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Channel estimation is a crucial task in wireless communication systems to accurately estimate
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regression task, a DNN was trained to reduce the Mean Square Error (MSE) between the
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1. INTRODUCTION

The Fifth Generation (5G) is one of the latest generations of cellular networks that promises
lower latency, faster data speeds, and higher capacity when compared to earlier versions. One of
the key challenges of 5G is channel estimation. Channel estimation involves estimating the Channel
State Information (CSI), including the gain and delay of each subcarrier in the Orthogonal
Frequency Division Multiplexing (OFDM) symbol. The CSI is essential for the exact decoding of
the received signal. Traditional channel estimation methods are often computationally complex and
inaccurate in challenging channel environments. But deep learning models can extract complex
patterns and relationships from extensive amounts of data by utilizing multi-layered neural
networks. This capability makes deep learning attractive for channel estimation tasks, where the
underlying channel characteristics can be highly non-linear and challenging to model analytically.
Deep learning-based channel estimation methods have been shown to improve the data throughput
and reliability of 5G systems when dealing with noise, interference, and blockages.

Moreover, OFDM is a modulation technique widely employed and serves as a cornerstone
of the latest wireless communication systems, such as Wi-Fi, 4G/5G cellular networks, and digital
broadcasting. It divides the available frequency spectrum into multiple orthogonal subcarriers,
which are closely spaced and overlapping in frequency. Each subcarrier carries a part of the data,
enabling the simultaneous transmission of multiple symbols [1].

The primary advantages of OFDM include robustness against frequency-selective fading,
the ability to mitigate the Inter-Symbol Interference (ISI) arising from multipath propagation, and
reliable spectrum use. By using the orthogonality of the subcarriers, OFDM enables efficient
equalization and demodulation at the receiver, making it suitable for high-speed data transmission
in challenging wireless environments [2]. Channel estimation via DNNs can be employed to
estimate the channel parameters in OFDM systems. By training the DNN on labeled datasets
containing known transmitted symbols and received signals, the network can learn to accurately
predict the channel characteristics. This estimation can improve the equalization process at the
receiver, leading to better signal recovery and decoding performance [3].

Deep learning has received much attention as a favorable tool in wireless communication
in recent years. Regarding deep learning channel estimation, several schemes have been proposed
in [3-7].

The performance of deep learning receivers within frequency-selective fading
environments of OFDM-based communication systems has been investigated using long-short-
term memory (LSTM) for signal detection purposes in [3]. A deep learning-based approach for
channel estimation that uses ChannelNet has been proposed in [4] and [5], and it is a viable
alternative to the MMSE channel estimation scheme, but it takes longer to run. A deep learning-
based channel estimation method that employs a DNN has been investigated in [6]. However, the
proposed method necessitates multiple inputs to the DNN and encounters significant complexity.
A DNN-aided estimation that minimizes the MSE between the channel estimate obtained by LS
estimation and the actual channel is proposed in [7] to overcome the drawbacks of LS and MMSE
estimations. But when the Signal to Noise Ratio (SNR) increases, the deep learning-based
approaches yield a worse MSE compared to the performance of MMSE estimation. This may be
due to the sub-optimal structure of the DNN models at high SNR levels.

Our study highlights the promising capabilities of deep learning techniques in the field of
channel estimation in wireless communication systems. Using the profound learning capacity of
deep neural networks, the precision and efficiency of channel estimation can be enhanced, thereby
enhancing the performance of wireless communication systems in various implementations. A deep
learning-based channel estimation method is proposed to correct LS and EW-MMSE channel
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estimation errors using DNN. The study demonstrates that the proposed method can accomplish
significantly lower MSE than LS and MMSE with less complexity and compares the MSE of the
proposed method with traditional channel estimation methods under different conditions. The
results show that the proposed method is more robust to these conditions than traditional methods.

Input Mediikticn serial to IEFT Parallel to Add cyclic

data parallel serial prefix

Output Bissiiiation Parallel to FET Serial to Remove J
data serial parallel cyclic prefix

Fig. 1. OFDM transmitter-receiver block diagram.

The paper follows this structure. Section 2 introduces the overarching framework of the
system used in our study. Section 3 is the mathematical description of the LS, EW-MMSE, and
MMSE channel estimation methods. Section 4 discusses the proposed channel estimation deep
learning procedure. Section 5 illustrates the simulation results. Then, the paper is concluded.

2. SYSTEM MODEL

The OFDM system is illustrated in Fig. 1, and the data input, denoted as s(t), is given by
s(@) = [51(6),52(t), — — =, 5, ()] (1)
where u is the number of the transmitted OFDM symbols. After converting the data from serial to
parallel, a known pilot sequence is embedded within the data stream. The signal vector with the
pilot sequence is denoted by sp(t). Next, the Inverse Fast Fourier Transform (IFFT) is applied to
sp(t)
Spe(t) = IFFT{sp(t)} (2)

To reduce the ISI, a Cyclic Prefix (CP) of length Kcp is added, resulting in the signal

donated by s.,(t). The received signal undergoes multi-path propagation in the 5G channel
pru(t) = Hy * Scpu(t) + Zy (3)

where H,, eC™ and Zy eC”™ are the circular matrix standing for the channel and the additive white

Gaussian noise, respectively.

Once the signal is received, the CP is removed using the CP removal module, resulting in
the output vector y,(t) . The parallel-converted signal, denoted by y,.(t), is subsequently
transformed into the frequency domain using the Fast Fourier Transform (FFT), generating the
frequency-domain signal y,,(t)given by the equation

Yp(t) = FFT{yp:(t)} 4)

The OFDM system model extracts a pilot signal from the frequency-domain signal to
estimate the channel characteristics. Once the channel is estimated, the detected signal y(t) is
converted into a serial stream, donated by y(t). The final output is formulated as

y=sxh+z (5)
To estimate the channel gain, the preamble signal is formulated as
Yp = Sp * hytzy, (6)
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3. CHANNEL ESTIMATION

The channel refers to the medium through which wireless signals propagate from the
transmitter to the receiver. It is affected by numerous factors, such as multi-path fading,
interference, and noise, which can degrade the quality of the received signal. Channel estimation
aims to estimate the channel parameters, such as the complex gains and delays associated with
different propagation paths. To mitigate the effects of these impairments, channel estimation is
needed to compensate for the distortion introduced in the symbols as they travel through the
channel and to consider the SNR. The procedure is done in this sequence. Firstly, establishing a
correlation between the transmitted and received signals using the channel matrix demands the
implementation of a mathematical model. Secondly, a known signal must be transmitted, and the
corresponding detected signal must be detected. Thirdly, a comparison must be made between the
transmitted signal and the received signal [8]. There are three types of estimators used in the
channel estimation: MMSE, EW-MMSE, and LS, as described in Table 1.

Tablel. Channel Estimation Techniques in Wireless Communication.

Technique | Operating Principle Advantages Disadvantages
LS Solve a system of linear - Simple and computationally - Sensitive to noise.
equations to estimate efficient. ]
channel coefficients. - Performance degrades with
- Good for static channels. multipath.

EW-MMSE | The full spatial - Provides improved -There is a gap in the MMSE
correlation matrix is not performance compared to the estimator where the error
required. LS estimator. caused by pilot

. contamination has a high
- Robust to noise and value.
interference.

MMSE Minimizes the mean - Better performance than LS - Higher computational
square error between the for noisy channels. complexity compared to LS
estimated and actual ) and EW-MMSE estimation.
channels. - Manages multipath

effectively. - Requires knowledge of noise

statistics.

3.1. MMSE estimator

The MMSE estimator is an optimal estimator that aims to reduce the average squared
difference of the estimated value by considering the covariance between the observed data and the
parameter to be estimated. The vector h represents the optimal estimate of h obtained using MMSE
to reduce the error €, where € = E I( hp — hpmmse)l?, which estimates the current CSI h by making a
comparison between a known pilot signal and the received UL signal y in (6). The Rayleigh-fading
MIMO channel is the type of channel considered in this paper. The MMSE estimator is utilized to
estimate the channel, where hr Mvse = A *Yp-

A=Rpy, (Rpp +sp 'Ry, sp,7H) 71s,71 (7)

Given that Ry, = E { hpth} and R,, = E {z,2z,"} are the channel and noise auto-
correlation matrices, respectively.
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_ IN-1 . -1 _ Ep
A =Ry, (Ryp + ﬁ) sp ', where f3 o No (8)
and Ry, is the covariance matrix of h
. -1
hpmmse = Ry, (Rp, + E) s, * W 9)

3.2. EW-MMSE estimator

This method is based on estimating each element of h individually. The EW-MMSE
estimator does not require the full spatial correlation matrix. Instead, it considers several SNR
values specified by 3,,. The EW-MMSE estimator of h is the vector h that minimizes €, where

e=E | (hp - hp, ew-mmse) 12 and hp, Ew-Mmse= Agw * Vp

Nt I
Aew[u] =(Rpp (Rpp + 5 Gp ) (10)
where 3, = Ep and Rup is the covariance matrix of h
k*No

fip, Ew-mmse = Ry (Rpp + ﬁi)—1 (5,™1) *¥ (11)
3.3. LS estimator

The LS aims to minimize the mean square error of the estimated value by assuming that the
observed data is independent and identically distributed. This makes the LS estimator simple to
calculate, but it can be less accurate than the MMSE or EW-MMSE estimators when the observed
data is correlated or time-varying. In the absence of complete statistical knowledge, the LS
estimator provides a practical approach for obtaining estimates. The LS estimate of h is given by
€,s=E | (hp -y 1) I2, where

~

hy, 15= Yp /sp (12)

4. THE DEVOLPED APPROACH

DNN is a promising approach for channel estimation in wireless communication systems,
offering several advantages over other deep learning models, including flexibility, accuracy,
efficiency, and adaptability.

4.1. DNN overview

A DNN is a deep learning model that uses multiple layers of interconnected neurons to
process information [9]. DNNs have attained notable achievements across various fields, including
wireless communication [10] and many other domains. In a DNN, neurons are organized into
layers. The initial layer receives the raw data for processing. The subsequent layers, referred to as
hidden layers, and the final layer, known as the output layer, generate the network's predictions or
outputs. Each layer is interconnected with the next layer.

The fundamental building block of a DNN is the artificial neuron. Each neuron takes in
multiple inputs, performs a weighted sum of these inputs, applies an activation function, and
produces an output. By introducing non-linearity, the activation function equips the network to
model complex patterns in the data.

Training a DNN involves a process called back-propagation [11], which combines forward
propagation (passing data through the network) and gradient-based optimization. During training,
the network adjusts the weights associated with each connection based on the error between its
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predictions and the true labels. This iterative process updates the weights, gradually minimizing
the error and improving the network’s performance.

Let I stand for the number of hidden layers in a DNN, with Q; nodes for each layer, where
1 <i<Iand 1 <q<Q. Each node output is denoted as y(i-1) € R U=1X1 multiplying it by a
weight vector o(i, q) € RU~1X1 and adding a bias b(i, q), The resulting value is then passed
through an activation function f{(i, q), generating the outcome

yL9=fGg9*bEHP+todq +y@i-1) (13)
The aggregate output of the neurons in layer I is formulated as
y@O=f@O)*b@O+W(@)x*y@i-1) (14)

where W(i) € RUXQ-1 (i) € RQU-1X1and f(i) stand for the connection weight matrix between
layer (1 — 1) and layer 1, the intercept vector, and the activation function, respectively.

The training process for DNN involves adjusting weights and biases. After selecting a
network architecture and initializing the weights, the network's output is calculated using forward
propagation to obtain y(I). The error between the predicted output and the actual output is then
determined using an appropriate loss function, Yw,b. The gradient descent optimization method
with backpropagation is used to reduce the error.

The objective is to minimize the variation between the actual output and the predicted
output of the DNN. To reduce the cost function Ww,b the backward propagation technique is used,
employing various optimizers. These optimizers iteratively update the values of W and b during
training. Various optimizers can be utilized, such as stochastic gradient descent [12] and Adaptive
Moment Estimation (ADAM). The updating rule for adjusting the values of W and b is as follows:

. . aPwb
® (i, Ongw= 0 (0, @) - p-—r (15)

d w(i,qg)
where p stands for the learning rate.

4.2. Proposed DNN LS and EW-MMSE channel estimation methods

Leveraging deep learning algorithms recommends elevating the effectiveness of LS and
EW-MMSE channel estimation. A deep neural network is employed to learn the relationship
between the received signal and the estimated channel. The trained neural network can then be used
to estimate the channel in real-time, even in low SNR regions.

LS and EW-MMSE channel estimation via deep learning combines the principles of LS and
EW-MMSE estimations with deep learning algorithms to estimate channel parameters in
communication systems.

The suggested approach leverages a DNN in conjunction with LS and EW-MMSE to accurately
estimate the channel impulse response (h,) from the received preamble. This approach strikes a
remarkable balance between performance improvement and computational complexity reduction.

The proposed DNN aims to enhance the performance of the LS and EW-MMSE channel
estimations by optimizing the cost function Ww,b. The inputs of the DNN are the LS estimated
channel ﬁp, s and the EW-MMSE estimated channelﬁplEW_ mmsEg- respectively. Firstly, the received
preamble is processed using the LS and EW-MMSE channel estimation methods, respectively.
Subsequently, both LS and EW-MMSE channel estimates are decomposed into their real and
imaginary components, resulting in a total DNN input of 2|K,,,|.

Once the training process is complete, the DNN's output layer generates the refined LS
channel estimate and the corrected EW-MMSE channel estimate, scaled to ensure a zero mean and

unit variance. The DNN training employs the MSE loss function with the ADAM optimizer [13].
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The ReLU activation function is applied throughout the DNN architecture. No activation function
is applied in the output layer of the DNN to allow the output values to remain unrestricted. Two
fundamental designs of the DNN are proposed, each with a distinct number of hidden layers and
nodes per layer, as detailed in Table 2. It is evident from the results that our procedure can
significantly enhance the performance of least square and EW-MMSE channel estimation.

5. SIMULATION RESULTS
5.1. Proposed approach performance

Herein, the impact of the proposed deep learning approach is assessed by estimating the
channel using Normalized Mean-Squared Error (NMSE) and comparing it with the traditional

methods. Each obtained result is also explained. The parameters required to configure the system
are listed in Table 2, and the DNN model parameters are listed in Table 3.

Table 2. OFDM system design variables

Parameters Values
Size of FFT 64
Length of CP 16
Number of subcarriers 64
Number of active subcarriers 52

Table 3. Parameters for DNN network

Parameters Values
Hidden layers number (DNN1) 1
Hidden layers number (DNN2) 3
Neurons-number of each layer (DNN1), 52
Neurons-number of each layer (DNN2) 52
Activation function RELU
Type of optimizer ADAM
Cost function MSE
Number of epochs 500
Batch size 32

The RTV Power Delay Profile fading channel model is used [14]. Among the sixty-four
subcarriers of an OFDM symbol, only fifty-two are active. The proposed approach is compared to
the LS and exact MMSE procedures concerning their performance.

Figs. 2 and 3 display the NMSE performance of the different channel estimation methods

considered in various scenarios. LS produces the least satisfactory results compared to the other
methods. LMMSE estimation performs better than LS in terms of MSE. Our deep learning
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approach achieves the lowest MSE, and even at SNRs greater than 15 dB, it continues to perform
well.

The performance of our deep learning method is dependent on the SNR used during
training. Employing the highest expected SNR during training yields optimal performance.
However, training at an extremely high SNR still provides reliable performance. The figures
demonstrate that the CP significantly reduces the NMSE values. The CP allows for easy separation
of the OFDM symbol from its delayed copies, simplifying the channel estimation process and
leading to better equalization and demodulation, resulting in lower MSE.

NMSE
i
d !
i H
!
,;///[
NMSE

—f— L5 with cp
e MM S E wiith cp

e S with cp
..... MMSE with cp o, 104
] [—— LS withoutep | TN 13 fmemn— L35 without cp
----- MMSE without cp = MMSE withoutcp
109 F| mamem DNM LSwithoutep | % W DNN LS withoutcp
—4—DNN LS viith cp —H— DNN LS with cp

10 ;
0 5 10 15 20 25 30 i} 5 10 15 20 25 30

SNR (dB) SNR (0B)

% 108

Fig. 2. NMSE versus SNR with DNN trained at ~ Fig. 3. NMSE versus SNR with DNN trained at

NMSE

SNR = 30dB. SNR = 20dB.

10! e

P DNNEWMMSE

7
Q
106 : ‘ : : : | |
0 5 10 15 20 25 30 B % A 2 o o 5o
) SNR (dB) SNR (dB)
Fig. 4 NMSE versus SNR for Fig. 5. NMSE versus SNR.
different DNNs.

Fig. 4 shows that while DNN2 has more hidden layers than DNN1, DNNI1 achieves better
accuracy. This suggests that DNN complexity does not guarantee accuracy.
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Fig. 5 displays straightforward evidence of the impact of our introduced method. It shows
that the DNN-EW-MMSE gives the best performance compared with the traditional methods,
especially at low SNR.

5.2. Computational Complexity

The number of multiplications is a crucial metric for selecting efficient DNN architectures
and training algorithms. Computing all neuron activations in each layer is necessary. When
transitioning from the i layer to the (i-1) layer, M;_; M; multiplications are needed [15], [16]. The
additional operations in a DNN are straightforward. Thus, the overall count of multiplications
within a DNN formulated as

Miotar = Z{=1 M;_1 M; (16)

The overall count of multiplications of the proposed DNN approaches is 4|K,,|*. For
DNNI1 and 6|K,,|* for DNN2. The computational complexity of an accurate LMMSE channel
estimation scheme is of order |K,,,|>.

Based on the information provided above, the complexity of the proposed system is lower
than that of MMSE.

Conclusions

Our proposed approach involves the implementation of DNN for channel estimation,
utilizing the estimation of SNR at the receiver. The concept of DNN is introduced, and a deep
learning-based channel estimation method is presented. It is evident from the results that the
proposed method accomplishes superior achievement than exact MMSE channel estimation with
lower computational complexity. The adaptability of the DNN model to diverse channel
environments positions it as a valuable tool for next-generation communication systems that
demand flexibility and efficiency. One can consider the optimization of DNN architectures,
investigate transfer learning techniques for different communication scenarios, and consider the
integration of real-world data for further validation. As we move towards the era of intelligent and
adaptive communication systems, the integration of DNNs holds great promise for enhancing the
reliability and efficiency of channel estimation in diverse and challenging environments.
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