

ENGINEERING RESEARCH JOURNAL (ERJ)

Volume (53),Issue (3)

July 2024, pp:01-10

https://erjsh.journals.ekb.eg

01

Towards a Secure Blockchain-based E-Government

Framework in Egypt: A Case Study

Manal Mansour
1,*

, May A. Salama
1
 , Hala H. Zayed

2
 , Mona F.M. Mursi

1

1 Faculty of Engineering, Egypt University of Informatics, Cairo, Egypt.
2 Faculty of Computers and Artificial Intelligence, Benha University, Egypt.

*Corresponding author

E-mail address: manal.abdelmawgood@feng.bu.edu.eg , may.mohamed@feng.bu.edu.eg , hala.zayed@feng.bu.edu.eg ,

mona.mursi@feng.bu.edu.eg

Abstract: Blockchain stands out as one of the most promising technologies due to its potential to enhance security, transparency, and

privacy. Consequently, blockchain-based applications serve as a trust-building mechanism among involved stakeholders. Several

governments have recently recognized these advantages and have initiated the integration of blockchain into their public service

sectors. Notably, Egypt has yet to explore the potential of blockchain within its e-government services. This research introduces a

novel framework, along with its empirical implementation that aimed at establishing a scalable model for two e-government services

in Egypt's land registry and e-will management. The framework's primary objective is to create a system that is transparent,

immutable, and secure. Furthermore, solutions are presented to address the technical challenges, security and privacy issues

encountered during the implementation phase. This marks the initial proposal of a blockchain-based public service framework for the

Egyptian government.

Keywords: E-Government, Blockchain, Smart Contract, Real Estate, E-Will.

1. Introduction

In recent years, many governments around the world

have recognized the potential benefits of digital technologies

and have sought to leverage these technologies to improve

the delivery of public services, from online portals and

mobile applications to the use of blockchain and other

emerging technologies. Governments are increasingly

exploring new ways to provide citizens with faster, more

convenient, and more secure access to essential services. In

this context, a framework is proposed, emphasizing two

crucial Government-to-Citizen (G2C) services [1], namely

real estate and wills. The framework can be extended to

include a wide range of additional services. Its flexibility is

one of its key strengths, allowing for adaptation to meet the

needs of different contexts and service areas. Real estate and

wills were selected as the primary services in the proposed

framework for several reasons.

Upon examining the current state of these services in

Egypt, several challenges were uncovered. These include

issues such as counterfeit property contracts, disputes over

property ownership, and individuals manipulating sale dates

to circumvent government regulations. Moreover, problems

related to property resale and an increase in fraudulent

activities have been observed. The government lacks a

comprehensive record of property transactions and sales

history and faces difficulties in collecting taxes from

property owners due to the diverse range of contract types

and selling methods. Adding to these challenges, property

owners may pass away without leaving information for their

heirs about the location of vital documents related to their

property.

Another significant concern that emerged in 2020 is the

challenge of wallet credentials. This problem arose in 2020

when Chainalysis, a crypto research company estimated that

roughly a fifth of existing bitcoins [2] at that time, with a

value of more than $175 billion, had been lost due to the

death of the owners. In blockchain, there is no way to access

their wallets except with the private key. Effectively utilizing

E-will in blockchain has the potential to deliver significant

benefits in resolving these issues.

In this paper, A novel method is proposed for connecting

real estate and wills by harnessing the capabilities of

blockchain technology and smart contracts, while leveraging

the unique features of blockchain, such as its decentralized,

transparency, and immutable nature. The proposed

framework offers a transparent, coherent, and secure method

for transferring ownership of real estate, whether through

inheritance or by the selling process during the owner's life.

The proposed framework has the potential to bring about a

revolutionary change in the way real estate transactions are

conducted. This paper is organized into six distinct sections,

each serving a specific purpose in our comprehensive

examination of the subject. Section 2 provides background

information and context regarding the main topics under

consideration. The proposed framework, including its key

features, advantages, and potential limitations, is introduced

in Section 3. In Section 4, a dedicated segment is presented,

focusing on the tools utilized and the available alternatives.

Section 5 of this work delves into the security analysis and

presents the proposed solution. In this section, a

comprehensive assessment of the security measures is

conducted, followed by the proposed solution that aims to

address any identified vulnerabilities and enhance overall

mailto:manal.abdelmawgood@feng.bu.edu.eg
mailto:may.mohamed@feng.bu.edu.eg
mailto:hala.zayed@feng.bu.edu.eg

 Vol.52, No3 July 2024, pp:01-10 Manal Mansour et al Engineering Research Journal (ERJ)

11

framework security. Finally, section 6, summarizes the main

findings and contributions of the research, discusses any

limitations encountered, and provides recommendations for

future studies or practical implementations.

2. BACKGROUND

Blockchain technology is a decentralized and distributed

digital ledger that is used to record transactions across many

computers in a secure, transparent, and immutable way. It

consists of a chain of blocks that contain data. Each block in

the chain is linked to the preceding block, and once a block

is added to the chain, it cannot be altered or deleted. Bitcoin

is the most popular and known platform called the first

generated platform [2] and [3] primarily used for financial

deals only with 1 Megabyte (MB) blocks. The blocks are

linked together through a complex cryptographic verification

process, to form the immutable chain.

2.1 Smart Contracts

Smart contracts are considered the second-generation

evolution of blockchain technology, offering a wide range of

applications extending beyond financial transactions. These

self-executing computer programs automatically enforce the

terms of agreements between parties [4]. Many DApps use

smart contracts such as supply chains, voting systems,

healthcare, and real estate beyond others [5] and [6].

Numerous platforms support smart contracts such as

Ethereum, which offers a degree of standardization,

Hyperledger, and Corda among other platforms [19].

2.2 Potential Risks and Threats Related to Smart

Contracts

Many reported weaknesses can potentially compromise

the security and functionality of smart contracts [7] and [8].

Table 1 summarizes the smart contracts' weakness

classifications (SWC) allowing developers to take proactive

measures to mitigate such risks and safeguard their projects.

3. PROPOSED FRAMEWORK

Before starting this phase, a meeting with the real estate

professionals who specialize in providing real estate services

in Egypt was held to gather information and conduct a

thorough analysis of the data at hand. That resulted in a

comprehensive understanding of the real estate industry in

Egypt and its various intricacies.

3.1 Analyzing Challenges in the Real Estate System and

Implications of Writing Wills

The traditional property registry system contains several

conceptual stages, such as housing evaluation, document

compilation, main contract execution, money transfer, and

registration [12] and [13]. All these steps make the complete

procedure complicated and costly. Additionally, a lack of

synchronized information due to inadequate departmental

cooperation results in inconsistency and incompatibility. On

another hand, there are several challenges to writing and

executing wills so, the testator has to consult with legal

professionals who specialize in wills and inheritance matters.

They guide navigating the legal framework, ensuring the

validity of wills, and addressing any potential issues that

may arise during the distribution process. The following

points summarize these challenges [14]. 1- Lack of

Regulation: There is no specific regulation for writing wills,

so it is important to seek legal advice from professionals

who are knowledgeable about the local legal system. 2-

Complex Legal Framework: The legal framework

surrounding wills and inheritance in Egypt can be complex

and may require a thorough understanding of Egyptian laws.

In addition to these problems, regarding digital

cryptocurrency and digital assets, if the location and private

key of the cryptocurrency wallet are not known, the funds

may be lost forever after the owner's death [15].

3.2 Building Framework

The proposed framework is designed using Visual Studio

code, Node js v16.17.1, Solidity ^0.8.9 [16], and Hardhat

[17][18], which is available as a npm package and comes

with many tools that facilitate development along with a test

environment that allows the developers to test the contracts

locally. The primary objective of the proposed system is to

build a framework for e-government services by establishing

a connection between two distinct services, namely real

estate and wills. Each service can be applied separately or

connected through the utilization of blockchain and smart

contract technology. The system has been designed to

encompass a single pivotal contract; the government

contract, which is deployed solely once, in addition to two

supplementary model contracts; the real estate contract, and

the e-will contract. Notably, the latter two contracts are

subjected to specific addresses that are meticulously set by

the government.

3.3 Smart Contract Emulation of Government Processes

The government contract is deployed on the Ethereum

network during setup, using predefined addresses for key

roles such as government, real estate, and judicial managers.

These trusted nodes possess the authority to deploy, revise,

update, approve, and reject citizen requests within the

contract. Table 2 shows all members and variables of the

government contract.

3.3.1 Contract Actors, Functions, and Events

'REPublicityManager' is the address of the manager(s)

who is managing the real estate functionality; this node is

trusted. The second variable in table 2 is the

'IdtoRealEstatemap'. This variable contains a map between

each ID and a corresponding array of properties mapping

(string => address[]) public 'IdtoRealEstatemap'. Using a

map, this step solves significant problems in serving the

requests of citizens. In Solidity, maps use a different

approach to store data, which saves time and reduces gas

consumption compared to using an array for handling large

amounts of data. Maps in solidity use the hash table with the

look-up process method. It works differently here. Provide

the map with a key, citizen ID, and then the key is

introduced to a hashing function and produces the

corresponding value, see Figure 1.

 Vol.52, No3 July 2024, pp:01-10 Manal Mansour et al Engineering Research Journal (ERJ)

12

Table 1 Smart Contract Weakness Classifications [9]

Vulnerabilities Code Description

Function Default Visibility SWC-100,108 Public default declaration.

Integer Overflow and Underflow SWC-101 Exceeds the size of data types.

Outdated Compiler Version SWC-102,111 The outdated compiler may pose issues.

Unchecked Call Return Value SWC-104 Unexpected behavior in the program.

Unprotected Ether Withdrawal SWC-105 Malicious withdraw some Ethers.

Unprotected SELF-DESTRUCT SWC-106 Insufficient access controls.

Reentrancy [10] SWC-107 Take over the control flow.

Uninitialized Storage Pointer SWC-109 Point to unexpected storage locations.

Transaction Order Dependence [11] SWC-114 Race condition vulnerability.

Shadowing State Variables SWC-119 Same var name with inheritance

Insufficient Gas Griefing SWC-126 Revert from any sub-calls

Dos with Block Gas Limit [9] SWC-128 The cost of executing a function exceeds

the block gas limit.

Presence of unused variables SWC-131,132 Gas consumption

Message call with the hard-coded gas amount. SWC-134 Use a fixed amount of gas

Dead code SWC-135 Code With No Effects

Table 2. Government Contract

Government Contract

Variables

REPublicityManager Address Address of the manager/s who are managing the real estate

JudicialAuthorityManager Address Address of the manager/s who are managing and approving wills

IDtoRealEstate Map Map between each citizen and the array of his real estates

IDtoEWill Map Map between each testator and his will

Functions

Government The constructor function sets the manager address on deploying government contract

Create RealEstate Factory function which deploys new real estate contract

ApproveRE Approve citizen request

RejectRE Reject citizen request - Destroy the contract

InformOwnershipTransfere Update the ledger with the new owner after the sell/inherit process

Create EWill Factory function deploys a new EWill contract

ApproveEWill Approve Creating EWill

RejectEWill Reject Creating EWill

Execute EWill Call MarkAsDead in EWill contract

 Vol.52, No3 July 2024, pp:01-10 Manal Mansour et al Engineering Research Journal (ERJ)

13

FIGURE 1: Maps in solidity

This method reduces the time consumed in the search

process as the arrays use a linear search methodology with

O(n), which is supposed to be more than a million entries in

this contract. The search process consumes many gases,

which consequently raises the cost of dealing with the

contract. Otherwise, the map uses a constant time search,

which implies that the amount of data doesn't matter. One

million citizens take the same time as a single entry to find

their corresponding data O(1). After deploying a government

contract, the citizens can send requests to this contract. Each

request is first mined and peer-reviewed by the real estate

publicity managers.

CreateRealEstate: In the 'CreateRealEstate' step, a citizen

requests property registration and ownership proof from the

government by submitting his ID and property details. The

government promptly deploys a real estate contract with a

pending state, shares the contract address with the citizen for

status checking, and updates its 'IdtoRealEstatemap' by

adding the contract address to the ledger. If the government

rejects the state, the 'reject' function is invoked, leading to

the destruction of the real estate contract. Approve: This

function receives the generated contract address and allows

the real estate publicity manager to revise, approve the

citizen request, and confirm the addition to the

'IdtoRealEstatemap'. Reject: This function receives the

generated contract address, rejects the citizen request,

destroys the contract, and removes the temporarily created

entry from the 'IdtoRealEstatemap'. Figure 2 shows the

process of creating real estate. Algorithm 1 illustrate the

steps.

FIGURE 2: Create Real Estate

Algorithm 1: Create Real estate Contract

Input:

Government Contract ₲← Citizen(x) (ID, Real estate RE Information)

Process:

address newRealEstate = address (new RealEstate(id, info, Citizen(x))); //Government-Restricted Deploy RE

idToRealEstateMap[id]. push(newRealEstate); //Update the Map

Output:

Citizen(x) ← return newRealEstate address with state Pending;

if (request valid)

 State← Accepted.

else

 State ←Rejected + Self Destruct

 Vol.52, No3 July 2024, pp:01-10 Manal Mansour et al Engineering Research Journal (ERJ)

14

3.4 Representing Real Estate as a Smart Contract

This contract is a model contract. The government

deploys a copy from this contract for each real estate proof

request. Table 3 Summarizes the real estate contract

variables and functions.

3.4.1 Contract Actors, Functions, and Events

Government Contract Address: The address of the

government contract. This address only is allowed to deploy

real estate contracts and is verified for government-restricted

functions. Property Information: All the descriptions and

related information for the asset, which are required to be

recorded to create its contract for the first time. This

information has to be set in the constructor. Transaction:

Struct variable contains the information of the seller and

buyer, in addition to the ownership transfer method either

the buy-sell process or inheritance. State: This variable

contains the status bending of this contract before

government approval. After the acceptance, the contract

status is changed to accepted. Otherwise, the contract is

destroyed if the request is rejected. Table 4 contains all the

members of the real estate struct.

Table 3. Real Estate Contract

Real Estate Contract

Variables

Property Info Struct Contains property information

Government contract Address Address Allow government-restricted function

Owner Address Address Address for the property owner

Owner I D String Owner ID

Transaction Struct Contain transaction information

Transaction-History Array Save the sequence of ownership transfer

state Struct Contract state [Pending-Accepted-Rejected]

Functions

Constructor Government restricted

OfferProperty Owner-restricted

Unoffer Cancel the sell offer-owner restricted

WillingtoBuy Called by all the citizens who aim to buy the property.

Buy payable-atomic function-Winner restricted

Table 4. Struct members in the RE contract

Struct members in RE contract

Transaction Struct

From ID string ID for the old owner

From Address Address Address of the old owner

To ID string ID for the new owner

To Address string Address of the new owner

Date uint256 timestamp of the transaction

Method enum sell, inherit

Property Information

Description string

Unit-No string

Building No string

Street string

City string

GPS-Location latitude and longitude

 Vol.52, No3 July 2024, pp:01-10 Manal Mansour et al Engineering Research Journal (ERJ)

15

Transaction history: Array that contains the history of

this asset from the first owner to the current owner. Offer-

the-property: This function exists in the real estate contract

and is owner-restricted which means that no one even the

real estate publicity manager can call this function from the

contract. The function should accept the value of the

asset to be declared later. UnOffer-the-property: Cancel

the offer request. This function is also owner-restricted.

Willing-to-Buy: This function is called by citizen(s) willing

to buy the offered asset. The winner is determined by the

government. The priority is set for the citizen who has the

preemption right.

 Buy-Property: This is an atomic payable function, called

by the winner from 'willingtobuy' function only. The winner

sends a predefined amount of money to the function

performing these atomic steps to execute all of these steps or

undoes them completely. Initially, the function takes the

money and transfers it to the owner of the assets, and sets the

transaction struct information. The function calls the inform

ownership change function from the government contract.

This function verifies the existence of the old ownership in

the 'IdtoRealEstatemap' If it exists, the asset is transferred to

the new owner by adding the real estate's address to the

'IdtoRealEstatemap'. Subsequently, the transaction history of

this contract is updated by appending this transaction to the

'TransactionHistory' array, which preserves the sequence of

ownership transfers associated with this contract. If any of

these steps stop working for any known or unknown reason,

the function reverts. Figure 3 summarizes the selling

process. Algorithm 2 illustrates the selling steps.

FIGURE 3: Selling Process.

Algorithm 2: Buy / Sell Process

Input: OfferProperty Status ← Open (Owner-restricted)

Process:

Wiliingtobuy ← users // user intended to buy the asset

buyers.push(users);

acceptedBuyer = buyer; // Picked by Government Using Preemption law

payable(owner_address)←transfer(Offer.value);

payable(Government_address)←transfer(Tax.value);

owner_address = acceptedBuyer;

 owner_id = newOwnerId;

 history.push(newTransaction);

 method: TransactionMethod.SELL,

Output:

Transaction history and IdtoRE map ← Updated

Taxes ← collected.

The transaction method in the RE contract is set to 0 (transfer is done by the selling process).

Atomic Done or Revert

 Vol.52, No3 July 2024, pp:01-10 Manal Mansour et al Engineering Research Journal (ERJ)

16

3.5 Implementing Citizen Wills as Smart Contracts

The testator sends a request for the government to create

his own will,the 'IDtoEwill' is one to one relationship so if

the government revises the request and ensures that this ID

didn't issue a will request it approves the citizen request and

deploys an E-will contract. The testator then be able to add

money beneficiaries, add real estate beneficiaries, add

priorities for his wishes, guaranteeing that his document

remains immune to forgery, and ensure automatic

distribution of his belongings according to his wishes

eliminating the need for an attorney or considering where to

save the will. Table 5 contains all variables used for the e-

will contract.

3.5.1 Contract Actors, Functions, and Events

Government contract address: This address is the only

one allowed to deploy e-will contracts and is verified for

government-restricted functions.

TestatorID and TestatorAddress: These are the identity

and the address of the testator. The government inspects and

revises it to ascertain the authorization and uniqueness of the

e-will creation request. willMoneyEntry[]: Array of

beneficiaries to which the testator wants to distribute his

money after his death. willRealEstateEntry[]: Array of

beneficiaries to which the testator wants to distribute his real

estate after his death. Application State: This variable

contains the status of the testator's request for deploying his

will with state pending. After the judicial authority decision,

the status may be changed to approved and proceed to

blockchain or rejected then destroy the contract.

The constructor function takes the address of the judicial

authority manager to set the restricted functions. Create e-

will function: This function is a factory function that deploys

a new e-will contract by the judicial authority manager. The

function delivers a request from the citizen and responds

with an address for the deployed e-will with status pending.

The testator should check the address of his will till the new

status is delivered, approved, or rejected by the judicial

authority manager. Figure 4 shows the creation of the ewill

process.

Approve e-will: It approves the creation of the will after

revising the existing testator address. Reject e-will: It rejects

the testator request for any reason. e.g. The citizen has

created another will. So, his ID is related to the old will

address. Execute e-will: This function is a judicial authority

manager restricted. It takes the testator's ID after his death,

checks the existence of the will, and calls the 'MarkAsDead'

function from the related e-will contract. 'MarkAsDead'

function then returns real estate entries and an array of

beneficiaries. The government contract revises the ledger to

ensure the ownership of this real estate from

'IDToRealEstatMap' and then transfers its ownership to the

beneficiaries. Transferring the ownership by the

'executeEwill' function then changes the struct member to

'inherit'. Figure 5 illustrates the executeEWill function.

Algorithm 3 shows the steps for executing the will.

FIGURE 4: Create E-Will

 Vol.52, No3 July 2024, pp:01-10 Manal Mansour et al Engineering Research Journal (ERJ)

17

FIGURE 5: Execute E-Will

Algorithm 3: Mark As Dead Process

Input:

 MarkAsDead()← Execute E-will() Judicial Authority manager Restricted.

Processes:

1- MoneyTransaction

Sort Will Money Entries By Priority \\ Recorded by the testator

for (; i < willMoneyEntries.length; ++i)

payable(willMoneyEntries[i].to).transfer(willMoneyEntries[i].value);

2- RETransaction

 benefeciaryAddress←REContract Transfere

 method: TransactionMethod.INHERITANCE,

 history.push(newTransaction);

 date: block.timestamp

Output:

1- Money Transferred to beneficiaries.

2- IdtoREMap updated with the new owner.

3- Transaction method in RE contract set to 1.

4. TESTING AND ANALYSIS ROAD MAP

Building the framework with Solidity language doesn't

guarantee its security, functionality, or efficiency, Code

testing should be conducted first before deploying the code

on the net.

Where it engages with real users and assets. This section

intensively investigates various best practices and tools

essential for rigorously testing the Solidity code, ensuring a

comprehensive evaluation of its performance, and mitigating

potential issues.

4.1 Used Tools, Frameworks, and Technologies

In this section, the steps taken after constructing the

framework will be outlined. The tools used for testing and

analyzing the framework's performance to ensure its strength

and reliability will be addressed. Breaking down the testing

process and explaining the role of each tool. Figure 6

summarizes the steps.

2. Code Analysis Tool: To analyze the framework, the

initial step selects software tools designed to identify

security issues and vulnerabilities associated with smart

contracts. Code analysis tools for Solidity include

MythX, Solc, and oyente, which can aid in mitigating

the identified issues.

3. Choose a testing framework: The initial stage in testing

Solidity code involves selecting a testing framework

that aligns with specific requirements and preferences.

A testing framework serves as a software tool

facilitating the creation, execution, and organization of

the test cases. Notable testing frameworks for Solidity

include Truffle, Hardhat [20], Waffle[21], and

Remix[22]. Each framework comes with its unique

features, merits, and drawbacks, necessitating a

comparative analysis to determine which one aligns

most effectively with your needs. In this proposal, we

initially opted for Remix due to its user-friendly

interface and simplicity. Subsequently, we transitioned

to using Hardhat for more advanced testing in the later

stages of development.

 Vol.52, No3 July 2024, pp:01-10 Manal Mansour et al Engineering Research Journal (ERJ)

18

4. Unit Test: Unit tests consist of compact, small code

segments that assess the performance of an individual

function or contract. These tests are crucial for

confirming that the code operates as intended and is free

from errors or bugs. It is advisable to create unit tests for

each function and contract, encompassing all

conceivable scenarios and edge cases.

5. Integration Test: Integration tests employ more

extensive and intricate code segments that assess the

interplay among multiple functions or contracts. These

tests are valuable for examining the logic and

progression of the code, as well as its response to

various inputs and outputs. It is recommended to

develop integration tests for each feature or module

introduced, simulating real-world conditions and events

that code may encounter. Tools such as Ganache,

Hardhat Network, or Forks can be utilized to establish a

local blockchain environment tailored for the integration

tests.

6. Code coverage: Employing code coverage tools is

essential to ensure that the tests adequately cover all

relevant aspects of the code and uphold effectiveness

and reliability. Solidity-Coverage, Istanbul, and Hardhat

are among the widely used code coverage tools for

Solidity.

7. Gas Measuring: Calculate the gas consumed in

deploying the contracts.

FIGURE: 6 Testing - Analysis Steps

5. MITIGATING SECURITY RISKS: PROPOSED

SOLUTION

 MYTHRIL [23] which is a dynamic analysis tool for

Ethereum Virtual Machine (EVM) bytecode, is used to

detect security issues and vulnerabilities.

5.1 Frontrunning SWC-114

 This issue arises from the execution of e-will function,

when generating one of the beneficiaries as a miner node in

the blockchain. This node can disrupt the execution of the

operation by raising the gas price for its transaction. The

attacker can force his money transfer before the rest of the

beneficiaries. To overcome the frontrunning problem, the

system is redesigned by establishing a priority level for each

beneficiary, ensuring that it is not dependent on the gas

amount, an attacker can't achieve a transaction with a lower

priority. The priority level is determined by the testator

during writing the will.

5.2 Denial of Service SWC-128- Unexpected Revert

 When attempting to send Ethers to multiple recipients

with one function call, there is a potential problem where if

one of the transfers fails e.g., wrong beneficiary address, all

transfers that have already occurred are reverted and the

following transfers will not execute. To address this issue, a

technique is employed to isolate each external call,

effectively transferring the risk of failure from the contract to

the user. This method involves isolating the external transfer,

so no other transfers rely on the successful execution of the

isolated transfers. This technique is known as the Pull- over-

Push pattern [24]. A map was created for refunds where

each beneficiary's address grants him the right to withdraw

his share following the testator's passing.

5.3 Reentrancy Problem SWC-107

 After applying a push-over pull, another problem arises.

The attacker gains control of the contract by recalling the

withdraw function many times. Since the user’s balance is

not set to 0 until the end of the function, each invocation

may succeed and withdraw the balance repeatedly, even if

one of the transfers fails. To prevent this issue, the share is

cleared, followed by the transfer process. Additionally, a

MUTEX is implemented to prevent an attacker from

attempting to call the same function while the first call is still

in progress. The lock prevents it from having any effect. In

2016, The DAO, a Decentralized Autonomous Organization

was hacked, and 3.6 million Ether (approximately $50

million) was stolen using the first reentrancy attack. The

Ethereum foundation issued a critical update to roll back the

hack, which resulted in Ethereum being forked into

Ethereum Classic and Ethereum.

5.4 Self Destruct swc-106

The self-destruct is still running in many solidity

versions. However, its use is highly discouraged because it

eventually changes its semantics, and all contracts using it

will be affected in some way. Self-destruct has been

deprecated and warned against its use. In the proposed

framework, the 'self-destruct' function is replaced with a new

state called 'reject' which causes the contract to be invalid.

6. EXPERIMENTAL RESULTS AND DISCUSSION

Hardhat is utilized for debugging the framework, as

indicated in [26]. Eighteen test cases, designed to simulate

real-world framework usage, were created to ensure

comprehensive testing and alignment with user

requirements.

The first group tests are to 'create real estate'. This

function tests that any citizen can send a request for a

government contract to request ownership approval for his

property. 'Approve RE' and 'Reject RE' functions tested to

ensure the restriction rules. 'Achieve preemption law'

function is also tested. Figure 7a shows the average time

consumed for testing all the functions which include

interactions between government contract and real estate

contract. The graph shows that the maximum time consumed

 Vol.52, No3 July 2024, pp:01-10 Manal Mansour et al Engineering Research Journal (ERJ)

19

for the government to verify the preemption law is around

250ms. The second group of four test cases is for the

functions that include interaction between the government

and the ewill contract. 'Create Ewill' tests the behavior of the

contract after sending many created ewill requests. All the

cases passed with time below 150 MS, as shown in figure 7b

The functions related to real estate contract are tested:

'Offer', 'Unoffer', 'Willing to buy', and 'canBuy' these

functions are internal in real estate contract and don't need

government approval as depicted in figure 7c. Finally, the

functions related to the ewill contract are tested to show the

time consumed for running the following operations:

'Deposit' and 'Withdraw' both functions successfully allowed

the owner to add and withdraw money from his contract.

'Add money beneficiary' succeeds in designating someone

who can receive funds from the contract. 'Add real estate

entry' function succeeded to add information about a real

estate property to the contract. This function also succeeded

to transfer the ownership to the beneficiary after the testator's

death by inheritance. All relevant data are recorded, and the

execution time for all the aforementioned operations is

measured and recorded in figure 7d.

a) Government and Real Estate Interaction b) Government and E-will Interaction

C) Real Estate Operations d) E-will Operations

FIGURE 7: Timing measurements for all the functions within the framework

6.1 Measuring Code Coverage

Code coverage is a metric that can help in understanding

how much of the source code is tested. It guarantees that the

smart contract functions are tested with all possible

outcomes and scenarios. The common metrics mentioned in

the coverage reports are: 1- Function coverage, the main

metric that measures how many of the functions defined

within the contracts have been called. 2- Statement coverage

that test ensures that each executable statement within the

source code is run at least once. 3- Branches coverage

assesses the execution of branches within control structures,

such as if statements, to determine the coverage achieved

during testing. 4- Line coverage measures the proportion of

source code lines that have been tested. Typically, these four

metrics are presented in terms of the number of tested items,

the total items present in the code, and a coverage percentage

calculated as the ratio of tested items to total items found

[18]. The test results demonstrate a 100% coverage of all

functions tested. The only exception is the 'shared' file, the

shared file contains the shared variables among all contracts.

Figure 8 represents the coverage percentage of our test.

6.2 Measuring Gas Consumption

A very important metric is gas consumption which

represents a metric used to gauge the computational

workload of specific operations. The greater the complexity

of an operation, the higher the gas consumption [25].

Average gas usage per method is also reported using

'Hardhat' plugin tool to get metrics of how much gas is used

[18], based on the execution of the previous tests. Figure 9

shows the gas consumption records. The report shows the

average gas cost for each function and the deployment cost

for the main contract. The contract is compiled using an

'optimizer', a built-in function, which reduces either the total

bytecode size or the gas required to execute certain

functions. The functions that don't have min-max reports

don't have optimization suggestions. The block limit

indicates the maximum number of gas units that can be

accommodated within a single block. Various networks may

have distinct values for this limit, with some featuring

dynamically adaptable constraints. Moreover, in emulators

or private networks, it's often possible to customize and set

one's limit.

 Vol.52, No3 July 2024, pp:01-10 Manal Mansour et al Engineering Research Journal (ERJ)

20

FIGURE 8: Code Coverage Test

FIGURE 9: Gas Consumption for each function in the framework

7. CONCLUSION

Blockchain changes how government functions, paving

the way for new service delivery models. Governments have

expressed interest in using blockchain technology, However,

the technology's application and use cases for offering public

services are facing vagueness since there aren't many

published studies, and standardized models that are well

accepted and can be used to make comparisons. This

research intensively investigates successful instances where

blockchain technology has been applied to introduce

innovative services in various countries. The study then

focuses on studying the problems for the current system in

the Egyptian government and introduces the first proposed

framework for the Egyptian government's G2C service to

facilitate the adoption of blockchain technology in two

related services, the real estate sector, and e-will. Detailed

sequence diagrams are designed that Identify the main actors

involved and their roles within the model. The system is

implemented using solidity and deployed first using remix

IDE and then deployed using vscode, node js v16.17.1,

solidity 0.8.9, and hardhat tools. The Mythril is then used for

testing the vulnerabilities that exist in the smart contract to

evaluate the effectiveness and feasibility of our proposed

framework, a series of experiments is carried out utilizing

typical real estate scenarios. However, our attempts to carry

out benchmarking were hindered by the absence of any

quantitative results and the lack of published specifications.

Future work will focus on expanding the model horizontally

to include more services in Egypt. Additionally, using smart

contracts to build a homogeneous blockchain that can

communicate with one another, the ability to distribute

applications, and smart contracts between other blockchain

networks is a useful case study for future work.

8. References

[1] Kerkhoff, D.A.D.N.: Blockchain, good governance and public
procurement. In: LeidenUniversity, Faculty of Governance and
Global Affairs (2021)

[2] Nakamoto, Satoshi.” Bitcoin: A peer-to-peer electronic cash system.”
Decentralized business review (2008).

[3] Lu, H., Huang, K., Azimi, M., Guo, Blockchain technology in the oil
and gas industry: A review of applications, opportunities, challenges,
and risks. Ieee Access 7,41426–41444 (2019)

[4] Zou, W., Lo, D., Kochhar, P.S., Le, X.-B.D., Xia, X., Feng, Y., Chen,
Z., Xu, B.:Smart contract development: Challenges and opportunities.

 Vol.52, No3 July 2024, pp:01-10 Manal Mansour et al Engineering Research Journal (ERJ)

21

IEEE Transactions on Software Engineering 47(10), 2084–2106
(2019).

[5] Mourtzis, D., Angelopoulos, J., Panopoulos, N.: Blockchain
integration in the era of industrial metaverse. Applied Sciences 13(3),
1353(2023).

[6] Comincioli, L.M.: The role of blockchain in improving land-users’
rights (can blockchain solve corruption problems in land
administration in developing countries? - the case of India). (July
2021).

[7] Chu, H., Zhang, P., Dong, H., Xiao, Y., Ji, S.,Li, W.: A survey on
smart contract vulnerabilities: Data sources, detection and
repair.Information and Software Technology, 107221(2023).

[8] He, D., Wu, R., Li, X., Chan, S., Guizani,M.: Detection of
vulnerabilities of blockchain smart contracts. IEEE Internet of Things
Journal (2023).

[9] Mense, A., Flatscher, M.: Security vulnerabilities in Ethereum smart
contracts. In: Proceedings of the 20th International Conference on
Information Integration and Web-based Applications & Services, pp.
375–380 (2018).

[10] C Liu, Z.C.Z.C.B.C. H Liu: Reguard: finding reentrancy bugs in
smart contracts. In: International Conference on Software
Engineering, pp. 65–68 (2018).

[11] Daian, P., Goldfeder, S., Kell, T., Li, Y.,Zhao, X., Bentov,
I.Breidenbach, L., Juels, A.: Flash boys 2.0: Frontrunning, transaction
reordering, and consensus instability in decentralized exchanges.
arXiv preprintarXiv:1904.05234 (2019)).

[12] https://en.eipss-eg.org/egypt-real-estate-registration-crisis-policies-
scenarios / (2021)

[13] https://mnasserlaw.com/real-estate-registration-law / (2024)

[14] Elsheryie, K.A., 2023. Reformation of Will Statutes and the Legality
of eWills.

[15] https://www.nytimes.com/2021/01/13/business/tens-of-billions-
worth-of-bitcoin-have-been-locked-by-people-who-forgot-their-
key.html

[16] Solidity 0.8.9.
https://github.com/ethereum/solidity/releases/tag/v0.8.9. (2021)

[17] Palechor, L., Bezemer, C.-P.: How are solidity smart contracts tested
in open source projects? an exploratory study. In: Proceedings of the
3rd ACM/IEEE International Conference on Automation of Software
Test,pp. 165–169 (2022).

[18] HardHat https://hardhat.org/.(2024)

[19] Manal Mansour , May Salama , Hala Helmi , Mona F.M Mursi.: A
Survey on Blockchain in E-Government Services: Status and
Challenges. International Journal of Engineering Research ans
Technology (IJERT) Volume 12, Issue 4 (2023).

[20] Jain, S.M.: Hardhat. In: A Brief Introduction to Web3: Decentralized
Web Funda mentals for App Development, pp. 167–179.Springer,
(2022).

[21] Paulavicius, R., Grigaitis, S., Filatovas, E.:A systematic review and
empirical analysis of blockchain simulators. IEEE access9,38010–
38028 (2021).

[22] Amir Latif, R.M., Hussain, K., Jhanjhi, N.,Nayyar, A., Rizwan, O.: A
remix ide: smart contract-based framework for the healthcare sector
by using blockchain technology. Multimedia tools and applications,
1–24 (2020).

[23] MythX https://github.com/ConsenSys/mythril.(2023)

[24] Pulloverpush https://fravoll.github.io/solidity-
patterns/pull_over_push.html (2023)

[25] Farokhnia, S., Goharshady, A.K.: Reducing the gas usage of
ethereum smart contracts without a sidechain. In: 2023 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC),
pp. 1–3 (2023).

[26] Modi, R.. Solidity Programming Essentials: A beginner's guide to
build smart contracts for Ethereum and blockchain. Packt Publishing
Ltd (2018).

