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 ABSTRACT  

 
This research provides a detailed examination of how deep learning 

significantly improves radar accuracy. By integrating advanced 

simulations with real-world tests, the study demonstrates how deep 

learning enhances the removal of sea clutter, substantially improving 

target detection in Constant False Alarm Rate (CFAR) algorithms. The 

results clearly show that deep learning is not just advantageous but 

critical for advancing radar performance, ensuring a new level of 

precision and reliability in maritime identification and tracking. The 

paper highlights deep learning as an essential tool for dealing with the 

complexities of sea clutter in radar systems. It goes beyond simple 

improvements, redefining accuracy in target detection and affirming the 

strength and reliability of radar operations in the chaotic maritime 

environment. The comprehensive methodology and solid empirical 

evidence presented emphasize the revolutionary impact of deep 

learning, marking the beginning of a new chapter in radar technology 

characterized by unmatched precision, adaptability, and reliability. 
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 الملخص

التعلم العميق بشكل كبير لدقة أنظمة الرادار. من خلال دمج المحاكاة المتقدمة مع   يقدم هذا البحث تحليلاً شاملاً لكيفية تحسين 

الاختبارات العملية، يظُهر البحث كيف يسُهم التعلم العميق في تقليل تشويش البحر بفعالية، مما يعزز من كفاءة كشف الأهداف في  

مؤكدةً  (. النتائج تبُرز بوضوح فائدة التعلم العميق في تطوير أداء الرادار،  CFARنذار الخاطئ الثابت )خوارزميات معدل الإ

تحقيق مستوى جديد من الدقة والموثوقية في التعرف والتتبع البحري. تسُلط الورقة الضوء على التعلم العميق كأداة رئيسية لمواجهة  

تعقيدات فوضى البحر في أنظمة الرادار. يفوق التحسين المعتاد، إذ يعُيد تعريف معايير الدقة في كشف الأهداف ويؤكد على قوة  

يات الرادار في البيئة البحرية الفوضوية. المنهجية المنظمة والأدلة العملية القوية التي نقدمها تبُرز الأثر الكبير للتعلم وموثوقية عمل

 . العميق، ممهدةً الطريق لعهد جديد في تكنولوجيا الرادار يتسم بدقة فائقة، قدرة على التكيف، وموثوقية عالي

 خوارزمية التجميع.  ،الخلية قيد الاختبار ،معدل إنذار خاطئ ثابت ،شبكة عصبية تلافيفيةالكلمات المفتاحية : 

1. INTRODUCTION 

 Marine environment monitoring is essential for understanding marine ecosystems, 

ensuring their protection, and maintaining marine security. In modern times, a wide range of sensor 

technologies such as radar, infrared, and optical sensors, create a comprehensive system for ocean 

surface surveillance. Among these, marine surveillance radar is a standout as a microwave sensor 

system, capable of providing consistent, all-weather observation of the sea surface. This technology 

is crucial for dynamic monitoring of the sea and detecting various targets, making it extremely 

valuable for both civilian and military marine monitoring purposes. 

In the realm of marine surveillance radar systems, the presence of sea clutter poses a 

significant obstacle to accurately detecting sea surface targets [1], [2]. This clutter, a backscattered 

echo generated by the sea surface, complexly interacts with radar waves, influenced by both 

environmental factors and radar operational parameters [3] [4]. It particularly impairs the detection 

of small radar cross-section (RCS) targets, such as fishing boats and dinghies, by drastically 

reducing the signal-to-clutter ratio (SCR) [5]. This reduction manifests in two primary challenges: 

a lowered SCR leading to missed detections of small RCS targets, and in scenarios of high sea 

states, intense clutter echo amplitudes obscure target recognition, increasing the likelihood of false 

alarms. Addressing these issues is paramount for enhancing the efficacy of marine surveillance 

radars [6]. 

      In the field of marine surveillance radar technology, significant advancements have 

been made in addressing the challenge of sea clutter, which has been a longstanding obstacle in 

maritime detection. This evolution is marked by the development and implementation of 

sophisticated techniques aimed at enhancing sea clutter suppression, effectively improving radar 

performance in marine environments [7]. 

      These advancements can be broadly classified into two categories: traditional methods 

and those employing machine learning techniques. Traditional sea clutter suppression methods are 

grounded in classical signal processing. These involve analyzing radar echoes across various 

domains such as spatial and frequency [8], [9]. In the spatial domain, the emphasis is on using 

statistical models to characterize and mitigate sea clutter [10, 11]. Frequency domain techniques, 

on the other hand, focus on separating target signals from clutter by extracting and analyzing 

Doppler information, primarily through Fourier transforms and Doppler filtering. Methods like the 

moving target indicator and moving target detection are exemplary of this approach [12,13]. These 

advancements in sea clutter suppression have greatly enhanced the efficacy of marine surveillance 

radars. By refining detection capabilities, they enable more accurate and reliable monitoring in 
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maritime environments, thus playing a crucial role in various naval and civilian maritime 

applications [14]. 

     To enhance sea clutter suppression in radar systems, various approaches have been 

explored. Traditional methods based on pre-modeling often struggle with the dynamic nature of 

sea clutter [24]. Recent studies focus on fractal features and time-frequency analysis, but these too 

face challenges due to the variability in sea conditions and radar settings. This highlights the need 

for adaptive and innovative solutions in this field [15, 16]. 

       The relentless advancement of artificial intelligence, notably in machine learning, has 

revolutionized numerous fields, including radar signal processing. Sea clutter, an omnipresent 

challenge in maritime radar systems, significantly hampers the detection of real targets [17, 18]. 

Traditional methods, while effective to a degree, have struggled to cope with the dynamic and 

complex nature of sea clutter. Recognizing this, recent research has pivoted towards leveraging 

machine learning algorithms for enhanced clutter suppression [19, 20]. 

       Early attempts in this direction, as exemplified in [23], employed algorithms like k-

nearest neighbors and support vector machines to demarcate the boundary between sea clutter and 

actual targets, marking a significant step in clutter suppression. However, these initial models, in 

their simplicity, encountered limitations, particularly in handling the intricacies of radar data which 

necessitates detailed analysis and preprocessing [21, 22]. 

       Addressing these shortcomings, more sophisticated machine learning models have 

been introduced, as noted in [24]. Notable among these are the deep learning-based approaches, 

including the clutter suppression networks utilizing deep convolution autoencoders [33, 34] and 

methods employing deep convolutional neural networks [35]. These advanced techniques have 

demonstrated promising results, chiefly due to their ability to intricately model and mitigate the 

complexities of sea clutter. 

Current progress in learning-based techniques for mitigating sea clutter in marine radar 

systems is noteworthy, showcasing significant effectiveness and potential. However, this field faces 

two substantial hurdles. Firstly, the dynamic and complex nature of marine environments demands 

a suppression method that can deeply understand and adapt to the intricate features of sea clutter. 

Secondly, and of equal importance, is the necessity to differentiate between crucial target echoes 

and sea clutter within radar signals. Given that these target signals are often sparse in comparison 

to the surrounding clutter, it’s crucial to develop strategies that not only efficiently suppress sea 

clutter but also preserve essential target information. Overcoming these challenges is crucial for 

improving the accuracy and dependability of target detection in maritime surveillance systems. 

        In recent years, the development of advanced machine learning techniques has 

significantly revolutionized the field of image processing, particularly in the realms of denoising 

and clutter reduction. Here, we provide a comprehensive overview of three pioneering approaches 

that address unique challenges in this area. 

      A Fast and Flexible Denoising Network (FFDNet), a convolutional neural network 

designed for image denoising, epitomizes flexibility and efficiency. This model is uniquely crafted 

to handle different noise levels using a single model, facilitated by an adjustable noise level map 

as input. This feature allows for effective management of both uniform and non-uniform noise. The 

network architecture also incorporates a downsampling strategy to enhance training and inference 

speed while maintaining high-quality denoising performance. Comparative tests have established 
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that FFDNet outperforms existing state-of-the-art methods, affirming its status as an ideal practical 

solution for image denoising applications [37]. 

     Further contributing to advancements in this field, researchers have developed a deep 

neural network model employing a residual learning strategy to effectively separate noise from 

noisy observations. This model integrates batch normalization with residual learning, accelerating 

the training process and enhancing denoising performance. Unlike traditional discriminative 

models, this advanced model is capable of blind denoising and effectively handling unknown noise 

levels. Additionally, it demonstrates the potential to efficiently train a single model to address three 

general denoising tasks, showcasing its versatility and broad applicability [38]. 

    Additionally, a new model based on Generative Adversarial Networks (GANs), 

specifically designed for reducing sea clutter in radar Plan Position Indicator (PPI) images, termed 

SCS-GAN, has been introduced. This model employs residual attention networks and a dedicated 

sea clutter discriminator, enhancing its clutter suppression capability while fully preserving marine 

targets within the images. It offers superior performance in complex maritime environments 

compared to previous methods, highlighting its effectiveness and innovative approach to clutter 

reduction [36]. 

     Building upon foundational models, our research introduces a unique methodology that 

integrates Convolutional Neural Networks (CNNs) with CFAR techniques to enhance detection 

capabilities in maritime radar images. This approach synergistically combines CNNs and CFAR, 

unlike traditional methods which apply them separately, to achieve robust denoising and clutter 

suppression. Our study details the development of a CNN designed to filter out clutter from 

maritime radar PPI images, employing advanced deep learning techniques alongside various CFAR 

algorithms to demonstrate the impact of noise reduction on target detection accuracy in maritime 

surveillance systems. 

     In this paper, we begin by introducing Convolutional Neural Networks and their 

application in detection using CFAR. Following this, we delve into Data Analysis and Simulation 

Results, and finally, we conclude with key findings from the study and propose directions for future 

research. 

 

2.1 Convolutional Neural Network (CNN) 

      Convolutional Neural Networks, designed for image processing and classification, 

consist of an architecture featuring convolutional, pooling, and output layers. The convolutional 

layers use filters to identify features in images, and the pooling layers reduce feature map sizes to 

manage computational load and avoid overfitting [31], [29]. This process culminates in the output 

layer, usually comprising fully connected layers, which classify the image based on these features. 

The structure of CNNs, including the number of layers and filters, along with key parameters such 

as weights and biases, is carefully determined to optimize performance as shown in the figure. 

 

2.1.1 The training of a CNN 

      The training of a CNN begins with the careful selection of a diverse array of training 

and validation samples. This foundational step is crucial for the network to effectively learn from 

a wide range of data. The CNNs architecture is then initialized, including the setup of various layers, 
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filters, and vital parameters such as weights, biases, and the learning rate. This setup is critical for 

determining how the network will process and interpret the input data [32]. 

   During training, the CNNs undergoes two main stages: feedforward and backpropagation. 

In the feedforward phase, the network processes the input image through its layers, extracting and 

identifying features via convolutional and pooling operations. This leads to the generation of 

preliminary classification results [28]. The backpropagation stage is essential for refining the 

network’s accuracy. Here, the CNN adjusts its parameters based on the error rate, learning from its 

performance and iteratively improving. This cycle of feedforward processing and error correction 

through backpropagation continues until the network’s parameters are finely tuned. This rigorous 

training process is pivotal in ensuring CNN’s effectiveness in complex tasks like image recognition 

or removing clutter [30, 27]. 
 

2.2 CFAR Detection 

  CFAR detection in radar signal processing is a sophisticated technique designed to 

distinguish targets from background noise. It involves setting a dynamic threshold for target 

detection to maintain a constant rate of false alarms, regardless of the varying levels of background 

noise [25]. This effectiveness is heightened when there’s a significant contrast between the target 

signal and the background. The fundamental equations for CFAR include: 

*False Alarm Rate (Pf): The false alarm probability is given by: 

𝑃𝑓 = 𝑟 ∫ 𝑃𝐵(𝑥)𝑑𝑥     

𝑇

0

                                                                                     (1) 

where r is a constant, T is the threshold, and 𝑃𝐵(𝑥) is the probability distribution function of 

the background noise. 

*Detection Rate (Pd): This represents the probability of detecting the target, calculated  

𝑃𝑑 = ∫ 𝑃𝑇(𝑥)𝑑𝑥     

𝑇

0

                                                                                      (2) 

where 𝑃𝑇(𝑥) is the target signal’s probability distribution function. 

*Threshold Determination: The threshold T is set such that: 

1 − 𝑃𝑓 = ∫ 𝑃𝐵(𝑥)𝑑𝑥     

𝑇

0

                                                                                     (3) 

      In practical applications, a sliding window technique is used. This method involves 

moving a window across the image and applying a local threshold at each position. The local 

threshold for each window position is adjusted based on the statistical properties of the area 

within the window, ensuring the false alarm rate remains constant across different parts of the 

image [26]. 
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CFAR algorithms are integral in these processes, with several variants each suited to 

different radar environments: 

*CA-CFAR: This agorithm uses the mean of all available Reference Cells (RCs) for 

clutter estimation. Its simplicity, however, makes it less effective in nonhomogeneous 

interference environments. The key formula for the calculation of the threshold multiplier K is: 

𝐾 = 𝑁 (𝑃𝐹𝐴−
1
𝑁 − 1)                                                                                   (4) 

Here, N is the number of RCs and PFA is the desired probability of false alarm. 

*SOCA-CFAR: Suitable for target masking scenarios, it uses the smaller mean of the 

lagging and leading RCs. The formula for K in SOCA-CFAR is: 

  

𝑃𝐹𝐴 = 2 ∑ (

𝑁
2 − 1 + 𝑘

𝑘
)

𝑁
2

−1

𝑘=0

(2 +
𝐾

𝑁
2

  )

−
𝑁
2

                                                                           (5) 

 

This formula is designed to adaptively select the best threshold considering the target 

masking effect. 

*GOCA-CFAR: Effective in clutter edge transition scenarios, GOCA-CFAR estimates 

clutter using the greater mean of the lagging and leading RCs. The formula for K is: 

𝑃𝐹𝐴 = 2 (2 +
𝐾

𝑁
2

  ) − 2 ∑ (

𝑁
2 − 1 + 𝑘

𝑘
)

𝑁
2

−1

𝑘=0

(2 +
𝐾

𝑁
2

  )

−
𝑁
2

                                                  (6) 

This equation accounts for the abrupt changes in clutter at the edges. 

*OS-CFAR: This variant improves upon CA-CFAR by using a specific rank of RCs for 

clutter estimation. The formula for the calculation of K in OS-CFAR is: 

𝑃𝐹𝐴 = 𝑘 (
𝑁

𝑘
) − 𝐵(𝐾 + 𝑁 − 𝑘 + 1, 𝑘)                                                              (7) 

Here,k is the rank, and B  denotes the beta function. This approach enhances the 

performance in various clutter scenarios, as shown in Fig.1. 

Each of these CFAR variants employs its methodology for clutter estimation (PClutter) and 

threshold calcula- tion, balancing detection accuracy with computational efficiency. The algorithms 

dynamically adjust detection thresholds based on varying environmental conditions, involving the 

Cell-Under-Test (CUT), Reference Cells (RCs), and Guard Cells (GCs) in their processes. The 

CUT is the point of focus for testing, RCs assist in estimating interference, and GCs protect the 

CUT from direct interference [25]. 
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Fig.1: Block diagram of the OS-CFAR implementation 
 

3-Data Analysis and Simulation Results 

     The dataset comprises 84 pairs of synthetic radar images. Each pair consists of an input 

image displaying sea clutter along with extended target echoes, and a corresponding target response 

image that exclusively highlights these target echoes. The images were crafted using radarScenario 

simulations, incorporating a radarTransceiver and a rotating uniform linear array (ULA), known as 

software-defined radar. Within each image, two different extended targets are depicted: a small 

container ship and a larger one. These targets are visualized using point scatterers strategically 

placed on the surfaces of cuboidal models to ensure they are distinguishable without any 

overlapping. This dataset is meticulously curated for advanced radar image analysis and 

interpretation, offering a rich resource for understanding complex radar imagery. 

     We have implemented a CNN specifically designed for image denoising. The network 

architecture begins with an ̀ imageInputLayer` tailored to accommodate the spatial size of the input 

images (626x626 pixels), allowing for direct input of images without the need for reformatting. 

This is followed by a series of convolutional layers, batch normalization layers, and non-linear 

activation layers designed to effectively capture and process the image features necessary for 

denoising tasks. 

   The network configuration includes: 

   - An initial convolutional layer with a 5x5 spatial filter, set to maintain the spatial 

dimensions using 'same' padding and designed to handle one input channel and produce one output 

channel. 

   - Batch normalization layers follow each convolutional layer to ensure numerical stability 

and enhance training speed by normalizing the activations of the previous layer. 

   - Non-linear activation is achieved through Leaky ReLU layers with a scaling factor of 

0.2, allowing small negative values to pass, which helps maintain gradient flow during training. 

Additionally, subsequent layers include larger 6x6 convolutional filters, increasing to four channels, 

designed to deepen the feature extraction process without altering spatial dimensions due to the 

'same' padding. 

   - The final output from the convolutional stack is passed through another 5x5 

convolutional layer which matches the number of output channels to the desired response, followed 

by batch normalization and another Leaky ReLU activation. 
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   The output layer of the network is a `regressionLayer`, which evaluates performance 

using a mean-squared-error (MSE) loss function. This choice is crucial for denoising applications 

as it directly minimizes the pixel-wise differences between the denoised output and the clean 

ground truth images. 

    Our training strategy employs the adaptive moment estimation (Adam) solver, known for 

its efficiency in handling sparse gradients and its adaptive learning rate capabilities. We trained the 

network for a maximum of 80 epochs with a mini-batch size of 20, which balances speed and 

memory usage effectively. The initial learning rate was set to 0.1, and the model was trained using 

shuffling of data at every epoch to prevent model bias towards order-dependent features. 

     Table 1 displays the constant transmission and reception specifications for a maritime 

radar system, including frequency, antenna details, pulse information, and range coverage. While 

Table 2 in the document lists the technical specifications of a radar system, including the frequency, 

pulse length, and the dimensions of the targets it is designed to detect. Table 3 outlines randomized 

parameters likely used for testing the radar’s capabilities, such as varying wind speeds and target 

movements. These tables are essential for understanding the radar’s performance characteristics in 

different scenarios. 
 

Table 1: Transmission and Reception Characteristics of the Maritime Radar System 

Characteristic Value 
Radar System Frequency (X-band) 10.0 GHz 
Antenna Polarization H and H 
Antenna Rotation Speed 6.4 rpm 
Pulse Repetition Frequency (PRF) 1000 Hz 
Radar Pulse Width 80 ns 
Azimuthal Range (Coverage) 0Ű360◦ 
Azimuthal Resolution 0.28◦ 

Distance Range (Coverage) 
Standard Configuration: 200Ű2150 m 
Fast Acquisition: 150Ű1350 m 

Range Resolution 7.5 m 

 

Table 2: Radar and Target Parameters 

 Parameter Value 
Radar System Parameters 
Frequency 10 GHz 
Pulse Length 80 ns 
Range Resolution 7.5 m 
PRF 1 kHz 
Azimuth Beamwidth 0.28 deg 
Radar Platform Parameters 
Height 55 m 
Rotation Rate 50 RPM 
Target Parameters 
Small Target Dimensions 
(LxWxH) 

120 x 18 x 22 
m 

Large Target Dimensions 
(LxWxH) 

200 x 32 x 58 
m 
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Table 3: Randomized Parameters 

Parameter Type Values 
Surface Parameters - 
Wind Speed 7 to 17 m/s 
Wind Direction 0 to 180 deg 
Target Parameters - 
Target Position Anywhere on the 

surface 
Target Heading 0 to 360 deg 
Target Speed 4 to 19 m/s 
Small Target RCS 8 to 16 m2 
Large Target RCS 14 to 26 m2 

 

    Fig.2 displays the original image before clutter removal and the image after noise 

removal. Through these techniques, targets appear much clearer, regardless of the specific detection 

method applied, whether OS-CFAR or CA-CFAR. This processing is crucial for enhancing radar 

signal interpretation and ensuring precise target identification, proving that clutter removal using 

neural networks is an essential asset in radar technology. 

 

Fig.2: Original Image Before and After Clutter Removal Using CA-CFAR and OS-CFAR 

       

This approach ensures that once the neural network is trained with this dataset, it will be 

effectively adaptable for the removal of marine clutter. We will conduct tests in scenarios to 

evaluate detection performance based on the quantity of images used for training. The first scenario 

involves dividing the dataset into different segments for varied purposes: images 1 to 70 are 

designated for the training phase, images 71 to 80 are reserved for validation, and the final four 

images in the set are allocated for the critical task of assessing the network’s performance. This is 

depicted in Fig.3. Meanwhile, in the second scenario, the dataset is divided differently: images 1 

to 60 are for training, images 61 to 70 for validation, and the last 14 images are set aside for the 

crucial evaluation of network performance, as shown in Fig.4. 
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      Fig.3 illustrates the profound impact of clutter removal on radar image clarity and 

accuracy. Initially, blue data points depict the detection probability before clutter removal, 

revealing a near-zero likelihood due to overwhelming noise. In stark contrast, the red data points, 

representing the post-clutter removal state using the OS-CFAR algorithm, show a significant 

upward trend. As the SNR improves, the detection probability markedly increases, underscoring 

the effectiveness of noise mitigation. This clear trend demonstrates that with each increment in 

SNR, the probability of accurately detecting targets escalates, highlighting the critical role of 

advanced clutter removal in enhancing the performance and reliability of radar systems. 

   Moving on to Fig.4, it similarly demonstrates the positive impact of clutter removal on 

network performance evaluation. However, Fig.4 is more comprehensive, presenting 14 different 

images related to the evaluation of network performance. These images provide a powerful visual 

representation of the improvement achieved through clutter removal techniques. 

 

Fig.3: Detection Probability vs. SNR with OS-CFAR, 4 Images Evaluation  
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.  

Fig.4: Detection Probability vs. SNR with OS-CFAR, 14 Images Evaluation. 

 

Conclusions 

     This research thoroughly investigated the effectiveness of deep learning in improving 

radar accuracy, specifically in reducing the impact of sea clutter on target detection within various 

CFAR methods. The study combined simulations and real-world experiments to assess how deep 

learning can enhance radar systems by removing sea clutter, focusing particularly on its effect on 

target detection. 

    The findings from both simulations and empirical tests revealed a significant 

improvement in target detection across all CFAR methods after the application of deep learning for 

sea clutter removal. This substantial increase in detection rates after clutter removal, compared to 

the rates before removal, highlights the pivotal role of neural networks, especially CNN, in 

advancing radar signal processing. The study not only confirms the practical use of neural networks 

in real-world situations but also sets the stage for their expanded application in radar image 

analysis. Moving forward, the research aims to apply this approach to a broader range of radar 

image datasets and to investigate the capabilities of various neural network models, thereby 

contributing to the growing field of radar image processing and the improvement of maritime 

surveillance systems. 
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