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 ABSTRACT  

 
To achieve greenhouse gas neutrality, the electric utilities need to integrate large amounts of 

intermittent renewable energy sources (RES). This integration results in high demand for energy 

exchange from the liberalized market according to the surpluses production or storage options. 

Classical generation planning assumes that the input data are deterministic, which leads to an 

increase in the risk potential due to the fluctuation range of this data. At the present stage, most 

of Generation planning techniques considering the uncertainties of input variables focus on 

Monte Carlo (MC) simulation and artificial neural networks (ANNs). However, MC and ANNs 

require comprehensive computation facilities and a big data base and also need problem-

dependent modification or even integration with other techniques. These limitations make it 

challenging to achieve the economic operation of large-scale systems with future and spot 

market energy. Therefore, this paper presents integrated planning algorithm based on stochastic 

consideration of the uncertain input data such as the predicted consumer load, the solar 

radiation, wind speed, the electricity prices on the exchanges in liberalized markets depending 

mainly on scenario analysis.  Thereby, the optimization problem is decomposed into multi-stage 

decision-making process based on depicting the uncertainties in scenarios, each of which is 

weighted with its probability of occurrence. In this scenario analysis, the objective function 

consists of minimizing the annual cost over the entire scenario tree.  Due to the high demands 

on computing time and storage space in practical systems, decomposition approach based on 

Lagrange relaxation is used in this paper for solving the stochastic optimization problem. 

Finally, the simulation results show that the proposed stochastic optimization significantly 

enhances generation under high degree of uncertainties in input data.   
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 التحسين العشوائي لتوليد الكهرباء مع الأخذ في الاعتبار عدم اليقين في بيانات الإدخال
 

   *محمد أحمد حسن السيد

 .  قسم القوى الكهربائية، كلية الهندسة، جامعة القاهرة

 elsmah@eng.cu.edu.eg  elsmah@hotmail.com :  الاليكتروني *البريد  

 الملخص 

الكهربائية إلى دمج كميات كبيرة من مصادر الطاقة المتجددة. ويؤدي هذا التكامل    لأنظمةلتحقيق حياد الغازات الدفيئة، تحتاج ا

إلى ارتفاع الطلب على تبادل الطاقة من السوق المحررة وفقا للفوائض المتاحة. وبالتالي، ينبغي تنفيذ القرارات المستقبلية للحصول 

تخطيط التوليد الكلاسيكي أن البيانات   في هرباء. ويفترض حالياعلى التوليد المثالى من أجل الإمداد الاقتصادي للطلب على الك

معظم تقنيات التخطيط التي تأخذ  المدخلة معروفة بالضبط، مما يؤدي إلى زيادة احتمالية المخاطر بسبب نطاق تقلب هذه البيانات.  
ومع   .لو والشبكات العصبية الاصطناعيةعلى محاكاة مونت كار زفي الاعتبار أوجه عدم اليقين في متغيرات المدخلات ترك

تتطلب مرافق حسابية شاملة وقاعدة بيانات كبيرة وتحتاج أيضًا إلى التعديل المعتمد على المشكلة  أو حتى التكامل   فهي ذلك،  
لذلك،  . مع التقنيات الأخرى. وتجعل هذه القيود من الصعب تحقيق التشغيل الاقتصادي لوحدات التوليد والطاقة في السوق الفورية
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المستهلك   المؤكدة مثل حمل  المدخلات غير  لبيانات  العشوائي  تعتمد على الاعتبار  البحث خوارزمية تخطيط متكاملة  يقدم هذا 

شوائية بشكل  عالمتوقع، والإشعاع الشمسي، وسرعة الرياح، وأسعار الكهرباء في الأسواق المحررة. وتعتمد هذه الخوارزمية ال 

والذي يعرف مشكلة التحسين بأنها عملية اتخاذ قرار متعددة المراحل تعتمد على تصوير أوجه   السيناريوهات،أساسي على تحليل  

في تحليل السيناريو هذا، تتكون وظيفة التطور المستقبلي في سيناريوهات، يتم وزن كل منها باحتمالية حدوثها.   عدم اليقين في  

هدف التحسين من تقليل التكلفة السنوية عبر شجرة السيناريو بأكملها. نظرًا للمتطلبات العالية لوقت الحوسبة ومساحة التخزين في 

العشوائي. وأخيرا،  الأنظمة العملية، تم استخدام أسلوب التحلل المعتمد على استرخاء لاغرانج في هذا البحث لحل مشكلة التحسين  

التحسين المحاكاة أن  نتائج  اليقين في   أظهرت  التوليد في ظل درجة عالية من عدم  المقترح يعزز بشكل كبير عملية  العشوائي 

 البيانات المدخلة. 
 

 الأنظمة الكبيرة تقسيم عدم اليقين في البيانات، أنظمة التوليد، التحسين العشوائي، شجرة السيناريو، الكلمات المفتاحية : 

  

1. INTRODUCTION 

To reduce greenhouse gas emission, the electric utilities need to integrate large amounts of 

intermittent renewable energy sources (RES). This integration results in high demand for energy 

trading with the liberalized market according to surpluses or production bottlenecks. Consequently, 

the future optimal decisions should integrate generation and trading planning for economic supply 

of the electric demand. The classical generation planning assumes that the input data are 

deterministic and exactly known, which leads to an increase in the risk potential due to the 

fluctuation range of this data [1]. Therefore, an integrated planning algorithm based on stochastic 

consideration of the uncertain input data such as the predicted consumer load, the solar radiation, 

wind speed, the electricity prices on the exchanges in liberalized markets has to be developed. 

Thereby, the flexibility of the developed algorithm should reflect the operational and technical 

ability of the generating system to respond to deviations in the input data from their predicted 

expected values [2]. 

In previous operational practice, the uncertain input data are simulated in generation 

planning via their expected values. Assuming that the effect of remaining uncertainties can be 

handled by maintaining minute reserves to react to unforeseen events. In developing countries, 

planning based on deterministic approach can no longer be applied unreservedly. On the one hand, 

these countries are currently experiencing an increase in consumer loads that is difficult to predict. 

On the other hand, the composition of the available power plant park is changing due to the 

increased use of regenerative generation systems such as wind energy converters, whose 

performance and energy contribution to the electrical energy supply is dependent on the availability 

of weather data and is therefore difficult to be accurately forecasted. 

MC simulation is a general-purpose, simple-to-implement method for uncertainty 

propagation. MC technique has been applied in domains outside the game such as planning, 

scheduling, and operation optimization under uncertainty [3]. However, in more complex or large-

scale systems an efficient application of this technique often requires comprehensive computation 

facilities. Moreover, by implementing Monte Carlo it can be difficult to properly assign probability 

distributions to uncertain input variables [3].    

At present, ANNs have been used for energy analysis. It was important to gather training 

and validation big datasets and comprehensive computing facilities for applying ANN in practical 

generation systems. Among those networks is backpropagation neural network (BPNN), using a 

backpropagation algorithm.  However, BPNNs are limited in their ability to solve specific small-

scale systems. Since a BPNN corrects network connection weights using the root mean square error 
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(RMSE) and gradient descent technique, unavoidable issues such as slipping into local minima, 

sluggish convergence speed, and overfitting may exist [4]. 

Since the development of the simplex algorithm by George Dantzig, linear programming 

(LP) has become a standard procedure for all kinds of optimization problems [5]. Numerous 

improvements of the original algorithm have been developed to enhance its performance and to 

incorporate additional requirements for the feasibility of solutions such as integer linear 

programming, Dantzig-Wolfe-Decomposition and Benders Decomposition, Lagrangian 

Relaxation. The last approach has received an enormous amount of attention recently due to its 

usefulness in many practical settings, such as stochastic optimization, and has found wide 

applications in the engineering problems.  

Economic generation is one of the most significant optimization operation problems that 

has attracted a high number of researchers [6]. The economic generation can be defined as finding 

the least power generation costs from conventional generating units or renewable power plants to 

satisfy the demand. At the same time, it satisfies the system constraints of the generation limits and 

system power reserve. *One approach for economic generation in practical large-scale systems are 

decomposition techniques, which aim to solve a large optimization problem by repeatedly solving 

smaller and simpler subproblems, while guaranteeing that the final solution is optimal for the 

original problem [7]. The subproblems can be solved efficiently by avoiding the original system 

inherent complexities and computational challenges.  

A suitable stochastic approach is proposed in this paper based on scenario analysis, which 

interprets the optimization problem as a multi-stage decision process [8]. The basic principle 

depends on depicting the uncertainties of future development in scenarios, each of which is 

weighted with its probability of occurrence. In this way, the original problem with its input data 

described by the distribution function, is broken down into many deterministic sub-problems, 

which span the scenario tree and in total have similar statistical properties to the original problem. 

This means the result of each single sub-problem is the optimization of certain section in this 

scenario tree. A key task is the appropriate coordination of the use of power plants at the branching 

points in the scenario tree. In scenario analysis, the optimization objective function consists of 

minimizing the the generation cost over the entire scenario tree. In the very near future, the input 

information is associated with low uncertainties due to high forecast accuracy and is therefore 

virtually unambiguous. As the planning horizon increases, the forecast uncertainties increase, so 

that the number of different scenario sections increase. 

Based on the above review analysis, this paper proposes a multi-stage decision-making 

process based on depicting the uncertainties in scenarios tree and applying decomposition approach 

coordinated by Lagrange relaxation for solving the stochastic optimization problem in practical 

system with the following inherent advantages: 

• The proposed algorithm facilitates the estimation of the economic generation cost under 

uncertain input variable. 

• The required computation time and storage space are acceptable for solving practical 

systems based on the suggested scenario tree and decomposition technique. 

• The dynamic process of the proposed Lagrange multipliers enhances the solution of 

generation planning by quick convergence.  

• The effect of water inflows and the uncertainty of wind and solar are considered using 

proposed scenario tree. 
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• The suitable number of scenario segments can be selected to reduce the output error, and 

calculation tome.  

 

The paper is organized as follows. After introduction Section 2 makes a brief presentation of 

problem statement and objectives. Section 3 presents system analysis and modelling. Section 4 

describes the applied optimization approach beginning with the generation of scenario tree and end 

by optimization procedure. Section 5 presents the studied generation system. Section 6 discusses 

the obtained numerical results and their statistical distributions. Finally, Section 7 presents the 

conclusions and highlights the main findings of this research with suggestions for future work.  

2. PROBLEM STATEMENT AND OBJECTIVES 

The main objectives of this paper are summarized as follows: 

 

• analysis of the relevant input variables, which are uncertain. 

• generation of the scenario tree with the corresponding probabilities of its segment’s 

occurrence. 

• minimization of the annual generation costs, utilizing the stochastic processes of generation 

planning. 

• development of the appropriate algorithm for solving practical generating system including 

renewable, future and spot market energy.  

• decomposition of the optimization problem based on Lagrangian relaxation to fulfill the 

technical constraints of the studied generation system. 

• quantification of the effect of input variables uncertainties on annual generation cost. 

• derivation of fundamental findings from this stochastic optimization of generation planning 

including uncertain input data an how these findings may change the planning results. 

 

3. SYSTEM ANALYSIS AND MODELLING 

The studied system consists mainly of thermal and hydraulic power plants. The operation 

of conventional power plants is influenced by their technical generation limits and the cost of input 

fuel. Short-term electricity trading can be used for economic transactions [9, 10]. At the system 

boundary, the effect of the spot market on the generation system is considered because of its short-

term trading activities.  

Generation planning requires a load forecast in the daily range. The load forecasts are less 

accurate the further they are directed into the future. The deviations between the predicted and 

actual load approximately follow the normal distribution. The relative standard deviation of a load 

forecast is between 4 and 7% on a daily average with a maximum value of 10% [10]. 

3.1. Thermal power plant units  

Nowadays, the largest proportion of the electrical energy demand is covered by thermal 

power plants that are fired with fossil fuels. A power plant usually consists of several blocks that 

can be operated independently. The operating costs of a thermal power plant are determined by fuel 

consumption, the fluctuating primary energy price and additional operation and maintenance costs. 

The heat consumption depends non-linearly on the power generated and can be approximated with 

accepted accuracy using a second-order polynomial between the maximum and minimum 

generated power. The amount of the spinning reserve contribution of each unit results from the 

difference between the maximum capacity and the actual generated power. In addition, blocks that 
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can be started quickly have the option of contributing to the minute reserve. Minimum operating 

times and minimum downtimes are defined for the individual blocks to avoid too frequent start-

ups and shutdowns. The outage of thermal blocks influences power plant operation and is described 

by the failure frequency and failure duration [14]. 

3.2. Hydraulic power plants 

In general, a hydraulic generation system can be divided into storage, pump storage, and 

run-of-river power plants. The regenerative water supply is available without variable costs. In 

contrast to thermal power plant blocks, the available power plant output and the usable electrical 

energy are directly influenced by the current water inflow. As ancillary conditions, the mandatory 

water quantities for land irrigation must be observed. The amount of water flowing into a hydraulic 

power plant system is subject to large seasonal and stochastic fluctuations. The annual cycle of the 

inflow amounts is determined by the climatic conditions. The stochastic annual fluctuations lead 

to the water supply being particularly high in one year (wet year) and particularly low in another 

(dry year). The complete description of the stochastic water inflow is then determined by its 

probability density function for the study period [11]. 

3.3. Electricity trading 

By the liberalization of the electricity industry, electrical energy is traded over short periods 

of time on spot markets or over longer periods of time on futures markets. In spot the delivery of 

electrical energy follows the conclusion of the contract immediately. Within the trading model, the 

difference between the purchase price and the selling price must be considered. Statements on the 

forecast accuracy of the spot market price in the daily range can only be found to a very limited 

extent in the literature. For example, the hydraulically dominated Scandinavian market, forecasting 

methods of spot price show error amounts between 8 and 19% depending on the time of day [12]. 

For the pool in GB, the mean error using artificial neural networks is estimated as 12 to 18%, 

depending on their topologies. 

3.4. Renewable wind and solar resources 

Generation planning requires an hourly forecast of the feed-in from wind turbines. The 

power output is simulated by conversion using a generation characteristic of the individual wind 

turbines. The shading effects that typically occur in large scale wind farm are recorded by a 

characteristic curve that is modified compared to an individual wind turbine. The wind speed time 

series obtained from the superimposition of the short-term fluctuations and the long-term series is 

then converted into a power time series using the power characteristic of the committed wind 

turbines. Forecasting methods show errors with a typical standard deviation of 15% when 

estimating the power output of large-scale wind farms [13]. The forecast errors are generally 

approximated by normal distribution and increase with increasing forecast horizon.  

Generally, there is a large seasonal variation in global horizontal irrediance (GHI) up to 

more than 1000Wm-2 in summer and less than 300Wm-2 in winter. Accurate prediction of solar 

irradiance is valuable for solar generation in energy markets. The clouds have a great effect on the 

solar radiation reaching the Earth’s surface. Therefore, accurate cloud forecasts are essential for 

prediction of solar radiation. For performing the solar radiation forecast, the recorded data of the 

previous five years are used to train the applied RNN. For the studied system, the estimated 

standard deviation in solar radiation forecast is equal to 18% [20]. As the percentage sharing of 
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RES is gradually increased in the proposed planning horizon, therefore the reserve margin is 

annually increased to cope with the RES uncertainty effect. The reserve margin, which represents 

the difference between the generation capacity and the demand forecasted, is maintained higher 

than 15% in annual generation planning. 

 

4. OPTIMIZATION APPROACH 

Uncertain input data is mapped as described in Fig. 1 using scenario analysis [15]. 

Considering many scenarios would ensure that the obtained generation plane is robust against 

uncertain influences in the future. 

4.1. Generation of the scenario tree 

An approach for generating scenario trees is used to carry out generation planning under 

uncertainty of the input variables. For each period corresponding to a scenario tree branch, the 

distribution density function is determined from the forecasted value of the uncertain input 

variables. This function is then subdivided into classes so that each sub-areas of the distribution 

density function correspond to a class (e.g.: high, medium, and low input value). If information 

about temporal correlations of the uncertain variables is available, the conditional probabilities 

between the classes can be applied for the considered periods. If this information is not available, 

the variables are assumed to be temporally uncorrelated, i.e. the transitions between the classes of 

consecutive time segments are assumed to be equally probable, Fig. 1. Starting from the first 

period, which is considered certain, the scenario tree can then be built up step by step by tracing 

all possible transitions. Since the size of the scenario tree grows exponentially with the number of 

branching points, only those scenarios whose transition probability exceeds a given specified value 

are further considered. 

 

 

 

 

 

 

 

 

 

Fig. 1. Modeling of uncertain input variables using scenarios. 

 

In each scenario section (s), however, the capacity of committed generation must be always 

guaranteed with the total load plus reserve balance. Moreover, in the power balance, the generated 
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𝑤𝑖,𝑘

𝑁𝑤𝑖
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𝑁𝑠0

𝑖=1

+ 𝑃𝑡
𝑆𝑝

= 𝑃𝑠,𝑡
𝐿                                                 (1)     

This power balance has a system-wide coupling effect and links the load sale Ps,tL, the 

thermal Ps,tth and hydraulic generation Ps,thy, the feed-in from wind turbines Ps,twi , the feed-in 

from solar thermal systems Ps,tso and spot trading PtSp. Nth denotes the number of thermal blocks, 

Nhy the number of hydraulic power plants, Nwi and Nso the number of different wind and solar 

units. The reserve requirement Ps,tR couples the operated thermal and hydraulic generating units 

as follows: 

∑ (𝑃𝑠,𝑡
𝑡ℎ,𝑚,𝑚𝑎𝑥 − 𝑃𝑠,𝑡

𝑡ℎ,𝑚)

𝑁𝑡ℎ

𝑚=1

+ ∑(𝑃𝑠,𝑡
ℎ𝑦,𝑗,𝑚𝑎𝑥

− 𝑃𝑠,𝑡
ℎ𝑦,𝑗

)

𝑁ℎ𝑦

𝑗=1

≥ 𝑃𝑠,𝑡
𝑅                                                  (2) 

 

4.2 Procedure 

In the existing planning techniques, a distinction is made between methods for the global 

optimization task of the large-scale generation systems and methods that are based on 

decomposition techniques. In principle, methods of linear programming (LP), quadratic 

programming (QP) and mixed integer linear programming (MILP) can be used for the global 

solution. Due to the high demands on computing time and storage space, these methods are not 

able to solve stochastic optimization tasks on the considered size [16]. For this reason, a 

decomposition approach is chosen to solve the optimization problem in this paper as shown in Fig. 

2. Starting with the scheduled exchange and economic decision of the zoned energy, the different 

generation units are optimized against the trade markets. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Overview of the integrated optimization approach. 
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Decomposition approaches divide the global optimization tasks into smaller subtasks to 

then be solved independently. With decomposition approaches, there is an additional effort to 

ensure that the linking constraints between these subtasks are fulfilled. There are basically two 

ways of decomposition: decomposition in the system domain and decomposition in the time 

domain. In the first option, the task is broken down into the optimization of the individual 

subsystems, i.e., the generation of the individual units and trading on the spot market are 

determined independently. A coordinator ensures compliance with the system-technical constraints. 

The system-wide coupled power and reserve balance is only guaranteed by the coordinator, to 

whom the individual optimization modules are subordinate with equal rights [17]. For arranging 

the different optimization modules below the coordinator, the Lagrangian decomposition represents 

a suitable method for decomposing the overall problem. For breakdown in the time domain, 

individual time intervals or individual time sections are optimized independently from the rest of 

the planning period. In this case, there is an additional coordination effort to ensure compliance 

with the time-coupling conditions due to the minimum times of the thermal blocks and the reservoir 

levels. This will then have a negative effect on the convergence behavior of this method [18]. 

The division of generation subsystem to thermal, hydro, RES, future and spot markets 

enhances their operation planning by utilizing the appropriate optimization methodologies 

according to the technical characteristics of each subsystem. This serves first to elevate the 

application of DP optimization for thermal and wind generation. Second, this offers Successive 

Linear Programming (SLP) for hydro and solar optimization.  Economic decision of future , spot 

market and reserve contracts is carried out using the QP. Finally, this study offers the hydro-thermal 

dispatch using the SLP and Sequential Quadratic Programming (SQP) as displayed in Fig. 2. 

The procedure of the proposed optimization takes place in two steps. First, all possible 

decisions of the power plants and the amounts of energy traded on the spot market are determined 

by the iterative coordination process in the Lagrange relaxation [19]. Based on these results, the 

feasible solutions that fulfill the load and reserve balance are economically evaluated. Thereby, the 

objective function (OF) is minimizing the generation costs (Kges) from conventional power plants, 

wind or solar units and spot trading as follows: 

𝑂𝐹 = 𝑀𝑖𝑛[(𝐾𝑔𝑒𝑠
𝑡ℎ ) + (𝐾𝑔𝑒𝑠

ℎ𝑦
) + (𝐾𝑔𝑒𝑠

𝑠𝑜 ) + (𝐾𝑔𝑒𝑠
𝑤𝑖 ) + (𝐾𝑔𝑒𝑠

𝑠𝑝
)]                     (3)   

The calculated value of the total generation cost and electricity trading in each scenario 

sections (s) should be weighted with its probability of occurrence Prs. Therefore the resulted   

objective function (OF) of the optimization task is reformulated by: 

𝑂𝐹 = 𝑀𝑖𝑛 [∑ Prs {(𝐾𝑔𝑒𝑠
𝑡ℎ ) + (𝐾𝑔𝑒𝑠

ℎ𝑦
) + (𝐾𝑔𝑒𝑠

𝑠𝑜 ) + (𝐾𝑔𝑒𝑠
𝑤𝑖 ) + (𝐾𝑔𝑒𝑠

𝑠𝑝
)}]                                 (4)          

⬚

𝑠

 

Using the Lagrangian decomposition, the objective function of the primal problem of 

equation (4) is extended to the dual problem by relaxing the system-wide coupling boundary 

conditions. Lagrange multipliers λs,t and μs,t are introduced for the power and reserve balance 

condition resulting in the following augumented dual Lagrange function: 

𝐿(𝜆𝑠,𝑡
⬚   , µ𝑠,𝑡) = ∑

⬚

Prs {[(𝐾𝑔𝑒𝑠
𝑡ℎ ) + (𝐾𝑔𝑒𝑠

ℎ𝑦
) + (𝐾𝑔𝑒𝑠

𝑠𝑜 ) + (𝐾𝑔𝑒𝑠
𝑤𝑖 ) + (𝐾𝑔𝑒𝑠

𝑠𝑝
)] +

 

⬚

𝑠

 



 

             324    JAUES, 19, 72, 2024 
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𝐿 ] +    

µ𝑠,𝑡[ ∑ (𝑃𝑠,𝑡
𝑡ℎ,𝑚,𝑚𝑎𝑥 − 𝑃𝑠,𝑡

𝑡ℎ,𝑚)

𝑁𝑡ℎ

𝑚=1

+ ∑(𝑃𝑠,𝑡
ℎ𝑦,𝑗,𝑚𝑎𝑥

− 𝑃𝑠,𝑡
ℎ𝑦,𝑗

)

𝑁ℎ𝑦

𝑗=1

− 𝑃𝑠,𝑡
𝑅 ]}                                                    (5) 

 

The problem is solved by iterative adjustment of the Lagrange multipliers λs,t and μs,t, so 

that when the method converges, the power and reserve balances are maintained. Starting with 

initial value for λs,t and μs,t, the objective function value and its sub gradients are determined to 

update the values of these multipliers. The procedure is repeated until the multiplier’s values 

converge with those of the respective preceding iteration. The quantities that can be traded on the 

spot market are assumed to be a continuous variable, where positive and negative value correspond 

to purchase to and sale of electrical power on the spot market, respectively. 

 

5. THE STUDIED GENERATION SYSTEM   

The generation system contains a renewable energy capacity of 6 GW. The total available 

capacity from the thermal power plants equals 25702 MW with 128 units. The forecasted peak load 

in summer due to air conditioning demand reaches 23211 MW. The cost of thermal generating units 

consists of fixed and variable costs in addition to starting and shutting down costs. 

About 85% of the energy-related generation costs are made up of fuel costs. The remaining 

small part of these energy-related costs consists of the provision of auxiliary materials and 

maintenance dependent on the operating time. The dependency of fuel expenses in a power plant 

unit is described by a parabola, while the additional energy-related costs are assumed to be 

proportional to the supplied electrical energy. The thermal generation subsystem is supplemented 

by five hydroelectric power plants, where about 7% of the annual electrical energy is covered by 

hydraulic power plants.  

The measured values of the direct solar radiation and wind speed are used for simulating 

solar and wind generation. Since the optimization process is based on a time raster of one hour, the 

series of the direct radiation and wind speed are also generated in hourly intervals and converted 

into the relevant power output via the technical characteristics of the solar panels and wind turbines. 

Network and total load are thus again modeled as super node. The maximum tradable quantity for 

purchase and sale is set at 600 MW per product. The market price fluctuations reflect the daily, 

weekly, and seasonal fluctuations in electrical energy demand as well as the cycles in supply-

dependent generation. The expected value of the assumed hourly price fluctuates between 15 and 

40 €/MWh over the course of the day. From the perspective of annual generation planning, the 

price of short-term electricity deals in the future is uncertain and needs to be forecasted. Methods 

of time series analysis and market simulation models are used to determine market price forecasts 

and show that the standard deviation of hourly electricity prices is around 15%. 

6. NUMERICAL RESULTS  

To study the effects of the uncertainty, the optimization results are compared with the 

deterministic calculations assuming that all input variables are certain and fixed at their mean 
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forecasted values. The most important criterion for comparing the different calculations is the 

expected value of the generation cost with its scatter range. All calculations were performed on Sun 

Fire computing station with Ultra Spac III processors (900 MHz) under Solaris 9.0. The total 

computing time for annual calculation was almost 10 hours with a memory requirement of 616 

MB. The duality gap, an upper estimate of the distance from the theoretically achievable optimum, 

is in the per thousand range in relation to the total generation cost for all studied cases. 

 

Table 1. Overall results of the deterministic calculation. 

Total energy sales 

Energy consumption 

Sale spot market 

Thermal generation 

Hydraulic generation 

Purchase spot market 

Wind energy 

Solar energy 

Thermal costs 

Purchasing costs 

Selling costs 

Total cost 

154.728 TWh 

142.844 TWh 

11.884 TWh 

134.613 TWh 

11.605 TWh 

31.953 TWh 

4.385 TWh 

4.125 TWh 

849.388 Mio. € 

205.256 Mio. € 

160.178 Mio. € 

894.467 Mio. € 

 

Table 1 summarizes the overall deterministic results of the studied system, without 

considering the uncertainty of the input data. Of the total energy consumption, 7.5% is accounted 

for by the hydraulic power plants and 87% by the thermal power plants. The new combined cycle 

power plants have the lowest variable costs and are therefore utilized at 100 percent. The steam 

power plants are used according to their marginal costs. The gas and oil power plants used to cover 

peak loads have low utilization factors due to their high marginal costs. With the described model, 

about 10% of the electrical energy generated each year is traded on the market. A small part of the 

energy production with 5.5 % refers to renewable wind and solar energy.  
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(a) 

 

(b) 

Fig. 3. Scenario tree with four sections for load forecast errors (a) Symmetrical (b) 

Unsymmetrical. Where (n) Scenario section number, x% probability of the scenario section, yyyy 

number of hours in the considered scenario section and  [%] Percentage deviation in the 

considered uncertain variable. 

 

(1),100%, 720 h, [0%] (3), 50%, 2160 h, [0%] (9),10%, 5880 h, [0%]

(1),100%, 720 h, [0%]

(16),8%
, 2500 h, [0%

]

(11),5%
, 3103

h, [0%
]

(8),5%, 2590 h, [-5%]
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6.1. Stochastic Load 

The load forecast deviations were assumed to be symmetrical and normally distributed by 

10% upwards and -10% downwards. For example, the future load developments are therefore 

represented by the scenario tree shown in Fig. 3-a. Each scenario section of the tree weighted with 

its probability of occurrence, while the first and third scenario sections are within time range of 

720 h and 2160 h, where the second and fifth scenario sections are in the stochastic time range with 

2160 h and 5880 h per year, respectively. In some utilities, the input variables have unsymmetrical 

distribution as given in Fig. 3-b. 

In the same way, the other input variables are processed using symmetrical or 

unsymmetrical scenarios trees according to their degree of uncertainties. From Table 2, the total 

costs will be increased more with the increased deviation of all input variables due to their 

uncertainties. This can be explained by purchasing from the available market or committing too 

more expensive power plants to handle these uncertainties. For the most effective variables on 

generation planning of the studied system, the expected value of the generation cost and its range 

are given in Table 2 for symmetrical and unsymmetrical scenarios trees. 

For load uncertainties of 10%, Table 2 shows the estimated values of total expected cost 

and its range of deviation to be 906.387 Mio. €, 15.548% and 927.449 Mio. €, 7.517% for 

symmetrical and unsymmetrical scenarios trees, respectively. A similar effect can be observed in 

further calculations with gas price deviation. The increase in gas price leads to even higher total 

costs, increase in traded amounts of energy, decrease in the generation of gas-fired power plants. 

Variant calculation with uncertain natural gas prices of 10% leads to total expected cost and its 

range of deviation to be 907.286 Mio.  €, 8.923% and 915.599 Mio.  €, 4.4% for symmetrical and 

unsymmetrical scenarios trees, respectively. It is noted that the effect of the uncertainties in the spot 

price and water flow on the generation cost and its range of deviation is less than the effect of the 

uncertainties in electric load and gas price as shown in Table 2. 

Table 2. Impact of input variables uncertainties on the generation costs and its scatter range. 

Input variable uncertainty Total cost Mio.  € 

for Symmetrical tree 

Total cost Mio.  € for 

Unsymmetrical tree 

 

 

Load (10%) 

906.387 

15.548% 

927.449 

7.517% 

 

Spot price (15%) 

898.538 

1.335% 

902.188 

0.502% 

 

Gas price (10%) 

907.286 

8.923% 

915.599 

4.4% 

 

Water flow (8%) 

904.439 

1.365% 

906.568 

0.679% 

Uncertainties of the above 4 input 

variables 

923.982 

23.374% 

943.893 

11.202% 

 

6.2. Uncertainty in Renewable Energy Generation 

 

With high penetration of wind energy into the generation system, the accurate forecast of 

wind speed is essential for generation planning. Wind speed can rapidly change, and its variation 
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depends on several factors, such as the surface and the local weather. In this paper, the model for 

characterizing the wind power is a cubic function of the wind speed. Therefore, a small error in the 

prediction of wind speed leads to huge variations in the wind energy estimation. To describe the 

range of wind speed in a particular statistical interval, the probability density function is used. In 

this paper the primary focus is on the normal (or Gaussian) distribution. The confidence intervals 

were created through historical wind speed data by examining the shapes of the respective 

distributions. For 90% confidence interval band with normal distribution, the standard deviation is 

25.32% while for 95% confidence interval it reaches 35% [8]. With a stochastic optimization with 

wind speed standard deviation of 35%, the obtained results show an expected increase in the 

generation cost of less than 0.5%. As expected, the relative cost spread increases with increasing 

forecast error up to 1.9%. The reason for this lies in the relatively small wind energy feed-in of 

4385 GWh per year with lower installed wind turbine capacities compared to the thermal system. 

With a 15% standard deviation of the wind speed, there is only a relatively slight increase in the 

expected value of the generation cost by the stochastic optimization. With increasing installed wind 

turbine power, the advantages of the stochastic approach will be increased due to the increase in 

rotating power capacity. This attributed to the fact that the scenario tree contains overestimates of 

wind energy feed-in, which may result in purchase restrictions. If then the actual wind energy feed-

in is below the expected value additional generation capacity in steam power plant blocks is needed 

to cover the load and then the generation cost will be increased. 

The comparison of the proposed stochastic optimization with a deterministic calculation 

considering the uncertainty in the input variable of solar radiation shows an increase of the expected 

generation cost by 0.42 % with a scatter range of 1.74%. It is worth notable that the amount of 

annual solar production is estimated to be 4125 GWh. The total costs and the traded amount of 

energy of the different scenario sections change similarly but to a small extent compared to the load 

and gas price uncertainty. This is attributed to the relatively small solar generation with lower 

installed solar panels capacities compared to the thermal system.  

If less PV power than forecasted is obtained, more generators are committed to compensate 

for the power deficit and then the reserve power is reallocated according to the deviations in the 

PV generation. If the pre-allocated operating reserve power is unable to handle the PV uncertainty, 

then more gas turbines will be committed to provide more effective reserve power to compensate 

the lacking in PV power. When the pre-allocated reserve is enough to handle the PV uncertainty, 

then the available reserve is reduced by the amount of PV deficit. 

 

6.3. Influence of Scenario Tree Size 

To limit the size of the resulting scenario tree, the branching is limited only to those scenario 

sections whose probability exceeds a predetermined limit value. This means that the number of 

scenarios considered has been increased until adding further scenarios lead to an insignificant 

change in the generation costs. To define the effect of scenario tree size, three calculations are 

carried out for 4, 13 and 40 scenario sections. 
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Table 3. Effect of scenario tree size on the generation cost and its scatter range 

Number of scenario sections 4 13 40 

 

Expected generation costs (Mio.  €). 

Scattering rang 

902.679 

14.477% 

913.982 

23.374% 

914.324 

23.481% 

 

The calculations show that the increase in the generation costs because of varying the 

number of scenario sections is relatively small. The reason for this is that as the number of scenario 

sections increase, the probability of their occurrence decreases. On the contrary, the scatter range 

of generation cost increases with the number of considered sections. From Table 3 the 

consideration of 40 scenario sections results in very small changes in the generation cost and its 

range of variation compared to the 13 sections. Therefore, a scenario tree with 13 sections is 

sufficient to carry out the stochastic optimization for the studied system with acceptable accuracy. 

With simultaneous consideration of all uncertain input variables, Fig. 4 shows the statistical 

development of generation cost and its scatter range along a period of one year using 13 scenario 

sections starting by January. This figure has thus shown that for the studied system, the cumulative 

generation cost steadily increases according to the increase of the required generated energy and 

its scattering range widens with narrow band at start but with large band in December. This is 

attributed to the fact that the uncertainty in input variables steadily increase over the considered 

planning horizon of one year.  

 

 

Fig. 4. Statistical generation cost and its scatter range with input variable uncertainties 
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CONCLUSIONS 

Deterministic generation planning could cause a lot of cost pressure on electric utilities 

when future scenarios differ from planned deterministic scenario. This is attributed to the fact that 

the input variables forecast has either led to over-investment or under-investment. Consequently, 

the planning should be carried out considering the uncertainty of influencing variables such as the 

forecast of electrical load, the natural gas price, the spot market, and the wind, or solar feed-in. In 

addition, the generation companies must utilize their power plants with the market to optimize 

electricity generation and trading in an integrated manner, which represents a very computational 

task. Therefore, stochastic optimization and decomposition approach are proposed to effectively 

handle uncertainty in generation expansion planning. For this purpose, the scenario analysis 

approach is chosen in this study, in which the future developments of these input data are 

represented by scenario tree sections, which are weighted by their probability of occurrence. The 

stochastic optimization for large-scale system utilized the decomposition of the Lagrange 

relaxation to coordinate the interaction between the different subtasks, which are solved using the 

methods of dynamic programming and quadratic programming. 

The obtained results show that the load forecast errors lead to an increase in the total 

generation costs. This increase grows with the mean forecast error. Underestimation and 

overestimation of the load do not cancel each other out due to the non-linear system behavior. The 

spread of the generation cost increases significantly with forecast standard deviations. A stochastic 

consideration of the spot prices leads also to an increase in the generation cost. Compared to the 

load forecast error, in this case the expected value of the generation cost changes only slightly with 

an uncertain spot price due to the small amounts of current energy traded. Therefore, the additional 

information about the forecast accuracy of the market prices is mainly of importance if the company 

under consideration trades a significant part of its generation on the electricity market. The 

stochastic consideration of the uncertain natural gas price results in an increase in the expected 

value of the generation cost and its spread. The deviation in natural gas prices and the market price 

of electrical energy leads to different use of thermal power plants and changed amounts of energy 

traded on the electricity market. It shows that there is a decrease in sales and an increase in 

purchases on the spot market with increasing natural gas price uncertainty. 

Taking the uncertainties of the hydraulic supply into account primarily affects the amounts 

of energy traded on the spot market. Hydraulic supply uncertainty leads to a small increase in the 

generation cost with a clear range of variation. This then means that when carrying out planning 

calculations for a hydraulically dominated system, the inflow uncertainty should be considered. 

The test results for renewable energy supply are highly system dependent. The advantage of a 

stochastic approach is very small in the studied system. The reason for this lies in the small 

proportion of the hydraulic output in the total energy generation. With increasing installed 

renewable capacity, the advantages of the stochastic approach increase significantly. It can be stated 

that in the case of high forecast errors in the renewable, the magnitude of the power reserve, 

planning makes economic sense by generation optimization. The effect of the selected scenario tree 

size on the planning cost depends on the number of sections considered in this tree. However, there 

is no clear change in the spread of this cost range as the number of sections continues to increase. 

On the other side, the generation cost and its range are clearly increased with the degree of 

asymmetry in the scenario trees. This is because in an asymmetrical scenario tree, the higher 
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probability of an influencing variable occurring on one side of the uncertain areas leads to an even 

greater change in the use of the power plant. 

All input parameters are assumed independent/uncorrelated by estimating the economic 

generation cost. The effect of correlated input variables needs further analysis.  More research 

should be conducted to define suitable size of scenario tree for each input variable using RNN. 

Future work might explore whether Bayesian optimization can be used for generation planning 

under uncertain input variables. These will enhance the performance of the algorithm and help the 

decision making to take the proper actions.  
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