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Abstract

Combinations solution of additive type to a two coupled weakly nonlinear sec-
ond order differential equations which governed the motion of a two coupled nonlinear
oscillator subjected to linear parametric excitation and external excitation. We deter-
mined the modulation equations in the amplitude and the phase, steady state solutions,
the frequency-response equation and stability analysis of the steady state solutions by
MSMS. Numerical study of the frequency-response equations and stability equations
are given for different values of the parameters. Results are plotted in group of Figures.

Finally discussion and conclusion are given.
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1 Introduction

The studies of paper is concerned with combinations solution to a two coupled weakly
nonlinear second order differential equations [2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

The present paper devoted to study the combinations solution of additive type to a two
coupled weakly nonlinear second order differential equations presented in [1], but in the

case fi = fo = O(1) and Q1 = s. is devoted to combination solutions of additive type
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Q1 + Qo =~ wp, in the case the amplitude of external excitation are equal and of order one,
also the frequencies of external excitation are equal [1].
2  Perturbation Analysis

The two weakly coupled nonlinear second order differential equations are the following

1 1
uf + wiug + eful — 5661/2 + ekyud + ekoul + §eh(u2 — 2u1) cos(Qpt)

1 1
_ 56,[1,((“2 —uy) 2y — u) (Ul — 2uiug + 2ut) — uhiy) + §EA2u2 (2.1)
= f1cos(t),

1 1
uly + waug + efuly — 5651/1 + eksud + ekqul + §eh(u1 — 2ug) cos(Qpt)

1 1
- ie,u(—(ng — 2uqug + ud)uh + (ug —uy)ul) + 3 A%y (2.2)
= f1cos(t),

where u1 and ug are the vertical displacements of the micro-cantilevers relative to the ori-
gin of the fixed plate, wy, wy are the uncoupled natural frequencies and 3, A, h, u, k; where
1 =1,2,3,4 are constant.

It is noted that in [1] the excitation are the linear parametric excitation, but in Eqs.(2.1)
and (2.2) their are linear parametric and external excitations. Also in [1] they studied only
a single degree of freedom for harmonic solution by using secular perturbation theory. In
our work here, we studied combination solution of additive type, in the case fi = fo = O(1)

and Ql = QQ.

Using the method of multiple scales, we get a first order uniform solutions of Egs.(2.1)

and (2.2) in the form

ul(t; 6) = UIO(TO7T1) + 6U11(T0,T1) + ..., (2 3)
uz(t; €) = ug0(To, T1) + eua1 (To, 1) + ...,

where Ty = t is the first scale associated with changes occurring at the frequencies wy, wo,

Q, and Qq, and T7 = et is a slow scale associated with modulations in the amplitude. In
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terms of 77, the time derivatives become

d P
& :D0+€D1+... & @ :D0+2€DOD1+..., (24)

where D,, = %. Substituting equations (2.3) and (2.4) into Eqgs.(2.1) and (2.2) and

equating coefficients of like powers of € one obtains

Order €°:
Dgulo + w%ulg - f COS(QlTO) =0 (2.5)
D(%UQO + w%u% - fi COS(QlTo) =0 (2.6)
Order e:
2 2 1 2 1y
Diuii + wiuir = —[BDou1g — §5D0u20 + putgDouig — §Mu10D0u20

1
— pugouioDouig + pugouioDougo + EMU%ODOUIO
1
— guu%ODoqu + 2DgDyuqg — huig COS(Q()T()) (27)
1
+ 5]11@0 COS(QoTo) + kQU?O + k:lufo

1
+ 5 A2UQ0]

1 1
Diug; + wiug = —[—55D0U10 + BDgugo — 5/1“%0170%10 + pu3yDouso
+ puyou20Dourg — puiouse Dotz
1
+ §,uu%0D0qu + 2D0D1U20 - hUQo COS(QoTo) (2.8)
1
+ ihUm COS(QQT()) + k4ugo + kgugo
1 5 L. o
— —pufyDouig + §A u10)

2
The solution of Egs.(2.5) and (2.6) can be expressed in the complex form

urg = AerTo 4 fe—rTo 4 )\(einTO + e_mlTO), (2.9)
Uy = Bew2To 4 Be—iwaTo | /\(emlT0 + e*mlTo), (2.10)
where A = ——2/L_ A and B are the complex conjugate of A and B respectively. Then

w1—8217
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Eqgs.(2.7 and 2.8) become,

D(Q)un + W%un = f[ei“’lTO (ipw1 ABB + 3koA%A + i A2A

+ 2iw A + 6k A2 A 4 iBwi A + iN2juw A)

+ e2To(—jpwy ABA — %isz?B — %wsz + %AQB)
4 t2w2—w1)To (i,usz2fl — %iuwlB2A)

+ etw2=2w1)Ty (z’,uwle_l2 — %i,uwgBAZ)

1, o - )

— Shel @I A g NI (RN AL+ iAp AL + BN
APA 1
2 2
+ 2k AA + ihei(QO_“’?)ToB _ %h)\ei(QO—HM)Tg

1 _
+ iiﬁ)\Ql + i)‘3M91) 1 2k M Al —w)To

. 1 ‘
+ 3 To (kg)\g + §i)\3uQ1) + ki AZe2ihTo 4 2]@1)\2}

+ NST. + c.c,

D(Q)Um + w%ugl = —[esz‘) (i,LLCUQABA + 3]€432B + i/,LWQBzB + 2iw23/

+ 6k4A2B + ifwy B + i\ wy B)

+ 1T (A AA — A\uAA + 6k \BB

+ 2IAp U BB — AuBB + 3k A% + i — 55+ =2 + iiA?’MQl)

BA  AZN 1
2 2

+ (=)o (93 A\ B

+ 1T (N\uAB — iAu AB))

| g o 1
+ ¢ (—ipun ABB — Jipn AP A — Jifun A + SARA)

. — 1 D,
+ ez(wl—ng)To (ZMWQABQ _ iluwlABQ)

+ ihei(ﬂo—wl)ToA

- %hei(QO_W)TOB +2ks BB

1

— A 0+ )T

‘ 1 j
+ 3 To <k4>\3 + 5@)\3/1,91) + k3A262191To + 2]€3)\2]

+ NST. +c.c.
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From Egs.(2.11) and (2.12) there exist combination solution of additive type.

3 Combination Solution of Additive Type Q)+ ; =~ w;

In this case, we have
Qo+ Q1 ~w ie. Qo+ Q1 =wy +eoyq,

where o7 is detuning parameter, by eliminating the secular terms from Eqs.(2.11) and (2.12)
yields
— w1 ABB — 3k A% A — ipuwn A A — 2iw A
1. .
— 6koN?A — i A — iN2 i A + Zh)\e“’lTl =0
— ipwa ABA — 3k4 B*B — ipwy B B — 2iwy B’ 5.2
3.2
— 6k4 A’ B — ifwsB — i\ juws B = 0
where the prime indicates the derivative with respect to T7. Writing A and B in the polar
form as A = %al(Tl)ei‘;(Tl) and B = Lay(T1)e" ™) into Egs.(3.1) and (3.2) where ai(T}),
az(Th), 6(T1) and (T1) are real-valued functions, representing, the amplitudes and phases

of the response, by separating real and imaginary parts, we obtain the following modulation

equations:
Swia)] = a3 (—p)wy — ara3puw, — 4ayfwr — day N pwy + 2hAsin(¢y), (3.3)
8ajwi ) = Ba?kg + 24a1ko)\? + 8ajoywy — 2R\ cos(¢1), (3.4)
Swoay = —a%ag,uwg + ag(—,u)(,ug — 4asBwy — dagAZuws, (3.5)
8wyy' = 3kya3 4 24k4 N2, (3.6)

where, ¢1 = Tho1 — §. For steady state solution, a} = a, = ¢} =+’ =0, in Egs.(3.3), (3.4),
(3.5) and (3.6) we obtain

a}(—p)wy — aradpuw; — 4ayfwr — dag N pwy + 2hAsin(¢y) = 0 (3.7)

3a5ky + 24a1ko)? + 8ayoywy — 2hA cos(¢p1) = 0 (3.8)
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a%aguwQ + a%uwg + dasfws + das A piws = 0 (3.9)

a3+ 8\ =0 (3.10)

Squaring and adding the equations (3.7), (3.8), (3.9) and (3.10), we get the following
frequency-response equations:

Mya8 + Mya] + Mza? — 4h*\% = 0, (3.11)

and

aS(9k? + p2w?) + Mya2 + Msas = 0, (3.12)
where
My = 9k3 + pw?
My = 144Kk3)02 + 48kao1wi + 2a3p2w? + 8Buw? + 8A2p2w?

M3 = 576k3\* + 384k \201w1 + agpw? + 8a3Buw? + 8a3\?j’w?
+168%w? + 328\2uw? + 16A*%w? + 6402w?

My = ajp’w? + 8a}Buws + 8a3 A% w3 + 57T6kIN
+ 168%w3 + 32822 w3 + 16A*p%w3

Ms = 2a2p2w3 + 144k3 0% + 8Buws + 8\2 w3
For stability analysis from equations (3.3), (3.4), (3.5) and (3.6) by putting:

a1 = aro + a11(Th) 1 = ¢10 + ¢11(11),
(3.13)

ag = ago + az (11) ¥ =10 +7111(T1),
where ajg, ag, ¢20 and ¢3¢ are solutions of Eqgs.(3.7), (3.8), (3.9) and (3.10) and a1,
as1, ¢21 and ¢3;1 are perturbations which are assumed to be small. Substituting Eq.(3.13)
into Eqgs.(3.3), (3.4), (3.5) and (3.6), linearizing the resulting equations and noticing that
the steady-state values satisfy Eqgs.(3.7), (3.8), (3.9) and (3.10), then we obtain
, (3a3gka + 24a10ke\? + 8ajpoiw)

ap = 8wy ou
N (—3@%0,&&}1 — a%OM;ﬂ —4Bwi — 4>‘2/M1)a11 (3.14)
w1

n (—2a1pa20pw1)

a21
80)1
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dhy = — (moZQoM)al
(3.15)
(aio(—p) —3a3on — 48 — 43%p)
+ asi
8
o = (9a2oka + 24k )2 + 801w1) o
: Sa10u1 (3.16)
n (a%’o,uwl + aloa%oﬂwl + dayoBwidaio? pwr) &
8a1owi 1
3k4(3a3, + 8\?
M1 = 4(8 20 )a21 (3.17)
a0ws2
The previous system of Eqgs.(3.14)-(3.17) can be written in the simple form
[H] = [A][H] ; [H]" = [a11, az1, 11, 711] (3.18)

[A] is a 4x4 matrix and the elements of which are functions of a11,a91, $11 and ~y11. Sta-
bility of the steady state solution is now decided by the nature of the eigenvalues of the
matrix [A]. Equations (3.14), (3.15), (3.16) and (3.17) admit of solutions on the form
(a11,a21, é11,711) = (c1,c,¢3,¢4)e™T. Then the eigenvalues are given by the following
equation

m* -+ R1m3 + R2m2 4+ Rsm + R4 = 0, (3.19)

where R; = 4096a1a2w%wz,

R = 512ajaswiws(3a2p + 3a3u + 4(8 + A2p)),

R3 = —64ayasws(96keowi (a2 + 40%) + 9k3 (3ad

+ 324202 + 64X\Y) + w?(a*p® + 2a3p(adp + 4(8 + N2p))
+asp® 4 8azp(B 4+ N2p) + 16((8 + A2p)? + 407))),
Ry = —8ajaswy(96ka0oiwy (a%

+ 42 (aFp + 3a3u + 4(B + A2u)) + 9k3(3a]

+ 324202 + 64\Y) (a2 p + 3adp + 4(8 + N2p))
+wi(3afp® + atp?(9a3p + 28(6 + Np))

+ afpu(9a3p® + 56a31(B + A\2p) +16(5(8 + A2u)?
+407)) + (3a3p + 4(8 + X)) (agp?

+8a3u(B + N ) + 16((8 + A p)? + 401)))).
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According to the Routh-Hurwitz criterion [11], the fixed points are stable if and only
if

R1>0, R4>0, RlRQ—R3>0
(3.20)

and  R3(R1Ry — R3) — RiR, > 0.
4 Numerical results and discussion

By solving numerically the frequency response equations (3.11), (3.12) and stability
condition (3.20). The numerical results are plotted in groups of figures, which represent
the variation of the amplitudes (a; and ag) with the detuning parameter (op) for given
values of the other parameters. In all figures, the solid (hollow) symbols represent stable
(unstable) solutions.

Figure(1)-(16) represent the frequency response curves for combination solution additive
type. In Fig.(1), the magnitude of the parameter are (h =7, u = .08, = —.1,ky = 2, kg =
07,w1 = 4,we = .03,\ = —.05), we have two systematic branches about o1 = 0 stable
(unstable) solutions. In Fig.(2) for ay we have also, two curves with multivalued solutions,

where the values of o; are unstable region.

e By increasing (decreasing) (u and (wg), the magnitude of (a;) have no change (i.e.

we have a saturation phenomenon) Fig.(11) and Fig.(17).

e By increasing (decreasing) (h), we observe that for aj, the range of the definition

and the zone of multivalued are an increased (decreased) and the stable solutions are

decreasing (increasing) where o1 = —3.8 and 01 = —6.5 Fig.(3), for (a2) the curves
are increased (decreased) for the zones of the definition o3 = —3.9 and 07 = —6.5
Fig.(4).

e By decreasing (), we note that the magnitude of (a;) are decreased and the region
of stable are vanish Fig.(5). But for (az) the magnitude are increased and curves turn

out to be a straight line and the region of stable are decreasing at the decreasing for
(a2) Fig.(6).

e By increasing (decreasing) (k2), for (a; the semi-oval expand and move to right (left)

which is given by an increase (decrees) in the zone of multivaled and the region of
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the stable solutions vanish at decreasing ko Fig.(7). We observe that for (az), the
curves are increased (decreased) of the range of definitions and the curves move to

left (right) Fig.(8).

e By decreasing (increasing) (A), for (a; the zone of multivaled and the region of the
stable solutions are increased (decreased) and the part of stable solution are increasing
(decreasing) Fig.(9). We observe that for (az), the curves are increased (decreased)
of the region of definitions and the curves bent to upward (downward) by decreasing

(increasing) for (A and k4) Fig.(10) and Fig.(12).

e By increasing (decreasing) (u), we note that for (a;) are decreased (increased) of the
region of definition Fig.(13). But for (a2) the curves turn out to be two curves right

and left and the curves convergent at the zero Fig.(14).

e By increasing (decreasing) (wy), for (a; the semi-oval expand and move to right (left)
which is given by an increase (decrees) in the zone of multivaled Fig.(15). We observe
that for (az), the curves are increased (decreased) of the region of definitions and the

curves move to left (right) Fig.(16).

e By increasing (decreasing) (w2), we note that the magnitude for (a2) are increased
(decreased) and the region of definitions are increase (decrease) and the curves bent

to upward (downward) Fig.(18).

5 Summery and Conclusion

This paper is devoted to study analytically the combination solutions od additive type
to a two coupled weakly nonlinear second order differential equations which represent the
dynamical behavior of MEMS, in the case fi = fo = f and 1 = Qs.

From the figures we note that:

e The region of stability affect for decreasing the parameters wy, ko for a; and for
increasing (decreasing) the parameters k4 and ws have no change i.e. we have a

saturation phenomenon for a;.
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e The range of definitions bent to upward (downward) by decreasing (increasing) for as

for the parameters A and k4 at the inverse the parameter wo.

e For increasing, u we observe that for ay the branches bent to the right branch and

the left branch and convergent to zero for the parameter pu.
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