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Abstract

In this paper, new sufficient conditions are established for the oscillation of all bounded solutions of higher order dynamic

equations
[r@®OE" ()1 +a®) f (x(5(1))) =0 for t €[ty, ).,
where z(t) := X(t) + p(t)X(z(t)) and « >0 isa constant. The obtained results extend and supplement certain known
results in literature. .
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1. Introduction
In this paper, we introduce new sufficient conditions for the oscillation of solutions of the neutral differential equation

[r@E" @)1 +aq@® f (x(5(t)) =0 fortelty, ), (1)
where Z(t) := X(t) + p(t)x(z(t)) and >0 is constant. We assume the following conditions .

(Hyr eC,,([t,,©);,R), r(t)>0, r*(t)>0, fr‘l’“AS =5
0

(Hy) 7,8 € Cty([ty,0)7,T), 705 =507, limise7(t) =0, St) <t  lim.o(t) = .
(H3) p,q € C, ([ty,©)1,R), P isan oscillating function, lim_... P(t) =0,and q(t) > 0.

(Hs) f € C(T,T), and there exists a positive constant K such that f(x) >k forall X#0
X

The theory of time scales was introduced by Hilger (see [9]) in 1988 in order to unify continuous and discrete analysis. A
time scale, which inherits the standard topology on R, is a nonempty closed subset of reals. Here, and later throughout this
paper, a time scale will be denoted by the symbol T, and the intervals with a subscript T are used to denote the
intersection of the usual interval with T . For teT , the forward jump operator o:T—T is defined by
o(t) := inf (t,c0); , while the backward jump operator p:T — T is defined by p(t) := sup(—oo,t);, and the graininess
function ,:T »R* is defined to be p(t):=o(t)—t. A point teT is called right-dense if o(t) =t and/or

equivalently z£(t) = 0 holds; otherwise, it is called right-scattered, and similarly left-dense and left-scattered points are
defined with respect to the backward jump operator.
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The set of all such rd-continuous functions is denoted by C,(T,R). The set of functions f :T —R which are
differentiable and whose derivative is an rd-continuous function is denoted by C, (T,R).The Delta derivative of a function
f : T —>R isdefined by

£70) = £ (1)
—_—n O
) #0>
fA(t) =
imO=f6) =0
s—t t—s

The A derivative of the product of two differentiable functions f and Q:

(fg)* ()= T2 9®) + f (c(®)g" (1)
and A derivative of the quotient of two differentiable functions f and g = O: is given by
(j)A(t): g(®) f*(t) - f(©)g"(t)
g g(a(®)g(t)
F s called an antiderivative of a function f definedon T if F* = f holdson T¥. In this case integration of f
is defined by

L‘f (/)Ar=F(t)—F(s) where steT
An antiderivative of 0 is 1, an antiderivative of 1 is t; but it is not possible to find a polynomial which is an
antiderivative of t .The role of t? is therefore played in the time scales calculus by
I;G(T)AT and J:TAZ'
In general, the functions

go(t’ S) El, and gk+l(t’ S) = J.Stgk(G(T), S)AT’ k 2 0

and
t
hy(t,s)=1, and h,(t,s)=[h(z,5)A7, k=0
may be considered as the polynomials on T . The relationship between ¢, and hk is

g, (t,8) = (-1)*h.(t,s) forallkeN
The following is the dynamic generalization of the well-known Taylor's formula
Lemmall (Taylord€™s formula [3]) Let N€N and SeT , andlet f eC.,(T,R). Then,

n-1
fa):}jhaﬁ)r“@)+fm4a¢ﬂn»fMonAn for teT.
k=0 s
By a solution of (1.1) we mean a nontrivial function x e C_,([T,,«);,R), Where T _e[t,, o), Which has the property

that [r(t)(z*"*(t))*]e Ci,([T,,»);,R) and satisfies (1.1) identically on [T, ), . A solution X of (1.1) is said to be

oscillatory if it is neither eventually positive nor eventually negative; otherwise, it is nonoscillatory. Equation (1.1) is called
oscillatory if all its solutions oscillate.
In recent years there has been much research activities concerning the oscillation of solutions of several classes of neutral
dynamic equations, see [1, 2, 7, 10-14, 16-19]
Several papers are devoted to study the cases in which 0 < p(t) <1 and 0< p(t) < p, < oo, for instance, In 2015

Karpuz [11] studied the qualitative behavior of solutions of the higher order delay dynamic equations of the form
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[x(t) + A)X(x ()] + Bt)x(B(t)) =0 fortelt,,o),,

where neN, AeC,,([ty,);,R),and a(t), B(t) <t forall t[ty,00);.

Chen . [5] established sufficient conditions for the oscillation and asymptotic behavior of solutions of the nth-order
nonlinear neutral delay dynamic equation

2@y (O (@) + pEXEE) " [ (x@® + pOX(EON 17} +AF (€, x(51))) =0,

where o >0 isaconstant, » > 0 isa quotient of odd positive integers and A=%1;
p(t) e C.d(T,R) and 0 < p(t) <1.

On the other hand, few papers discussed the case when p(t) oscillates . In [15] Mustafa studied the oscillatory behavior
of certain higher order differential equations of the form.

[x(t) + pOX(z )™ +a®[x(a(t)]” =0, t>t,,
where @ >0, p(t) isoscillatory and limi_. P(t) =0.

On the particular case T = Z, Bolat et al,[4] introduced new oscillation criteria for bounded solutions of the higher order
difference equation

A'(y(k)+ p(k)y(k—7)+a(k) f (y(c(k))) =0, n>=2eN, keN
where P(K) is oscillatory.

Recently, by employing a generalized Riccati technique and an integral averaging technique, Chen [6] established several
oscillation criteria for all bounded solutions of the equation

[r®)[y®) + p@)y(i)NI*)“1* + f t, y(6(1)) =0 forte[ty, ).,

where >0 , P(t) isoscillatoryand [im,_.. p(t) =0.
In what follows, we present some known results, which will be useful in the proof of our main results.
Theorem 1.1  [3] Assume that v: T —R isstrictly increasing and T:=v(T) isatimescale. Let y: T >R . If

yg[v(t)] and V*(t) existfor te T, , then

(Vv = y VOV (©).

Lemmal2[3]Let neN, f eC.(T,R) and SUPT =oo. Suppose that f is either positive or negative, f A%
not identically zero and is either nonnegative or nonpositive on [t,,o0); for some t, e T. Then, there exist t e [to ) OO)T ,
me[0,Nn), suchthat (-=1)"™f(t)f*"(t)>0 forall te[t,,o0); with

- F@E)FY()>0 forall teft,o), andall je[0,m),,
- (D)™ F()FY()>0 forall tefty, ), andall je[m,n),,

Lemma 1.3 [11] Let supT =00, neN and f eC}([t,,),R;) with f"<0 on [t;,0);. Let Lemma 1.2 hold
with me[0,n), and S €[ty,0)+. Then

F)>h (t,5)F2"(t) for all t e[s, o), 12)
Lemma 1.4 [8] Let supT=o0 and feC}(T,R"), (N=2) . Suppose that Kneser’s theorem holds with
me[l,n), and f*'(t)<0on T.Then there exists a sufficiently large t, e T such that

fAt)>h__(@tt)f*" @) for all te[t,o),.

Our aim in this paper is to obtain some sufficient conditions for the oscillation of all bounded solutions of (1.1) when
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peC, (T;R) is an oscillating function using a generalized Riccati technique.

2. Main results
In this section, we state the main results which guarantee that every bounded solution of (1.1) is oscillatory.

Lemma 2.1 Letthe conditions (H1)-(Hs) be satisfied . If X(t) is an eventually positive solution of (1.1), then there exists
t, e[ty, ) such that

" Mt) >0, z"(t) <0, z*(t)>0, t>t,. 21)

Proof. Suppose that (1.1) has a nonoscillatory solution X(t) on [t,,0), such that x(t) > 0, x(z(t)) >0, X(5(t)) >0

on [T,,), the assumptions 3 and 4. Then (1.1) implies
[rOE"©))*1" <—ka®)x“(5(1) <0, t>t,. (2.2)
Therefore, r(t)(z*"*(t))*is decreasing and either z***(t)>0 or z*"*(t) <0 eventually for t >1,. We claim that
2" (t)>0 for te[t,o0); . If this is false, then there exists t, >t such that z""*(t,)<0 , and so

rt,)(z*"*(t,))* <0.since r(t)(z*"*(t))* is decreasing, it is clear that

r)E" ()" <r)@" () =c<0, t >t
Integrating from t; to t, we get
22 (t) <ct™ f %As.
“res)

Letting t —> 00 then it follows from 1, that [im_.. 2" 2 (t) = —c0 . Therefore, liMi_s.0 Z(t) = —00 and thisis a
contradiction. Consequently,

2" (t)>0 for t>t. (2.3)

Now, we show that Z*"(t) < 0. Since

[r®OE"®) T =r* O ©) +r O™ 1)1 <0, (2.4)

Using P6tzche chain rule [3], we obtain
[(ZAnfl(t))a]A :{aI:[ZAnfl(t)_FluhZAn (t)]ﬂ’—ldh}ZAn
a(zAnfl(t))aflen (t), a> 1

T a(z o)tz (), 0<a<l
Substituting into (2.4) using (2.2),(2.5) , we get
r " ()" +ar? ()" () 2" (t) <0, whena >1

(2.5)

and
r* " () +ar® ()2 (o (t)* 2" (t) <0, when0<a <1
ie.
2" () <0.
Applying Lemmal.2 and Lemmal.4, we obtain
2" (t) >0, z*"(t)<0, z*(t)>0, t>t.

Theorem 2.1 Suppose that (H1)-(Ha) hold. Furthermore, assume that there exists a constant M <(0,1) and a positive
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function peCr,(T,R) such that for all sufficiently large T >1,,

limsup El[kM “q(s) p(w (s, T) - @ +11)a+1 ;’Og(gﬁa (;(TS))]AS = o, (2.6)

t 5(t)
(J.Tr’”‘” (S)AS)’lJ.T r'“(s)A Then every bounded solution of (1.1) is

hn—2 (5(t)1T)

where T, >T,and w*(s,T) = h (LT
n-2\™

oscillatory.

Proof. Suppose that (1.1) has a nonoscillatory solution X(t) on [t,,o0) , such that x(t)>0, x(z(t))>0,
X(5(t)) >0 on [T,,), Using the definition of z and Lemma 2.1, we have z(t) >0, z*(t)>0, z*"*(t)>0, and
z*"(t)<0.Since z(t) >0 and is bounded, we get |im_.Z(t) =L >0.Butsince M e (0,1), then by 3, we have

lim[X(©) —~M2)] = im[(1-M)z() ~ POX(E(O)] = (1-M)L >0,

This means that there exists t, >t such that X(t) —Mz(t) >0, ie. x(t) > Mz(t) for all sufficiently large t and
so X(O(t)) > Mz(6(t)) . Then (2.2) takes the form

[r®" 1)1 <-kM*“qt)z*(6(1) <0, t>t, (27)
Define the generalized Riccati substitution
r t An-1 t a
)= p) "L O5 e o), 29

then clearly we have (t) >0, and

o' = 2L @ 1)1 e ) 12

z%(t) z%(t)
_ [r)" (1)1 . p°() pt) (z*()*
= o(t t))— t
P50 e ™Y ey e “OW
This with (2.7) leads to
0 (t) < —kM“qO)2 (5(1)) Z’Z ((tt)) ; /)”(T((tt))) w(o(t) - pé’a(t(i)) (Zz“(:t))) oo (D) (2.10)

since F(t)(z*"*(t))* is strictly decreasing on [t;,0) , for t €[T,0) we obtain

2=z = [ FOEO I sy 1] g sas

and
27y, @) EON T ¢
ZAn72 (5(t)) - ZAn72 5(t)
Choosing T, €[T,0) suchthat 5(t)>T for T, e[T,x). Then for t [T, o0), we get

r = (s)As. (2.12)

ZAn—Z (5(t)) > ZAn—2 (5(t)) _ ZAn—z(T) - J-j(t) [r(S)(Zrlr/:((ss)))a] a As -
> [rEO) 2 EO) T [ (s)as
Hence
[r(EOE (@) T

o) < res” .13

From (2.11) and (2.13), we get
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;75(2)) <L ([T 99 [ rie)as = ([ (s)as) [ rie(s)as

sz_—(f(g)) = (J:FM (S)As)flf(t)r”“ (s)A. (2.14)

Using Lemma 1.2, we get

2(5(1)) . h,,(5@®).T)
z(t)  h,(tT)
This with (2.10),and Lemma 1.4 leads to

00 <-kMaO PO € T+ w1 -2 CO (10 oy @16)

( I 'r e (5)As)™ Jf(t)r*““ (S)A. (2.15)

T

ot ae
plot) P (@)
Applying the inequality
a+l aa Bl+a
Bo—-Aw“ <—————— (2.17)
1+a)™ A~
A 1o
with sz—(t) and o=, 20 (@) ! («®)y, ,(t,T)>0
(o (1) ez "
p (o)
This with (2.16), leads to
« « 1 (pf)r()
At) < —kM*qt) oDy (t,T) + - (2.18)
w"(t) at) oy “ (. T) (@1 p* (Oh* (LT
Integrating from T, tot, we get
t 1 (pr(s)r(s)
kM“q(s) oDy (s, T) - + As < ao(T,) — o(t) < o(T,). (2.19)
[ [M“a(9)p Oy (s.T) G pr i) 8 <o) e < aff)
This contradicts (2.6).
Corollary 2.1 Let p(t) =1, suppose that 1-2 hold and that for sufficiently large T >t
[ve(sT)a(s)as = o, (2.20)
1

where y“(t,T) defined in Theorem 2.1, then all bounded solutions of (1.1) are oscillatory.

Example 2.1 Consider the following second-order nonlinear neutral delay dynamic equation with an oscillating coefficient

[t +1)7 (<) + CD XN T +— e TxP(51) =0 @21)
2 w(tt)t

Here r(t) = (t+1)”, p(t):(;l)t, r(t)<t, () <t, p>o0 and ;- L 1.
2 wo(tt)t

It is clear that Lwr"lw (S)As =0, and lim. p(t)=0

According to corollary 2.1 we have

® o _ v T) sl el
S,T)q(s)As = ——=)" —=As=| —AS=o0, 2.22
le// (s, T)a(s) ITl(t//“(s,t )) S S (2.22)
This mean that all bounded solutions of (2.21) are oscillatory.

Example 2.2 Consider the equation
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—t+7

4e”

2

[X(t)+4e 2 sint2)x(: _2”)]"+

—t+7

—=X(t-2) =0, t>0. (2.23)

te 2

Here =2, r(t)=1, p(t)=4e 2 sin(t/2), z(t)<t, 5(t)<t, =1 and q(t):ﬂ_‘z.

te 2

In this example T =R ,J:Orflla (s)As = I:rfl/“ (s)ds=o0,and lim¢_. P(t) =0.

According to Theorem 2.1, T=R and we have h (t,s) = (t—s) ,

yo(tT)=
Choosing p(t) =1,and M (0,1), we obtain

nl

t—a2-T
t—

T

1 (pi(s)*r(s)

(@+1)“" p“(s)h”(s,T)
4”2 (s-2T)

1As

M t o oa
limsup jT [KM“q(s) p()y“ (s, T) -
t—w 1
=limsu r[kM
tawp Tl =

se?

(s-T)

This mean that all bounded solutions of (2.23) are oscillatory. In fact, X(t) =e'sint is such a solution.
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