequently
optimized using an improved metaheuristic optimization algorithm for feature selection (FS). Metaheuris-
tic algorithms, known for their dynamic search behavior and global search capabilities, offer promising
solutions for FS. This study introduces the Enhanced Chameleon Swarm Optimizer (ECSA) method, a
novel variant of the metaheuristic Chameleon Swarm Algorithm (CSA), to address the FS problem. The
ECSA, with its use of chaotic maps during the exploration phase and integration of Levy flight distribution
into the exploitation phase, represents a significant advancement in metaheuristic optimization. The final
set of selected features is then classified using the K-Nearest Neighbors (KNN) algorithm for grape leaf
disease identification. The performance of the proposed framework is assessed on a real-world dataset of
grape diseases, employing multiple evaluation criteria. The proposed framework demonstrates superior
performance, achieving a peak accuracy of 97.76% on the grape disease dataset.
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1. Introduction

Grape diseases and pests pose a significant economic threat to grape production, potentially caus-
ing substantial financial losses for farmers if not detected and treated promptly [1]. While pesticide
application is a common practice to mitigate these risks, frequent use can lead to detrimental envi-
ronmental consequences, including developing pesticide resistance to pathogens and potential harm
to human health through long-term exposure. Consequently, early disease detection emerges as a
critical strategy for minimizing yield losses and ensuring sustainable grape production. For this
reason, automated detection and recognition related to artificial intelligence have been thoroughly

studied [2].

The rapid advancement of computer technology has enabled the integration of novel deep learning-
based visual recognition techniques, including Convolutional Neural Networks (CNNs) and Mask
Region-based Convolutional Neural Networks (Mask R-CNNs), into disease detection applications
[3]. While traditional machine learning methods, such as Support Vector Machine (SVM) and K-
Nearest Neighbor (KNN), have demonstrated utility in plant disease detection and treatment, their
reliance on a pre-defined pipeline of image segmentation, feature extraction, and pattern recognition
[4] limits their effectiveness in analyzing complex visual data.

Traditional approaches to feature selection and extraction for plant disease detection often require
the involvement of highly qualified engineers and experienced specialists, rendering the process
both time-consuming and resource-intensive. This manual process is subjective and necessitates
significant financial and human resources. Deep learning methods, in contrast, offer a more auto-
mated and efficient solution. They eliminate the need for human intervention in feature extraction
and classifier design by automatically learning hierarchical features of diseases from image data [5].
This capability has made deep learning techniques highly promising in agricultural applications,
empowering small-scale farmers and gardeners with tools for addressing various challenges, includ-
ing weed detection and plant disease diagnosis [6], [7]. The application of deep neural networks,

particularly CNNs in plant disease identification, has seen significant growth since the emergence
of deep learning in 2012.

CNNs [8] are artificial neural networks specifically developed for image identification and analysis.
Mimicking the human brain’s visual processing capabilities, CNNs utilize artificial neurons to ob-
serve, process, and predict input data, effectively identifying complex patterns within images. Unlike
traditional neural network architectures, CNNs can learn directly from input images, extracting hier-
archical features and applying a weight distribution strategy that ensures computational efficiency.
To facilitate the classification of diseases across various crops, several CNN-based architectures have
been developed, including AlexNet, GoogLeNet, and ResNet18.

Training CNNs on larger datasets generally leads to improved model performance. However, train-
ing on limited data can result in poor generalization performance during validation and testing due
to overfitting. This occurs when the model learns to recognize specific patterns in the training data
that are not generalizable to new data. Data augmentation [9] is a crucial technique for addressing
this issue by synthetically generating additional training data from existing samples. It increases the
diversity of the training set, exposing the model to a broader range of viewpoints, scales, rotations,
and other transformations. As a result, it allows the model to learn robust features invariant to these
variations, reducing the risk of memorizing specific training examples and improving its ability to
generalize to unseen data. Therefore, data augmentation effectively bridges the gap between train-
ing, validation, and test samples by enhancing the model’s ability to learn generalizable features of
new data, leading to better overall performance.

Deep neural networks often perform better classification tasks than other traditional algorithms.
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Nevertheless, training deep neural networks from scratch on a large dataset poses a significant time
constraint, potentially requiring days or weeks. Transfer learning offers a solution that leverages
pre-trained networks. Therefore, researchers prefer to start with a pre-trained model that can clas-
sify patterns and learn features such as color, texture, shapes, and edges in an image [&] When
applying transfer learning, the model trained on one task can be applied to another to improve
the performance and progress of the second task. A significantly higher level of accuracy can be

achieved when transfer learning is applied.

Pre-trained CNN models, including AlexNet, ResNet50, ResNet18, VGG-19, Inception V1, Inception
V2, and VGG-16, were built from scratch using high-end GPUs and trained on over a million images
that can be divided into a thousand distinct categories. These models acquired numerous low-level
feature representations, including edges, shapes, colors, textures, and rotations, and disseminated
the knowledge to other networks. Therefore, these models acted as feature extractors for new images
in different areas. Based on the transfer-learning principle [11], a trained model can extract the
relevant features from new images of distinct categories.

Optimizing the performance of learning algorithms can be challenging when the dataset contains
many features because they may be irrelevant or redundant. Feature selection (FS) attempts to over-
come this problem by eliminating irrelevant and redundant features, effectively reducing the com-
plexity of the data without affecting the accuracy of the trained model’s predictions [12]. In FS,
finding the optimal set of features is crucial. However, due to the complexity of the time, traditional
exhaustive techniques such as breadth-first search and depth-first search are considered impractical
for identifying the best feature subset.

The computational effort required to create and evaluate the 2N subset of features is significant.
Therefore, FS is a challenging optimization problem with competing objectives [13], and metaheuris-
tic algorithms offer promising solutions. Metaheuristics efficiently explore the search space to find
near-optimal solutions. Recent research has demonstrated the efficiency of different metaheuristic

algorithms in solving FS problems and their potential for optimizing feature subsets [13, 14, 15].

An effective metaheuristic algorithm is characterized by its ability to strike a delicate balance be-
tween exploration and exploitation, resulting in diverse solutions and rapid convergence. When
developing a metaheuristic, the selection of search operators is based on the source of inspiration
and the compatibility of the operators. Improving metaheuristics often involves enhancing existing
algorithms by integrating different search methods, introducing additional computational steps, or
even integrating with other metaheuristics [16]. These improvements go beyond the initial inspi-
ration and aim to achieve superior optimization performance. Furthermore, specific optimization
problems require the hybridization of algorithms to effectively address particular constraints and
capture the unique characteristics of each issue. The motivation behind such hybridization comes
from the No Free Lunch (NFL) theorem [14], which states that all metaheuristics perform compara-
bly on all optimization problems, highlighting the need for dedicated algorithms to solve constrained
problems efficiently. Consequently, the theorem catalyzes the development of novel metaheuristics
tailored to various optimization problems and provides competitive results compared to previous

approaches.

In 2021 [17], Braik developed the Chameleon Swarm Algorithm (CSA), one of the most modern
and resourceful metaheuristic algorithms that fall into the category of swarm-based algorithms.
CSA models the dynamic behavior of chameleons as they hunt and forage in their natural environ-
ment. As stated in [17], the effectiveness of CSA was confirmed by validating 67 publicly benchmark
functions. The relevance of the CSA is evaluated using five constrained optimization problems and
several designs for engineering difficulties. According to the authors, CSA demonstrated strong and
increasing performance compared to traditional and current competitors. This achievement justified
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the effectiveness of its global search capabilities. However, the exploration-exploitation trade-off in
CSA is often imbalanced, leading to premature convergence to local optima and consequently affect-
ing its overall optimization performance. This highlights the need for strategies that better balance
exploration and exploitation to improve convergence.

1.1 Motivation

Agriculture is crucial in influencing nations’ economies. Therefore, precise and prompt detection of
grape leaf diseases is essential for plant health and productivity. Traditional disease classification
methods often need help with high-dimensional datasets, especially those with noisy data, resulting
in suboptimal solutions.

This research aims to propose an efficient framework for detecting diseases in grape leaves using pre-
trained CNN models and an enhanced Chameleon swarm algorithm. This paper first uses a CGAN
model as a data augmentation method on the selected Grape dataset to avoid the overfitting problem.
Then, deep features are obtained from the images using two pre-trained CNN models, ResNet18 and
AlexNet. A fusion technique is subsequently applied to merge and enhance these feature vectors.
After that, an enhanced version of the CSA metaheuristic algorithm was proposed to optimize feature
vectors, incorporating chaotic maps for global exploration and Levy flights for local optimization.
Then, the selected features were classified using the KNN algorithm. The contributions of the work
are summarized as follows:

« The CGAN is used in data augmentation to produce synthetic samples within a particular category.

« Deep features are obtained from the images using two pre-trained CNN models: ResNet18 and
AlexNet.

« A fusion method is employed to combine and enhance the feature vectors.

« The ECSA is presented as a solution to the FS problem.

« The original CSA is enhanced by integrating levy flight and chaotic maps.

« The ECSA is evaluated for FS on a practical challenge related to the classification of Grape disease.

« Diverse analytical metrics are employed to evaluate the ECSA and establish comparisons with
different methods.

« The KNN classifier is used to classify the selected features to identify grape leaf diseases.

The following structure guides the subsequent sections of this work: Section 2 Provides a concise
overview of the state-of-the-art techniques employed in previous research, while Section 3 elaborates
on each method used. Section 4 discusses further details of the proposed framework, while Section
5 contains the experimental results and discussions. The study is concluded in Section 6, which also
provides an overview of potential areas for further research.

2. Related works

Many researchers have contributed their efforts to develop various leaf disease classification tech-
niques. An overview of contemporary research within this domain is provided below.

Lauguico et al. [18] proposed a methodology to distinguish three grape leaf diseases from healthy
leaves. The method also considered the confidence level to classify the diseases accurately. A com-
parative analysis is conducted to find the most suitable network among the pre-trained CNN net-
works AlexNet, GoogLeNet, and ResNet-18, which can be combined with Regions with CNN (RCNN)

to detect multiple objects in an image. After evaluating the models, AlexNet was the most effective
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previously trained network for use with the RCNN, achieving an accuracy score of 95.65%. The
ResNet-18 and GoogLeNet models achieved accuracy values of 89.49% and 92.29%, respectively.

Jin et al. [19] proposed an architecture called GrapeGAN to overcome the limitations of traditional
Generative Adversarial Networks (GANSs) in generating clear and structurally integral grape leaf
images. Initially, the generator of the proposed technique was built using a U-Net-like structure,
the Reorg method, and a multi-feature fusion mechanism. This enabled the preservation of detailed
features in the images of grape leaf diseases. A discriminator was then constructed using a combi-
nation of convolution blocks and capsule structures. This facilitated the extraction of more complex
features and ensured the completeness of the grape leaves’ structure. Finally, four convolutional
neural networks (CNNs) detection models, namely VGG16, ResNetV1, MobileVIT, and InceptionV1,
were used to classify the diseases in the generated grape leaf images. The images generated by the
suggested model displayed remarkable robustness in the recognition task, achieving an accuracy of
96.13%.

Ansari et al. [20] developed a methodology for disease identification and classification in grape
leaves, which consists of image acquisition, noise reduction, image enhancement, segmentation,
feature extraction, classification, and detection. The noise reduction process was achieved using the
averaging function, while the contrast-limited Adaptive Histogram Equalization (CLAHE) approach
was applied to improve the visibility of details in images. The fuzzy C-means algorithm was used
for image segmentation, and principal component analysis (PCA) was used for feature extraction.
Finally, the classification of the images was performed using Particle Swarm Optimization -Support
Vector Machine (PSO-SVM), Backpropagation Neural Network (BPNN), and Random Forest algo-
rithms. For the classification and detection of grape leaf diseases, the PSO-SVM approach has the

best accuracy of 95%.

Kaur and Devendran [21] introduced a methodology that covers the critical stages of automated
leaf disease identification, including segmentation, feature extraction, and classification. This work
focuses on integrating various feature extraction algorithms and machine learning classifiers to im-
prove the accuracy of leaf disease prediction. They used K-Means clustering, optimized by Grey Wolf
Optimization, to segment the regions affected by disease in mages. They used various feature extrac-
tion techniques, including Law’s mask, Grey Level Co-occurrence Matrix, Local Binary Pattern, and
Gabor features, to develop a hybrid approach for robust leaf disease identification. In addition, they
employed a novel ensemble classifier to improve the accuracy of disease classification. Four cate-
gories of grape diseases from the Plant-Village dataset were used for the research: leaf blight, black
measles, black rot, and healthy leaves. This method is effective compared to previous approaches,
achieving an accuracy of 95.69%.

Hernandez et al. [22] applied deep learning to RGB images to detect diseases in grape leaves. This
study used color space conversion to transform RGB images into HLS color space to enhance the
ability to differentiate between leaf discs. Subsequently, two filters were employed to improve the
quality of HLS images: mean shift segmentation and median blur filter. Next, the Hough Circle
Transform was used to isolate the leaf discs. Crisp and fuzzy masks are then used to identify areas
of high intensity. A pre-trained VGG16 model was used to extract features from disc images auto-
matically. After that, the extracted features were subjected to 10-fold cross-validation to evaluate the
network’s overall performance and verify the automatic discrimination between positive and neg-
ative discs. The Gradient Weighted Class Activation Mapping (Grad-CAM) was used to determine
which region of an image is essential for classification. The developed method provided efficient,
precise, and accurate results, with an accuracy rate of 81%.

Table 1 summarizes several characteristics of the context in which the studies were conducted.
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Table 1. Related work of grape diseases prediction

Study year Dataset Methods DL/ML Model Accuracy
auguico etal. [18] 2020 Grape leaf diseases from Plant Village dataset. + Regions with CNN (RCNN). AlexNet, ResNet-18, and GoogLeNet. + AlexNet-RCNN: 95.65%.
+ Transfer Learning. + ResNet18 -RCNN; 89.49%.
+ Montage image creation - GoogleNet-RCNN: 92.29%,
+ Manual Data Annotation.
Ansari etal. [20] 2022 400 images were created for the study. + The mean function Backpropagation Neural Network (BPNN), and Random Forest. 95%

« The Contrast Limited Adaptive Histogram
Equalization (CLAHE) method.

+ The fuzzy C Means algorithm.

+ Principal Component Analysis (PCA).

+ Particle Swarm Optimization

+ Support Vector Machine

+ Backpropagation Neural Network (BPNN).
+ Random forest algorithms.

Jinetal.[19] 2022 Grape leaf diseases from Plant Village dataset + U-Net-Like generator. VGG16, ResNetV1, MobileVIT, and InceptionV1. 96.13%
+ Convolutional block.
+ Capsule structure.
+ The reorg method.

« Multi-feature fusion mechanism.

Kaurand Devendran [21] 2023 Grape leaf diseases from Plant Village dataset. + K-means clustering. Ensemble learning. 95.69%
+ Grey Wolf Optimization.
+ Law's mask.
+ Grey Level Co-occurrence Matrix.
+ Local Binary Pattern.

« Gabor features.

Hernandezetal.[22] 2024  1125images of a grape leaf were created for the study.  + Color space conversion. VG616 81%

« Mean shift segmentation and a median blur fil-
ter.

+ Crisp and fuzzy masks.
+ VG616 model used for transfer learning.
+ 10-fold cross-validation.

« Grad-CAM.

3. Methods

3.1 Convolutional Neural Network (CNN)

Deep learning methods, specifically Convolutional Neural Networks (CNNs), have effectively ex-
tracted relevant features from complex data sources, such as images and videos. This capability has
made them a valuable tool in agricultural applications, enabling the extraction of meaningful fea-
tures from large datasets of plant images [23]. This technique achieves high accuracy and reduces
computational effort, resulting in higher yields. The architectural design allows these networks to
identify complicated features that simpler networks cannot detect. The basic principle of CNNs is
to capture local features in the first layers and combine them into more complex features in the last

layers.

Transfer learning [10] is an efficient approach that uses the knowledge acquired from a previously
learned model to solve a related task, thereby minimizing the need for extensive retraining or fine-
tuning. Deep learning algorithms rely on two critical requirements: a considerable amount of labeled
data and significant computing power to operate effectively. Developing a large, high-quality dataset
is a challenging and complex undertaking. In addition, implementing deep learning techniques re-
quires access to powerful computing resources, which may be limited to laboratories or organiza-
tions with significant financial resources. Deep transfer learning aims to address these challenges
by enabling knowledge transfer from one domain to another, thereby reducing the burden on data
collection and computing resources.

The initial form of transfer learning involves using a pre-trained CNN as a static feature extraction
mechanism. This approach preserves the primary network architecture and learns parameters. Once
CNN has extracted the relevant features, these features are used as input to a subsequent network
that performs the necessary classification tasks. The second and more advanced approach, fine-
tuning, involves making specific changes to the pre-trained CNN to improve performance. These
adjustments include architectural changes and parameter optimizations. Additionally, incorporating



Mansoura Journal for Computer and Information Sciences 7

new parameters into the network requires training on significant data to maximize effectiveness.

3.2 Chameleon swarm algorithm (CSA)

The recently developed metaheuristic CSA algorithm is inspired by chameleons’ foraging behavior
[17]. This algorithm effectively seeks optimal solutions by employing a structured three-stage pro-
cess that emulates the chameleon’s hunting behavior, encompassing stages of prey search, target
acquisition through eye rotation, and hunting prey. The CSA algorithm’s implementation is de-
scribed in detail below: The CSA algorithm begins by initializing solutions using a uniform random

distribution, as described in Eq. 1.
X; = Ib; + rand X (ub; - Ib;) 1)

Where ub; and Ib; denote the higher and lower limits of the search region for the jth dimension,
while rand represents a random number that follows a uniform distribution between 0 and 1.

m Searching for prey:

Chameleons use a mathematically modeled position-updating approach, described by Eq. 2, to
look for prey during their foraging behavior. Chameleons can adaptively modify their positions
in the search region while searching for optimal solutions.

Xt { Xi;+p1 ¥ (Pit,j - Gjt) X 1y + P2 X (GJ’ - Xifj) Xr =P @)

Xi;+ wx (b + 13 x (ubj - Ibj)) x sgn(rand - 0.5 r; <P,

The variable Xi}l denotes the position of the ith Chameleon in the jth dimension for the subse-
quent iteration; Xitj represents the position of the ith individual and jth dimension in the current
iteration; Positive integers control exploration p; and p,, Which are 0.25 and 1.50, respectively. P} !

is the optimal position for the ith Chameleon, while G! is the optimal position for all Chameleons.
11, 1y, and r3 are random numbers that are uniformly distributed between 0 and 1.

The function sgn( rand - 0.5) produces either 1 or -1 to decide the direction of exploration. p is
inversely proportional to the number of iterations and can be determined using Eq. 3.

B
p=ye D (3)

The variables t and T represent the current and maximum iterations, whereas vy, «, and f3 are
control parameters with values of 1.0, 3.5, and 3.0, respectively.

m The chameleon’s eye rotation:

Chameleons exhibit an extraordinary capacity to detect prey by rotating their eyes, giving them
a complete 3600 view of their search area. The ’Chameleon’s eye rotation phase’ is a distinctive
optical adaptation that involves four specific steps to determine the location of prey successfully.

1. Creation of a Reference Frame: The chameleons’ initial positions are translated to the origin,
creating a standard reference frame.

2. Rotation Matrix calculation: The algorithm calculates a rotation matrix to transform the prey’s
coordinates to align with the chameleon’s current spatial orientation.

3. Position Transformation: The chameleons update their positions using the rotation matrix,
allowing the exploration of different orientations within the search area.

4. Repositioning to Original Coordinates: The transformed positions are translated back to their
original locations, maintaining their initial relative positions.
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Eq. 4 concisely represents the mathematical expression for this location update mechanism, which
utilizes Chameleon’s eye rotation technique.

X/ = XR} + XC} (4)
The variable X/*! represents the updated positions of the ith Chameleon for the following iter-

ation. XR!, determined by evaluating Eq. 5, denotes the rotated center positions in the search
space.

XR! = mx XT} &)

where m stands for a rotation matrix. For each Chameleon, the coordinates of its center are
denoted by XT!. To determine the XT! and m, we use Egs. 6 and 7, correspondingly.

XT! = X! - XC! (6)

where the location of the ith Chameleon for the current iteration is represented by X, and the
center of the Chameleon for the current positions is represented by XC!.

m = R(8, 21, 2) (7)

The orthogonal vectors z; and z; have n dimensions, the rotation angle is denoted by 6, and the
rotation matrices in the respective axes are represented by R. Egs. 8 and 9 are utilized in order to
compute the values of 6 and R, respectively. The rotation matrices concerning the x and y axes
are represented by R, and R, respectively.

0 = rand X sgn(rand - 0.5) X 180° (8)
1 0 0 cos@ 0 sin®
Ry=|0 cos® -sin® [,R,=]| 0 10 9)
0 sin® cosH -sin® 0 cosB
Hunting prey:

During the hunting phase, chameleons employ a pursuit strategy by extending their tongues
toward nearby prey, reaching a distance of twice their height. This phase facilitates search space
exploitation, and the chameleon’s positions are updated according to Eq. 10.

Xz‘ffl =X+ (ij - Vifj_l) /2a (10)

where the value of the Chameleon that has been changed for the following iteration is represented
by Xi’;l, Vitj is the velocity of the ith Chameleon in the current iteration for the jth dimension; the
acceleration rate of the Chameleon’s tongue projection is represented by a. The number grows

»

to a maximum of 2590 ms per second squared. The value of the variable *a” is determined by
applying Eq. 11.

a = 2590 X (1 - e*l"g(”) (11)
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The velocity values for the chameleon in the current iteration are determined using Eq. 12.

V“l—th+c1><(Gt )xr1+cz><(P Xt)sz (12)

The positive constants ¢; and ¢, determine the impact of G! and Pt on the current Chameleon.
The variable w represents the inertia weight, which decreases hnearly as the number of iterations
increases. The parameter p controls the level of exploitation, and its value is set to a constant of
1.

= (1-¢T)®V/D 13)

The CSA algorithm simulates chameleons’ foraging behavior using Equations 2, 4, and 10. These
formulas aid the algorithm in choosing the most optimal solutions for the optimization problem.

3.3 K-nearest neighbors (KNN)

The K-Nearest Neighbors (KNN) algorithm [24] is a widely used machine learning method for clas-
sification and prediction tasks. It is based on the principle that data points with similar properties
tend to have comparable labels or target values. The KNN algorithm retains the complete training
dataset as a future reference during its learning phase. Subsequently, when predicting the class of
a new data point, the Euclidean distance metric is employed to calculate the distance between data
points and each training instance. The algorithm determines the K nearest neighbors of the input
data point based on their distances. When classifying, the algorithm predicts the label for the input
data point based on the most prevalent class label among the K neighbors. To predict the value for
the input data point in the regression, the average or weighted average of the target values of the K
neighbors is calculated. Due to its simplicity and easy to understand, the KNN algorithm is widely
used in various applications. Careful parameter tuning is required to achieve optimal results, as the
choice of K and distance metric can affect system performance.

4. Proposed framework for Grape diseases prediction based on ECSA method

This section presents the proposed framework to achieve accurate grape disease prediction. The
framework consists of five stages: a) image capture, b) image augmentation, c) deep feature extrac-
tion, d) feature selection (FS), and e) classification. Figure 1 illustrates the proposed grape disease
prediction framework, with each stage described as follows:

4.1 Image acquisition

The dataset included in this work is Plant Village [23], a publicly available dataset containing various
images illustrating various grape diseases. Figure 2 shows an illustrative example for each disease
category. This dataset includes 4062 images showing various diseases affecting grapes. These images
were then divided into four groups: Grape Blackrot, Grape Measles, Grape Healthy, and Grape Leaf
Blight. The dataset consists of 1,180 images of Grape Blackrot, 1,383 images of Grape Measles, 423
images of Grape Healthy, and 1,076 images of Grape Leaf Blight. The above categorization allows
evaluation of the effectiveness of the proposed strategy on different disease categories and healthy
samples.

4.2 Image augmentation using Conditional Generative Adversarial Network (CGAN)

Data augmentation techniques are often combined with conventional or deep learning approaches to
mitigate the problem of bias towards a particular class and improve classification accuracy [25, 26].
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Figure 1. The proposed grape disease prediction framework

(a) Grape Blackrot (b) ) Grape Measles (c) Grape healthy (d) Grape Leafblight
1180 Images 1383 Images 423 Images 1076 Images

Figure 2. Categorization of grape leaf diseases (Total Images 4062)

This study used a CGAN as a data augmentation strategy to balance the number of images in each
class, as shown in Figure 1. Goodfellow et al. [27] first introduced the term GANs in 2014. GANSs
consist of two neural networks: a generator network, which is responsible for creating images, and
a discriminator network, which distinguishes between authentic and fraudulent inputs. The CGAN
proposed by Mirza and Osindero [28] is an extended version of this technique that includes explicit

class labels. CGANs use a generator to produce images that fall into one of the n categories, allowing
for more targeted and diverse data augmentation.

4.3 CNN feature extraction using Transfer Learning

According to Khan et al. (2020) [29], feature extraction is an essential and challenging aspect of
pattern recognition and machine learning when it comes to representing images in various fields
such as engineering, medical imaging, and agriculture [30, 31, 32]. Classical learning and DL are two
of several feature extraction methods described in the literature. Deep learning (DL) is an innovative
field of study within machine learning (ML) that focuses on achieving precise classification [32,
33]. Agricultural imaging identifies and exploits the most important features to achieve the desired
classification result. This research obtained deep features using two pre-trained models: ResNet18
[34] and AlexNet [35].

« The ResNet18 neural network architecture is famous for its 72 layers, with 18 of them being deep
layers. The architecture of this network facilitated the optimal operation of many convolutional
layers. The input size for images in ResNet18 is defined as 224 x 224 pixels.

« AlexNet is a famous neural network architecture. Alex Krizhevsky introduced this architecture
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for the ImageNet Large Scale Visual Recognition Challenge, primarily focusing on convolutional
neural networks. The fundamental components of this include convolutions, max pooling, and
fully connected layers. The dimensions of the input image in AlexNet are defined at 227 x 227
pixels.

The following steps comprise the feature extraction stage in this study:
« The input images were resized to 224 x 224 pixels before being fed into the ResNet18 model.
« The input images were resized to 227 x 227 pixels and transmitted to the AlexNet model.

« The final activation layers, Pool5 and FC8 from ResNet18 and AlexNet, respectively, were used for
deep-feature extraction.

« The extracted features from each model were then fused.

4.4 Enhanced Chameleon Swarm Algorithm (ECSA) for Feature Selection

This section provides a detailed description of the proposed ECSA approach to solve FS-related prob-
lems. Selecting the most meaningful features can be difficult, especially when redundant data is
available. The main goal of extending the original CSA is to address its weaknesses and improve
its search capabilities, especially for complicated real-world situations such as FS. This section first
discusses the limitations of the original CSA. The procedures and improvements implemented in
the proposed ECSA approach are then explained to increase the population evolution process and
achieve higher solution quality.

441 Limitations of the original CSA

Despite its effectiveness in industrial and global optimization problems, the traditional CSA opti-
mizer faces a challenge during exploration. Its inherent tendency to focus on the region indicated
by the chameleon swarm can restrict the population to local optimal, resulting in premature con-
vergence and potentially limiting the discovery of more optimal solutions.

This work presents an enhanced version of the CSA algorithm called ECSA to address these weak-
nesses. The ECSA approach aims to address the limitations of the original CSA by incorporating
adaptations that increase the speed of convergence and strike an appropriate balance between the
exploration and exploitation of new opportunities. By resolving these limitations, the ECSA ap-
proach improves the overall performance and effectiveness of the optimization process.

4.4.2 The architecture of the ECSA method

This work presents an enhanced approach for optimizing the CSA, called the Enhanced CSA (ECSA)
method. The ECSA method effectively addresses the limitations of the original CSA by leveraging
chaotic maps and Levy flight. Chaotic maps are used during the global search phase to improve the
population diversity and exploration capabilities of the CSA algorithm. At the same time, the local
search phase uses the Levy flight distribution component to enhance the ability to search locally
and avoid being stuck in local solutions. The flowchart in Figure 3 illustrates the proposed ECSA
approach for FS. The following sections provide detailed explanations of each phase of the ECSA.

A. Updating positions in the searching for prey phase based on chaotic maps: Optimization
algorithms often rely on random values to guide the search strategy within the search space.
However, using chaotic maps in optimization algorithms offers an advantage by using chaotic
values instead of random ones. Additionally, incorporating chaotic maps enables the algorithm
to evade the local optimum trap.

Chaotic maps can conduct more efficient searches than random numbers due to their ability to
explore the entire search space non-repetitively. Consequently, combining chaotic maps with
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Initialize population size (N), maximum iteration (T)
and dimensions of the problem (d)

Training l

Initialize the population using uniform random

i| distribution, as shown in Eq. (1
Dataset istribution, as shown in Eq. (1)

Test | Evaluate the fitness function |

l

| set current iteration (t)=1; |

Stopping criteria

Return best feature subset
| | satisfied ?

)I Evaluate the performance
Searching for prey

Generate new positions of chameleons based on
m chaotic maps using Eq. (15).

chameleon's eyes rotation phase
Update the positions of chameleon using Eq. (4).

l

Hunting prey phase
Mutate the chameleon positions using Levy flight
distribution as shown in Eq. (16).

Figure 3. The proposed ECSA method for FS

optimization techniques has shown promising results. In this work, ten chaotic maps are inte-
grated with the CSA algorithm. The Chaotic maps control each random parameter. The primary
task of chaotic maps is to replace these random values in the exploration phase of CSA with a
chaotic map value. Throughout the iterations, the parameters ry, r, and r3 in Eq. 2 are replaced by
chi.1, One of the ten chaotic maps, as illustrated in Table 2. Multiple chaotic mapping functions
are employed to enhance the overall efficiency of the optimization strategy. The mathematical
expression is shown in Eq. 14.

X!+ py X (Pi{j - G;) X chyyp + pp X (Gjt —Xifj) X chg,; rand > P,

Xt =
/ X}; + wx (Ibj + chiy X (ub; - Ibj)) X sgn(rand -0.5)  rand <P,

(14)

where chy,; is a value acquired from well-known chaotic maps, as given in Table 2.

Updating positions in the Hunting prey phase using Levy distribution: In this phase, the
ECSA approach was employed to adjust the location of every individual in the overall population
and identify the optimal position. Eq. 10 which represents the exploitation phase, is adjusted
using the Levy-based mutation operator, as shown in Eq. 16. The Levy distribution exhibits
the collective movement patterns observed in insects and birds, characterized by short-range
movements interspersed with occasional long-range leaps, as they forage for food. It improves
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Table 2. Ten chaotic maps.

#Map Name Definition Range
1 Chebyshev chy.1 = cos (kcos™! (chy)) (-1,1)
2 Circle chy,q = mod (chk +r— (%) sin 27Tchk) R 1) ,I=05andr=0.2 (0,1)

1,che =0

3 Gauss/mouse chi1 = f(x) = 1 . 0,1)

————, otherwise

mod (chk,l)
4 Iterative chy,q = sin (Clhlk) ,1=0.7 (-1,1)
5 Logistic chg,q = Ilchy (1 - chy),l=4 (0,1)

D0 < chy <1
chy—1
. . “—=—,1<ch 05 , ,l=04

6 Piecewise chi = f(x) = O-Sfll_l_chkc k= (0,1)

7T ,05 < chy <1-1
Tk 1 -1<chy <1

Sine chie1 = Lsin(reehy), 1= 4 (0,1)
Singer chi = 1 (7.86chk - 23.31ch? + 28.75¢h}, - 13.302875chi) , = 1.07 0,1)
9 Sinusoidal chiey = Ich? sin (7tchy), 1= 2.3 0,1)
Chie
10 Tent iy = o7 > i < 0.7 ©,1)
L (1 - chy), chi > 0.7

the optimization algorithm’s ability to exploit new possibilities. The Levy distribution function,
denoted by L(f), is determined according to Eq. 15.
_uxo

L(B) = MTB (15)

Assuming that p and v are both distributed according to a regular normal distribution. o =

r(+p)xsin(p/2) VP

Pl p) 2 praP 12 , =1.5,and T is a standard gamma function.

XE=X;x (1+L(B)) (16)

A mutation boosts the optimizer’s accuracy and aids the original algorithm in avoiding a lo-
cal solution. Furthermore, it increases the population diversity, leading to a better search for
prospective regions, enhancing the search speed, and accelerating the optimizer’s convergence
tendency.

C. Terminal Stage: The proposed approach involves iterative evaluation and updating until a spec-
ified termination condition is satisfied. Within the context of this investigation, "stopping” refers
to attaining the maximum number of iterations. This stopping criterion aims to evaluate the ef-
ficiency of the proposed approach in generating the optimal subset of characteristics within a
specific timeframe. By iteratively assessing and updating the feature subset, this method strives
to find the optimum solution that captures the optimal features for the given problem. Algorithm
1 shows the ECSA method’s pseudocode.

4.5 Classification

This study uses a KNN classifier to classify images based on their features. Because of its simplicity,
applicability, and lack of tuning factors, KNN was chosen as the classifier. The dataset was parti-
tioned into two groups: the training and testing sets. 80% of the data was allocated for training,
whereas the remaining 20% was allocated for testing.
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Algorithm 1 A pseudocode of ECSA’s optimization process.

1: Initialize the population set (X) using uniform random distribution as shown in Eq. 1.
2: Evaluate the fitness of random initialized chameleons (X). N
3: fort =110ty do
4: Perform the Searching for prey phase using Eq. 14.
s xt o Xl.’J. +p1 X (Pifj - G]f) X chy,q + p2 X (G]f —Xifj) X chg,y rand > P,
Yo X+ i (It + chiy X (ubj - b)) x sgn(rand - 0.5)

Perform the Chameleon’s eyes rotation phase using Eq. 4.

Perform hunting prey phase using Eq. 16. N
X} = Xix (1+L(B)) B

9: Perform elitism by selecting the Chameleon with minimum fitness among (XiL), (XI,G), (Xic), and (Xl.’”)
10: t=t+1
11: end for
12: Return the optimal solution obtained so far

rand < P,

o N

5. Experimental results and discussion

This study conducted an experiment to evaluate the efficiency of the proposed framework for grape
disease prediction. The experiment focused on predicting grape diseases using the plant village
datasets [23]. We divide this dataset into an 80:20 ratio, allocating 80% for training and 20% for
testing. The experiment used MATLAB 2020a on a desktop with a Core-i7 processor and 16 GB of
RAM. In the experiment, the effectiveness of the proposed framework using the ECSA algorithm
was evaluated by comparing it with that optimized using various existing optimization metaheuris-
tic algorithms, including the original CSA algorithm, Chimp optimization algorithm (ChOA) [36],
Archimedes optimization algorithm (AOA) [37], Bird Swarm Algorithm (BSA) [38], HHO [39], and
WOA [40].

The algorithms were tested using the same parameter settings to ensure a thorough comparison.
Each algorithm was consistently evaluated for the feature selection process with a population size
of 30 and a maximum of 100 iterations. The algorithms’ dimensionality was aligned with the number
of features in the original dataset. Detailed parameter configurations for all algorithms can be found
in Table 3.

Table 3. Metaheuristic algorithms parameters 2

Algorithms Parameters Values
Common Settings Population size (N) 30

Maximum iterations (T) 100

Problem Dimensions (D) Dataset features
CSA Py 0.850

P> 0.850

o 3.50

' 1.0

[&3 3.0
CHOA a Decreases linearly from 2 to O
AOA C1 2

2 6

3 1

C4a 2

U 0.9

L 0.1
BSA C1 1.5

2 1.5

al 1

a2 1
HHO beta 1.5
WOA a [0, 2]
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5.1 Performance measures

This study evaluates the efficiency of the proposed framework by calculating the subsequent per-
formance metrics: classification accuracy, sensitivity, and specificity. While accuracy indicates the
proportion of correctly classified instances within a dataset, sensitivity measures the test’s ability to
recognize the presence of a disease in grape leaves. The specificity metric evaluates the test’s ability
to detect grape leaves unaffected by any disease precisely [41]. This study calculates the number of
chosen features in each dataset to ensure the algorithm can efficiently eliminate the number of fea-
tures across all iterations. The impact of selected features on classification accuracy is an essential
metric for determining a model’s efficiency. An algorithm with a limited number of features may
provide low accuracy.

Accuracy = it

TP+ FN+FP+ TN
Sensitivity =
Specificity = v

where TP is a true positive, FP is a false positive, TN is a true negative, and FN is a false negative.

5.2 Results of Grape Diseases Prediction

This study describes an experiment for evaluating the proposed framework. In the first step, we
applied the CGAN model to balance the number of grape disease images in each class, resulting in
400 images per class. In the second step, we applied transfer learning, using two pre-trained CNN
models, ResNet18 and AlexNet, to extract features from the grape disease images. We then fused the
extracted features from each model, resulting in 1512 features from the two CNN models.

We then optimized the extracted features from the CNNs using the proposed ECSA method for
feature selection, resulting in a new feature set of 242 features. The KNN classifier then performs
the classification process using the 242 selected features from the ECSA method, achieving the best
results with an accuracy of 97.76%, a recall of 90.91%, and a specificity value of 97.46%, as shown in
Table 4.

Finally, we compare the performance of the proposed framework, optimized using the ECSA method,
with that optimized using various metaheuristic methods, such as the original CSA, ChOA, AOA,
BSA, HHO, and the WOA methods. Table 4 displays the number of selected features and the clas-
sification accuracy results. The ChOA algorithm achieved the highest rank regarding the number
of selected features, while the proposed ECSA method ranked second. The set of features chosen
does not primarily determine the efficiency of an FS method, but their influence on the classification
accuracy does. An algorithm can provide limited features and still achieve low accuracy. Using the
best set of features from the ECSA method, we achieve the best classification rate of 97.76% in this
step.

Figure 4(a) illustrates the convergence curve obtained for the grape disease datasets using the pro-

posed ECSA and other competing methods. The results demonstrate that the ECSA achieved a cer-
tain level of stability across all datasets. The suggested ECSA algorithm yielded the most optimal
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Table 4. Performance comparison of the proposed framework using the ECSA method and other competitors on the Grape

disease dataset

Model #No. of features Accuracy using KNN classifier %. Recall Specificity
Proposed-ECSA 242 97.76% 90.91% 97.46%
Proposed-CSA 575 97.44% 89.65% 97.29%
Proposed-ChOA 88 97.46% 90.22% 97.16%
Proposed-AOA 358 95.52% 85.51% 96.30%
Proposed-BSA 710 96.19% 87.01% 96.86%
Proposed-HHO 530 97.13% 87.81% 97.16%
Proposed-WOA 392 97.16% 85.63% 96.82%

average global solutions for the Grape dataset compared to the other methods. Figure 4(b) demon-
strates that the boxplots produced by the proposed ECSA method are narrower than those created
by the different techniques. Hence, the ECSA surpassed its rivals.

The experimental results suggest that the proposed framework using the ECSA method outperforms
the seven previous metaheuristic algorithms in solving a real-world problem.
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Figure 4. Convergence curve and Boxplot for ECSA against other competitors - Grape diseases prediction

Figure 5 presents a comparative analysis of the proposed framework, incorporating the ECSA method,
against other competitive approaches. The comparison is based on accuracy, sensitivity, and speci-
ficity. These performance metrics are crucial for evaluating the efficiency of the proposed framework
in recognizing grape diseases. As evident from the figure, the proposed framework, optimized using
the ECSA method, achieved a peak accuracy rate of 97.76%, establishing it as the most reliable model
for identifying positive cases. The ChOA method ranked second, while the AOA method exhibited
the lowest accuracy.

Regarding sensitivity, the proposed framework excelled with a sensitivity rate of 90.91%, highlighting
its ability to identify true positive cases effectively. The ChOA method achieved the second rank,
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while AOA had the last rank. Regarding specificity, the proposed framework optimized using the
ECSA method showed the highest specificity score of 97.46%. This metric indicates the negative
cases. The CSA method ranked second in terms of specificity, while the AOA method had the lowest
specificity value. The results indicate that the proposed framework is the more effective choice for
detecting diseases in grape leaves.

Comparison of models based on Accuracy, Sensitivity, and Specificity
T T T T T T T
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Figure 5. Performance comparison of the proposed framework using the ECSA method and other competitors based on
accuracy, sensitivity, and specificity.

Table 5. Comparison with some previous studies of grape disease prediction

study Dataset Methodology #No. of classes Accuracy (%)

Kaur and Devendran [21]  Grape leaf diseases from Plant Village dataset. ~ « Image segmentation: K-means clustering and 4 95.69%
Grey Wolf Optimization.
« Feature extraction: Law’s mask, Grey Level Co-
occurrence Matrix, Local Binary Pattern, and
Gabor features.

« Classification: Ensemble Learning.

Jinetal. [19] Grape leaf diseases from Plant Village dataset.  « Image Pre-processing: U-Net-Like generator. 4 96.13%
« Feature extraction: Convolutional block.
. Spatial preservation: Capsule structure.
- Feature compression: The reorg method.
« Multi-feature fusion mechanism.

+ Classification: VGG16, ResNetVl, MobileVIT,
and InceptionV1.

Lauguico et al. [18] Grape leaf diseases from Plant Village dataset. - Image pre-processing: Montage image cre- 4 « AlexNet-RCNN: 95.65%.
ation and Manual Data Annotation.
- Feature extraction: Transfer Learning using + ResNet18-RCNN: 89.49%.
AlexNet, ResNet18, and GooglLeNet.
« Classification: Regions with CNN (RCNN). + GoogleNet -RCNN: 92.29%.
Proposed framework  Grape leaf diseases from Plant Village dataset. - Image pre-processing: Data augmentation us- 4 97.76%

ing the CGAN model.

« Feature extraction: Transfer learning using
ResNet18 and AlexNet.

« Feature fusion mechanism.

- Feature selection: Enhanced Chameleon
Swarm Algorithm (ECSA) method.

« Classification: KNN classifier.
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5.3 Discussion

In this study, the proposed framework achieved the best classification accuracy of 97.76% on grape
diseases from the Plant Village dataset involving 4 classes, with an improvement of 1.63% compared
to the previous work of Jin et al. [19], which achieved an accuracy of 96.13% using the same dataset
and the same number of classes. This improvement in classification accuracy is due to our model
architecture. First, our model used the CGAN model, which was employed as a data augmentation
technique on the selected Grape dataset to address the overfitting problem. Deep features were then
extracted from the augmented images using ResNet18 and AlexNet, followed by a fusion method to
combine and strengthen the resulting feature representations. After extracting robust features, the
final feature vectors are optimized using the ECSA method to obtain a more robust subset of features
that provides higher accuracy than other studies, as shown in Table 5. For a fair comparison, this
study used the same dataset with the same number of images for grape blackrot, grape measles,

healthy, and grape leaf blight.

6. Conclusions and future work

The main aim of this study is to establish an automatic framework that uses pre-trained CNN models
and an enhanced Chameleon swarm algorithm (ECSA) to detect diseases in grape leaves. Using a
conditional generative adversarial network (CGAN), data augmentation was employed to overcome
the class imbalance within the Grape dataset. Deep features were then obtained from the augmented
images using two pre-trained convolutional neural networks (CNNs): ResNet18 and AlexNet. A
fusion method was then applied to combine the extracted feature vectors. This study employed
an enhanced Chameleon Swarm Optimizer (ECSA) to optimize the extracted feature vectors. The
ECSA method incorporates chaotic maps during the global search to enhance population diversity
and exploration ability. At the same time, leveraging Levy flights in the local search phase improves
local exploration and prevents premature convergence. Finally, the selected features were classified
using the K-Nearest Neighbors (KNN) algorithm to identify grape leaf diseases. The effectiveness of
the proposed framework is assessed on a real-world dataset of grape diseases, employing multiple
evaluation criteria. The proposed framework consistently achieves the best accuracy of 97.76% on the
grape disease dataset. The experimental findings demonstrate that the ECSA method works better
than other advanced comparative methods to obtain optimal solutions. Nevertheless, it is essential
to admit that the ECSA requires significant computational time, particularly for high-dimensional
datasets. Future research can explore the application of the ECSA in optimizing benchmark issues
and solving real-world problems in several domains, including engineering, image segmentation,
and clustering.

Open data statement

The datasets analyzed during the current study are available in the UCI repository at https://archive.
ics.uci.edu/datasets, and plant village datasets at https://www.kaggle.com/datasets/emmarex/plantdisease.
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