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Abstract  

In this paper, new sufficient conditions are established for the oscillation of all bounded solutions of higher order dynamic 

equations  

 ,),[for0=)))((()(]))()(([ 0

1

T tttxftqtztr n 
 

 where ))(()()(:=)( txtptxtz   and 0  is a constant. The obtained results extend and supplement certain known 

results in literature. . 
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1. Introduction 

In this paper, we introduce new sufficient conditions for the oscillation of solutions of the neutral differential equation  

T),[for0=)))((()(]))()(([ 0

1  tttxftqtztr n 
   (1.1) 

 where ))(()()(:=)( txtptxtz   and 0  is constant. We assume the following conditions .  

(H1) ),),([C 0 RT tr rd , 0>)(tr , 0>)(tr
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(H2) ),),([C, 0

1 TT trd ,   = ,  =)(lim tt  , tt )(      =)(lim tt  . 

(H3) ),),([C, 0 RT tqp rd , p  is an oscillating function, 0=)(lim tpt  , and 0>)(tq .  

(H4) ),( TTCf  , and there exists a positive constant k  such that k

x

xf


)(
 for all 0x   

 The theory of time scales was introduced by Hilger (see [9]) in 1988 in order to unify continuous and discrete analysis. A 

time scale, which inherits the standard topology on R , is a nonempty closed subset of reals. Here, and later throughout this 

paper, a time scale will be denoted by the symbol T , and the intervals with a subscript T  are used to denote the 

intersection of the usual interval with T . For Tt , the forward jump operator TT:  is defined by 

T),(inf:=)( tt , while the backward jump operator TT:  is defined by T),(sup:=)( tt  , and the graininess 

function RT:  is defined to be ttt )(:=)(  . A point Tt  is called right-dense if tt =)(  and/or 

equivalently 0=)(t  holds; otherwise, it is called right-scattered, and similarly left-dense and left-scattered points are 

defined with respect to the backward jump operator.   
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 The set of all such rd-continuous functions is denoted by ),( RTrdC . The set of functions RT:f  which are 

differentiable and whose derivative is an rd-continuous function is denoted by ),(1 RTrdC .The Delta derivative of a function 

RT:f  is defined by 
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 The  derivative of the product of two differentiable functions f  and g :  

 )())(()()(=)()( tgtftgtftfg     

 and   derivative of the quotient of two differentiable functions f  and 0g : is given by  
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 F  is called an antiderivative of a function f  defined on T  if fF =
 holds on 

kT . In this case integration of f  

is defined by  

 T tswheresFtFf
t

s
,)()(=)(   

   An antiderivative of 0  is 1 , an antiderivative of 1  is t ; but it is not possible to find a polynomial which is an 

antiderivative of t  .The role of 
2t  is therefore played in the time scales calculus by  

   
tt

and
00

)(  

 In general, the functions  

 0,)),((=),(1,),( 10   ksgstgandstg k

t

s
k   

 and  

 0,),(=),(1,),( 10   kshsthandsth k

t

s
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 may be considered as the polynomials on T . The relationship between kg  and kh  is  

 N kallforsthstg k

k

k ),(1)(=),(  

 The following is the dynamic generalization of the well-known Taylor's formula  

Lemma 1.1   (Taylorâ€™s formula [3]) Let Nn  and Ts , and let ),( RTn

rdCf  . Then,  
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   By a solution of (1.1) we mean a nontrivial function ),),([C RT xrd Tx , where 
T),[ 0  tTx

, which has the property 

that ),),([C]))()(([ 11 RT

xrd

n Ttztr 
 and satisfies (1.1) identically on 

T),[ xT . A solution x  of (1.1) is said to be 

oscillatory if it is neither eventually positive nor eventually negative; otherwise, it is nonoscillatory. Equation (1.1) is called 

oscillatory if all its solutions oscillate. 

  In recent years there has been much research activities concerning the oscillation of solutions of several classes of neutral 

dynamic equations, see [1, 2, 7, 10-14, 16-19] 

 Several papers are devoted to study the cases in which 1<)(<0 tp  and  <)(<0 0ptp , for instance, In 2015 

Karpuz [11] studied the qualitative behavior of solutions of the higher order delay dynamic equations of the form  
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 ,),[for0=))(()())](()()([ 0 T  tttxtBtxtAtx n   

 where Nn , ),),([ 0 RT tCA rd
, and ttt )(),(   for all T),[ 0  tt . 

  Chen . [5] established sufficient conditions for the oscillation and asymptotic behavior of solutions of the nth-order 

nonlinear neutral delay dynamic equation  

0,=)))((,(}|])))(()()((||)))(()()(())[|(()({ 111 txtftxtptxtxtptxtxta nn    
 

 where 0>  is a constant, 0>  is a quotient of odd positive integers and 1=  ; 

),()( RTdCtp r 1.)(0and  tp  

On the other hand, few papers discussed the case when )(tp  oscillates . In [15] Mustafa studied the oscillatory behavior 

of certain higher order differential equations of the form.  

 ,0,=))](()[())](()()([ 0

)( tttxtqtxtptx n    

 where 0> , )(tp  is oscillatory and 0=)(lim tpt  . 

 On the particular case ZT = , Bolat et al,[4] introduced new oscillation criteria for bounded solutions of the higher order 

difference equation  

NN  knkyfkqkykpkyn ,20,=)))((()()()()((   

 where )(kP  is oscillatory.   

  Recently, by employing a generalized Riccati technique and an integral averaging technique, Chen [6] established several 

oscillation criteria for all bounded solutions of the equation 

,),[for0=)))((,(])))](()()()([([ 0 T  tttytftytptytr  
  

where 0>  , )(tp  is oscillatory and 0=)(lim tpt  . 

  In what follows, we present some known results, which will be useful in the proof of our main results. 

Theorem 1.1   [3] Assume that RT:v  is strictly increasing and )(:=
~

TT v  is a time scale. Let RT
~

:y  . If 

)]([
~

tvy
 and )(tv

 exist for kt T  , then  

   ).()]([=)]([
~

tvtvytvy 
 

  

Lemma 1.2 [3] Let Nn , ),( RTn

rdCf   and =supT . Suppose that f  is either positive or negative, 
nf 

is 

not identically zero and is either nonnegative or nonpositive on T),[ 0 t for some T0t . Then, there exist T),[ 01  tt , 

Z)[0,nm  such that 0)()(1)(   tftf nmn
 for all T),[ 0  tt  with   

  • 0>)()( tftf j
 for all T),[ 0  tt  and all Z)[0,mj ,  

  • 0)()(1)(   tftf jjm
 for all 

T),[ 0  tt  and all Z),[ nmj ,  

  

 Lemma 1.3 [11] Let =supT , Nn  and )),,([ 00

 RtCf n

rd
 with 0nf  on T),[ 0 t . Let Lemma 1.2 hold 

with Z)[0,nm  and T),[ 0  ts . Then  

 T),[)(),()(   stallfortfsthtf m

m  (1.2) 

 Lemma 1.4  [8] Let =supT  and ),(  RTn

rdCf , 2)( n . Suppose that Kneser’s theorem holds with 

N)[1,nm  and 0)(  tf n
on T . Then there exists a sufficiently large T1t  such that  

 .),[)(),()( 111 T 



 ttallfortftthtf m

m  

  

 Our aim in this paper is to obtain some sufficient conditions for the oscillation of all bounded solutions of (1.1) when 
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);( RTrdCp  is an oscillating function using a generalized Riccati technique. 

 

2. Main results 

  In this section, we state the main results which guarantee that every bounded solution of (1.1) is oscillatory.  

Lemma 2.1  Let the conditions (H1)-(H3) be satisfied . If )(tx  is an eventually positive solution of (1.1), then there exists 

T),[ 01  tt  such that  

 .>0,>)(0,)(0,>)( 1

1 tttztztz nn    (2.1) 

  

Proof. Suppose that (1.1) has a nonoscillatory solution )(tx  on ),[ 0 t , such that 0>)(tx , 0>))(( tx  , 0>))(( tx   

on ),[ 0 T , the assumptions 3 and 4. Then (1.1) implies  

 .0,<))(()(]))()(([ 1

1 tttxtkqtztr n  
 (2.2) 

 Therefore,
))()(( 1 tztr n

is decreasing and either 0>)(1 tz n  or 0<)(1 tz n
 eventually for 1tt  . We claim that 

0>)(1 tz n  for T),[ 1  tt . If this is false, then there exists
12 > tt such that 0<)( 2

1 tz n
, and so 

0))()(( 2

1

2  tztr n
. Since 

))()(( 1 tztr n
 is decreasing, it is clear that 
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 Integrating from 3t  to t , we get  
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 Letting t ,then it follows from 1, that 
 =)(lim

2 tz n
t  . Therefore,  =)(lim tzt  and this is a 

contradiction. Consequently,  

 .0>)( 1

1 ttfortz n 
 (2.3) 

 Now, we show that 0)(  tz n
. Since  

0,]))()[(())()((=]))()(([ 111    tztrtztrtztr nnn
                   (2.4) 

 Using Pötzche chain rule [3], we obtain  
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 (2.5) 

 Substituting into (2.4) using (2.2),(2.5) , we get  

 1>when0,)())()(())()(( 111     tztztrtztr nnn
 

 and  

 1<0when0,)()))(()(())()(( 111     tztztrtztr nnn
 

 i.e.  

 0.)(  tz n
 

 Applying Lemma1.2 and Lemma1.4, we obtain  

 .>0,>)(0,)(0,>)( 1

1 tttztztz nn    

  

Theorem 2.1  Suppose that (H1)-(H4) hold. Furthermore, assume that there exists a constant (0,1)M  and a positive 
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function ),(1 RTrdC  such that for all sufficiently large 
0tT  ,  
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  Then every bounded solution of (1.1) is 

oscillatory.  

 Proof. Suppose that (1.1) has a nonoscillatory solution )(tx  on ),[ 0 t , such that 0>)(tx , 0>))(( tx  , 

0>))(( tx   on ),[ 0 T , Using the definition of z  and Lemma 2.1, we have 0,>)(tz  0>)(tz , 0>)(1 tz n
, and 

0)(  tz n
. Since 0>)(tz  and is bounded, we get 0>=)(lim Ltzt  . But since (0,1)M , then by 3, we have  

 0.>)(1=))](()()()[(1lim=)]()([lim LMtxtptzMtMztx
tt




  
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so ))((>))(( tMztx  . Then (2.2) takes the form  
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 Choosing ),[1  TT  such that Tt >)(  for ),[1  TT . Then for ),[  Tt , we get  
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 From (2.11) and (2.13), we get  
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 Using Lemma 1.2, we get  
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 This with (2.10),and Lemma 1.4 leads to  
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This with (2.16), leads to  
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 Integrating from 1T  to t, we get  
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 This contradicts (2.6).  

  Corollary 2.1  Let 1=)(t , suppose that 1-2 hold and that for sufficiently large 
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 where ),( Tt  defined in Theorem 2.1, then all bounded solutions of (1.1) are oscillatory.  

  

Example 2.1 Consider the following second-order nonlinear neutral delay dynamic equation with an oscillating coefficient  
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According to corollary  2.1 we have  
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 This mean that all bounded solutions of (2.21) are oscillatory. 

 

  

 Example 2.2 Consider the equation  
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 Choosing 1=)(t , and (0,1)M , we obtain  
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 This mean that all bounded solutions of (2.23) are oscillatory. In fact, tetx t sin)(   is such a solution.  
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