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 ABSTRACT  

 

Channel estimation is a crucial task in wireless communication systems to accurately estimate 

the wireless channel's characteristics. Traditional methods for channel estimation often rely on 

mathematical models and assumptions, which may not capture the complex and dynamic nature 

of real-world channels. In recent years, deep learning techniques have demonstrated significant 

potential in diverse domains, including wireless communications. In this paper, a deep learning-

driven framework for channel estimation is developed. This approach uses deep learning 

techniques with the Least Square (LS), or with Element-Wise-Minimum Mean Squared Error 

(EW-MMSE) methods. The selection of these methods highlights their simplicity, effectiveness, 

and compatibility with deep learning models. The profound learning capacity of Deep Neural 

Networks (DNNs) is used to understand the relationship between detected signals and the 

corresponding channel parameters. By formulating the channel estimation problem as a 

regression task, a DNN was trained to reduce the Mean Square Error (MSE) between the 

estimated and actual channel parameters. The simulation results of this work provide convincing 

evidence that the proposed approach is effective. Comparing the proposed approach with classic 

methods reveals its superior performance in terms of robustness to noise and computational 

efficiency. It achieves lower complexity than the exact Minimum Mean Square Error (MMSE). 
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  alwakeel@azhar.edu.eg-asmaa: *البريد الاليكتروني للباحث الرئيسي 

 الملخص 

القناة   رما تعتمد الطرق التقليدية لتقدي  خصائص القناة اللاسلكية بدقة. غالباًلتحديد   تقدير القناة هو مهمة حاسمة في أنظمة الاتصالات اللاسلكية

، والتي قد لا تستوعب الطبيعة المعقدة والديناميكية للقنوات في العالم الحقيقي. في السنوات الأخيرة، أظهرت تقنيات على النماذج الرياضية

ً مقائ  يقترح نظامالتعلم العميق نتائج واعدة في مجالات مختلفة، بما في ذلك الاتصالات اللاسلكية. هذا البحث،   على التعلم العميق لتقدير القناة.    ا

 Element-Wise-Minimum Meanل  يقة اأو طر  Least  Squareيقة ال  طر  مدمجة مع المقترح تقنية التعلم العميق  لنظام  يستخدم ا

Squared Error    الشبكات العصبية العميقة  امكانيات  حيث نستخدمDNNs)   .لايجاد العلاقة بين الإشارة المستقبلة ومتغيرات القناة المقابلة )

القناة المقدرة  متغيرات  بين  بيعى  الترالخطأ  لتقليل متوسط    DNN، نقوم بتدريب   regression  task  من خلال صياغة مشكلة تقدير القناة ك

ضد  قليدية من حيث المتانة  مع أساليب تقدير القناة التنته  المقترح من خلال مقار  النظامتقدم نتائجنا التجريبية أدلة قوية على فعالية    والحقيقية.

 الدقيق. MMSEلضوضاء، مع تقليل التعقيد مقارنة ب ا

 . OFDM،LS ، EW-MMSEالتعلم العميق، تقدير القناة، الكلمات المفتاحية :
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1. INTRODUCTION 

The Fifth Generation (5G) is one of the latest generations of cellular networks that promises 

lower latency, faster data speeds, and higher capacity when compared to earlier versions. One of 

the key challenges of 5G is channel estimation. Channel estimation involves estimating the Channel 

State Information (CSI), including the gain and delay of each subcarrier in the Orthogonal 

Frequency Division Multiplexing (OFDM) symbol. The CSI is essential for the exact decoding of 

the received signal. Traditional channel estimation methods are often computationally complex and 

inaccurate in challenging channel environments. But deep learning models can extract complex 

patterns and relationships from extensive amounts of data by utilizing multi-layered neural 

networks. This capability makes deep learning attractive for channel estimation tasks, where the 

underlying channel characteristics can be highly non-linear and challenging to model analytically. 

Deep learning-based channel estimation methods have been shown to improve the data throughput 

and reliability of 5G systems when dealing with noise, interference, and blockages. 

Moreover, OFDM is a modulation technique widely employed and serves as a cornerstone 

of the latest wireless communication systems, such as Wi-Fi, 4G/5G cellular networks, and digital 

broadcasting. It divides the available frequency spectrum into multiple orthogonal subcarriers, 

which are closely spaced and overlapping in frequency. Each subcarrier carries a part of the data, 

enabling the simultaneous transmission of multiple symbols [1].  

The primary advantages of OFDM include robustness against frequency-selective fading, 

the ability to mitigate the Inter-Symbol Interference (ISI) arising from multipath propagation, and 

reliable spectrum use. By using the orthogonality of the subcarriers, OFDM enables efficient 

equalization and demodulation at the receiver, making it suitable for high-speed data transmission 

in challenging wireless environments [2]. Channel estimation via DNNs can be employed to 

estimate the channel parameters in OFDM systems. By training the DNN on labeled datasets 

containing known transmitted symbols and received signals, the network can learn to accurately 

predict the channel characteristics. This estimation can improve the equalization process at the 

receiver, leading to better signal recovery and decoding performance [3]. 

Deep learning has received much attention as a favorable tool in wireless communication 

in recent years. Regarding deep learning channel estimation, several schemes have been proposed 

in [3- 7].  

The performance of deep learning receivers within frequency-selective fading 

environments of OFDM-based communication systems has been investigated using long-short-

term memory (LSTM) for signal detection purposes in [3]. A deep learning-based approach for 

channel estimation that uses ChannelNet has been proposed in [4] and [5], and it is a viable 

alternative to the MMSE channel estimation scheme, but it takes longer to run. A deep learning-

based channel estimation method that employs a DNN has been investigated in [6]. However, the 

proposed method necessitates multiple inputs to the DNN and encounters significant complexity. 

A DNN-aided estimation that minimizes the MSE between the channel estimate obtained by LS 

estimation and the actual channel is proposed in [7] to overcome the drawbacks of LS and MMSE 

estimations. But when the Signal to Noise Ratio (SNR) increases, the deep learning-based 

approaches yield a worse MSE compared to the performance of MMSE estimation. This may be 

due to the sub-optimal structure of the DNN models at high SNR levels. 

Our study highlights the promising capabilities of deep learning techniques in the field of 

channel estimation in wireless communication systems. Using the profound learning capacity of 

deep neural networks, the precision and efficiency of channel estimation can be enhanced, thereby 

enhancing the performance of wireless communication systems in various implementations. A deep 

learning-based channel estimation method is proposed to correct LS and EW-MMSE channel 



PERFORMANCE ENHANCEMENT OF THE CHANNEL ESTIMATION VIA DEEP LEARNING 

JAUES, 19, 72, 2024 204 

estimation errors using DNN. The study demonstrates that the proposed method can accomplish 

significantly lower MSE than LS and MMSE with less complexity and compares the MSE of the 

proposed method with traditional channel estimation methods under different conditions. The 

results show that the proposed method is more robust to these conditions than traditional methods. 

 

 
Fig. 1. OFDM transmitter-receiver block diagram.  

The paper follows this structure. Section 2 introduces the overarching framework of the 

system used in our study. Section 3 is the mathematical description of the LS, EW-MMSE, and 

MMSE channel estimation methods. Section 4 discusses the proposed channel estimation deep 

learning procedure. Section 5 illustrates the simulation results. Then, the paper is concluded. 

2. SYSTEM MODEL 

The OFDM system is illustrated in Fig. 1, and the data input, denoted as s(t), is given by 

𝑠(𝑡) = [ 𝑠1(𝑡), 𝑠2(𝑡), − − −, 𝑠𝑢(𝑡)]             (1) 

where u is the number of the transmitted OFDM symbols. After converting the data from serial to 

parallel, a known pilot sequence is embedded within the data stream. The signal vector with the 

pilot sequence is denoted by sₚ(t). Next, the Inverse Fast Fourier Transform (IFFT) is applied to 

sₚ(t) 

𝑠𝑝𝑡(𝑡) = 𝐼𝐹𝐹𝑇{𝑠𝑃(𝑡)}                                 (2) 

To reduce the ISI, a Cyclic Prefix (CP) of length Kcp is added, resulting in the signal 

donated by 𝑠𝑐𝑝(t). The received signal undergoes multi-path propagation in the 5G channel 

                                      𝑦𝑐𝑝𝑢
(𝑡) =  𝐻𝑢 ∗ 𝑠𝑐𝑝𝑢

(𝑡) + 𝑧𝑢                  (3) 

where 𝐻𝑢 ∈ℂᴷ˟ᴷ and 𝑧𝑢 ∈ℂᴷ˟ᴷ are the circular matrix standing for the channel and the additive white 

Gaussian noise, respectively. 

Once the signal is received, the CP is removed using the CP removal module, resulting in 

the output vector 𝑦𝑡(𝑡) . The parallel-converted signal, denoted by 𝑦𝑝𝑡(𝑡) , is subsequently 

transformed into the frequency domain using the Fast Fourier Transform (FFT), generating the 

frequency-domain signal 𝑦𝑝(𝑡)given by the equation 

                                      𝑦𝑝(𝑡) = 𝐹𝐹𝑇{𝑦𝑃𝑡(𝑡)}                                (4) 

The OFDM system model extracts a pilot signal from the frequency-domain signal to 

estimate the channel characteristics. Once the channel is estimated, the detected signal yₚ(t) is 

converted into a serial stream, donated by y(t). The final output is formulated as 

                                      𝑦 = 𝑠 ∗ ℎ + 𝑧                                            (5) 

To estimate the channel gain, the preamble signal is formulated as 

                                      𝑦𝑝 =  𝑠𝑝 ∗  ℎ𝑝+ 𝑧𝑝                                    (6)
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3. CHANNEL ESTIMATION 

The channel refers to the medium through which wireless signals propagate from the 

transmitter to the receiver. It is affected by numerous factors, such as multi-path fading, 

interference, and noise, which can degrade the quality of the received signal. Channel estimation 

aims to estimate the channel parameters, such as the complex gains and delays associated with 

different propagation paths. To mitigate the effects of these impairments, channel estimation is 

needed to compensate for the distortion introduced in the symbols as they travel through the 

channel and to consider the SNR. The procedure is done in this sequence. Firstly, establishing a 

correlation between the transmitted and received signals using the channel matrix demands the 

implementation of a mathematical model. Secondly, a known signal must be transmitted, and the 

corresponding detected signal must be detected. Thirdly, a comparison must be made between the 

transmitted signal and the received signal [8]. There are three types of estimators used in the 

channel estimation: MMSE, EW-MMSE, and LS, as described in Table 1. 

Table1. Channel Estimation Techniques in Wireless Communication. 

Technique Operating Principle Advantages Disadvantages 

LS Solve a system of linear 

equations to estimate 

channel coefficients. 

- Simple and computationally 

efficient. 

- Good for static channels. 

- Sensitive to noise.  

- Performance degrades with 

multipath. 

EW-MMSE The  full spatial 

correlation matrix is not 

required. 

- Provides improved 

performance compared to the 

LS estimator. 

- Robust to noise and 

interference. 

-There is a gap in the MMSE 

estimator where the error 

caused by pilot 

contamination has a high 

value. 

MMSE Minimizes the mean 

square error between the 

estimated and actual 

channels. 

- Better performance than LS 

for noisy channels. 

 - Manages multipath 

effectively. 

- Higher computational 

complexity compared to LS 

and EW-MMSE estimation.  

- Requires knowledge of noise 

statistics. 

 

3.1. MMSE estimator 

The MMSE estimator is an optimal estimator that aims to reduce the average squared 

difference of the estimated value by considering the covariance between the observed data and the 

parameter to be estimated. The vector ĥ represents the optimal estimate of h obtained using MMSE 

to reduce the error ϵ, where ϵ = E ǁ( hp − ĥp,MMSE)ǁ², which estimates the current CSI h by making a 

comparison between a known pilot signal and the received UL signal y in (6). The Rayleigh-fading 

MIMO channel is the type of channel considered in this paper. The MMSE estimator is utilized to 

estimate the channel, where ĥP¸MMSE = A ∗𝑦𝑝.  

A = 𝑅ℎ𝑝  (𝑅ℎ𝑝  + 𝑠𝑝
−1𝑅𝑧𝑝  𝑠𝑝

−𝐻) −1 𝑠𝑝
−1                              (7) 

Given that 𝑅ℎ𝑝 =  E { ℎ𝑝ℎ𝑝
𝐻}  and 𝑅𝑧𝑝 =  E { 𝑧𝑝𝑧𝑝

𝐻}  are the channel and noise auto-

correlation matrices, respectively. 
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A = 𝑅ℎ𝑝 (𝑅ℎ𝑝   +
𝐼

𝛽
)−1 𝑠𝑝

−1, where   =
No *k  

 Ep
          (8) 

and Rₕₚ is the covariance matrix of h 

ĥp,MMSE = 𝑅ℎ𝑝  (𝑅ℎ𝑝   +
𝐼

𝛽
)

−1
 𝑠𝑝

−1 ∗ 𝑦𝑝                             (9) 

3.2. EW-MMSE estimator 

This method is based on estimating each element of h individually. The EW-MMSE 

estimator does not require the full spatial correlation matrix. Instead, it considers several SNR 

values specified by βu. The EW-MMSE estimator of h is the vector ĥ that minimizes ϵ, where 

 ϵ = E ǁ (hp − ĥp, EW-MMSE) ǁ² and ĥp, EW-MMSE= AEW ∗ 𝑦𝑝  

AEW[u] = (𝑅ℎ𝑝 (𝑅ℎ𝑝  +
𝐼

𝛽𝑢
)

−1
 (𝑠𝑝

−1))                                 (10) 

where βu = 
No *k  

 Ep
and Rhp is the covariance matrix of h  

ĥp, EW-MMSE = 𝑅ℎ𝑝(𝑅ℎ𝑝  +
𝐼

𝛽𝑢
)−1 (𝑠𝑝

−1) ∗𝑦𝑝                         (11) 

3.3. LS estimator  

The LS aims to minimize the mean square error of the estimated value by assuming that the 

observed data is independent and identically distributed. This makes the LS estimator simple to 

calculate, but it can be less accurate than the MMSE or EW-MMSE estimators when the observed 

data is correlated or time-varying. In the absence of complete statistical knowledge, the LS 

estimator provides a practical approach for obtaining estimates. The LS estimate of h is given by 

ϵ𝐿𝑆= E ǁ (ℎ𝑃 − ĥ𝑝,𝐿𝑆) ǁ², where 

                                             ĥ𝑝,𝐿𝑆= 𝑦𝑝  /𝑠𝑝                                                                                                                       (12) 

 

4. THE DEVOLPED APPROACH  

DNN is a promising approach for channel estimation in wireless communication systems, 

offering several advantages over other deep learning models, including flexibility, accuracy, 

efficiency, and adaptability. 

 

4.1. DNN overview 

A DNN is a deep learning model that uses multiple layers of interconnected neurons to 

process information [9]. DNNs have attained notable achievements across various fields, including 

wireless communication [10] and many other domains. In a DNN, neurons are organized into 

layers. The initial layer receives the raw data for processing. The subsequent layers, referred to as 

hidden layers, and the final layer, known as the output layer, generate the network's predictions or 

outputs. Each layer is interconnected with the next layer. 

The fundamental building block of a DNN is the artificial neuron. Each neuron takes in 

multiple inputs, performs a weighted sum of these inputs, applies an activation function, and 

produces an output. By introducing non-linearity, the activation function equips the network to 

model complex patterns in the data. 

Training a DNN involves a process called back-propagation [11], which combines forward 

propagation (passing data through the network) and gradient-based optimization. During training, 

the network adjusts the weights associated with each connection based on the error between its 
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predictions and the true labels. This iterative process updates the weights, gradually minimizing 

the error and improving the network’s performance. 

Let I stand for the number of hidden layers in a DNN, with Qᵢ nodes for each layer, where 

1 ≤ i ≤ I and 1 ≤ q ≤ Qᵢ. Each node output is denoted as y(i-1) ∈ ℝ Qi−1 𝖷 1, multiplying it by a 

weight vector ω(i, q) ∈ ℝ Qi−1 𝖷 1  and adding a bias b(i, q), The resulting value is then passed 

through an activation function f(i, q), generating the outcome 

y (i, q) = f (i, q) ∗ (b (i, q) + ω (i, q) ᵀ ∗ y (i −1))                (13) 

The aggregate output of the neurons in layer I is formulated as 

y (i) = f (i) ∗ (b (i) + W (i) ∗ y (i −1))                                (14) 

where W(i) ∈ ℝQi 𝖷 Qi−1 , b(i) ∈ ℝ Qi−1 𝖷 1and f(i) stand for the connection weight matrix between 

layer (i − 1) and layer i, the intercept vector, and the activation function, respectively. 

The training process for DNN involves adjusting weights and biases. After selecting a 

network architecture and initializing the weights, the network's output is calculated using forward 

propagation to obtain y(I). The error between the predicted output and the actual output is then 

determined using an appropriate loss function, Ψw,b. The gradient descent optimization method 

with backpropagation is used to reduce the error. 

The objective is to minimize the variation between the actual output and the predicted 

output of the DNN. To reduce the cost function Ψw,b the backward propagation technique is used, 

employing various optimizers. These optimizers iteratively update the values of W and b during 

training. Various optimizers can be utilized, such as stochastic gradient descent [12] and Adaptive 

Moment Estimation (ADAM). The updating rule for adjusting the values of W and b is as follows: 

ω (i, q)NEW= ω (i, q) - ρ
∂ Ψw,b

∂ ω(i ,q)
                                     (15) 

where ρ stands for the learning rate.  

 

4.2. Proposed DNN LS and EW-MMSE channel estimation methods 

Leveraging deep learning algorithms recommends elevating the effectiveness of LS and 

EW-MMSE channel estimation. A deep neural network is employed to learn the relationship 

between the received signal and the estimated channel. The trained neural network can then be used 

to estimate the channel in real-time, even in low SNR regions. 

LS and EW-MMSE channel estimation via deep learning combines the principles of LS and 

EW-MMSE estimations with deep learning algorithms to estimate channel parameters in 

communication systems. 

The suggested approach leverages a DNN in conjunction with LS and EW-MMSE to accurately 

estimate the channel impulse response (ℎ𝑝) from the received preamble. This approach strikes a 

remarkable balance between performance improvement and computational complexity reduction. 

The proposed DNN aims to enhance the performance of the LS and EW-MMSE channel 

estimations by optimizing the cost function Ψw,b. The inputs of the DNN are the LS estimated 

channel ĥ𝑝,𝐿𝑆 and the EW-MMSE estimated channelĥ𝑝,𝐸𝑊−𝑀𝑀𝑆𝐸, respectively. Firstly, the received 

preamble is processed using the LS and EW-MMSE channel estimation methods, respectively. 

Subsequently, both LS and EW-MMSE channel estimates are decomposed into their real and 

imaginary components, resulting in a total DNN input of 2|𝐾𝑜𝑛|.  
Once the training process is complete, the DNN's output layer generates the refined LS 

channel estimate and the corrected EW-MMSE channel estimate, scaled to ensure a zero mean and 

unit variance. The DNN training employs the MSE loss function with the ADAM optimizer [13]. 
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The ReLU activation function is applied throughout the DNN architecture. No activation function  

is applied in the output layer of the DNN to allow the output values to remain unrestricted. Two 

fundamental designs of the DNN  are proposed, each with a distinct number of hidden layers and 

nodes per layer, as detailed in Table 2. It is evident from the results that our procedure can 

significantly enhance the performance of least square and EW-MMSE channel estimation. 

 

5. SIMULATION RESULTS 

5.1. Proposed approach performance 

Herein, the impact of the proposed deep learning approach is assessed by estimating the 

channel  using Normalized Mean-Squared Error (NMSE) and comparing it with the traditional 

methods. Each obtained result is also explained. The parameters required to configure the system 

are listed in Table 2, and the DNN model parameters are listed in Table 3. 

 

Table 2. OFDM system design variables 

Parameters Values 

Size of FFT 64 

Length of CP 16 

Number of subcarriers 64 

Number of active subcarriers 52 

 

Table 3. Parameters for DNN network 

Parameters Values 

Hidden layers number (DNN1) 1 

Hidden layers number (DNN2) 3 

Neurons-number of each layer (DNN1), 52 

Neurons-number of each layer (DNN2) 52 

Activation function RELU 

Type of optimizer ADAM 

Cost function MSE 

Number of epochs 500 

Batch size 32 

 

The RTV Power Delay Profile fading channel model is used [14]. Among the sixty-four 

subcarriers of an OFDM symbol, only fifty-two are active. The proposed approach is compared to 

the LS and exact MMSE procedures concerning their performance. 

 

Figs. 2 and 3 display the NMSE performance of the different channel estimation methods 

considered in various scenarios. LS produces the least satisfactory results compared to the other 

methods. LMMSE estimation performs better than LS in terms of MSE. Our deep learning 
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approach achieves the lowest MSE, and even at SNRs greater than 15 dB, it continues to perform 

well.  

The performance of our deep learning method is dependent on the SNR used during 

training. Employing the highest expected SNR during training yields optimal performance. 

However, training at an extremely high SNR still provides reliable performance. The figures 

demonstrate that the CP significantly reduces the NMSE values. The CP allows for easy separation 

of the OFDM symbol from its delayed copies, simplifying the channel estimation process and 

leading to better equalization and demodulation, resulting in lower MSE. 

 

 
 

Fig. 2. NMSE versus SNR with DNN trained at 

SNR = 30dB. 

 

 
 

Fig. 3. NMSE versus SNR with DNN trained at 

SNR = 20dB. 

 

 

 
Fig. 4. NMSE versus SNR for  

different DNNs.  

 
Fig. 5. NMSE versus SNR. 

 

Fig. 4 shows that while DNN2 has more hidden layers than DNN1, DNN1 achieves better 

accuracy. This suggests that DNN complexity does not guarantee accuracy. 
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Fig. 5 displays straightforward evidence of the impact of our introduced method. It shows 

that the DNN-EW-MMSE gives the best performance compared with the traditional methods, 

especially at low SNR.  

 

5.2. Computational Complexity 

The number of multiplications is a crucial metric for selecting efficient DNN architectures 

and training algorithms. Computing all neuron activations in each layer is necessary. When 

transitioning from the i layer to the (i-1) layer, 𝑀𝑖−1𝑀𝑖 multiplications are needed [15], [16]. The 

additional operations in a DNN are straightforward. Thus, the overall count of multiplications 

within a DNN formulated as 

                           𝑀𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑀𝑖−1𝑀𝑖
𝐼
𝑖=1                                          (16) 

The overall count of multiplications of the proposed DNN approaches is 4|𝐾𝑜𝑛|² . For 

DNN1 and  6|𝐾𝑜𝑛|² for DNN2. The computational complexity of an accurate LMMSE channel 

estimation scheme is of order |𝐾𝑜𝑛|³. 

Based on the information provided above, the complexity of the proposed system is lower 

than that of MMSE.  

 

Conclusions 

Our proposed approach involves the implementation of DNN for channel estimation, 

utilizing the estimation of SNR at the receiver. The concept of DNN is introduced, and a deep 

learning-based channel estimation method is presented. It is evident from the results that the 

proposed method accomplishes superior achievement than exact MMSE channel estimation with 

lower computational complexity. The adaptability of the DNN model to diverse channel 

environments positions it as a valuable tool for next-generation communication systems that 

demand flexibility and efficiency. One can consider the optimization of DNN architectures, 

investigate transfer learning techniques for different communication scenarios, and consider the 

integration of real-world data for further validation. As we move towards the era of intelligent and 

adaptive communication systems, the integration of DNNs holds great promise for enhancing the 

reliability and efficiency of channel estimation in diverse and challenging environments. 
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