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 ABSTRAT   

 
Unmanned aerial vehicle (UAV) systems underwent significant advancements in recent years, 

which enabled the capture of high-resolution images and accurate measurements, with the 

tremendous development in artificial intelligence, especially deep learning techniques, Which 

allows it to be used in the development of Drainage infrastructures that represent a major challenge 

to confront the flood  risks in urban areas and represent a considerable investment, but they are 

often not as well classified as they should be. In this study, we present an automatic framework 

for detecting, localizing, and mapping sewer inlets from image clouds acquired by UAVs based 

on a YOLO CNN architecture. The framework depends on the high image overlap of unmanned 

aerial vehicle imaging surveys, which were then processed using Structure-from-Motion (SfM) to 

generate orthomosaic imagery. The framework uses a YOLOv5 model trained to detect and 

localize sewer inlets in aerial images with a ground sampling distance (GSD) of 3 cm/pixel. Novel 

object-detection algorithms, including YOLOv5n, YOLOv5s, and YOLOv5x, were compared in 

terms of the classification and localization of sewer inlets. The approach is evaluated by cross-

validating results from an image cloud of 250 UAV images captured over a 0.57 km2 study area 

with 228 sewer inlets.  Images with models’ performances from the literature, the new YOLO 

model tested on UAV images in this study demonstrates satisfactory performance, improving both 

precision and recall. The results show that YOLOv5x offers the best precision  (90%) and recall 

(92%), whereas YOLOv5n achieved less accuracy in precision and recall (78%) and (80%), 

respectively. Additionally, increasing image size in the training stage is a very important 

modification in the model. The study approach has a remarkable ability to detect sewer inlets and 

can be used to develop the inventory of drainage infrastructure in urban areas.  

KEYWORDS: Drainage mapping, YOLO algorism, small object detection, unmanned aerial 

vehicle, urban drainage. 
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 الملخص 

بالإضافة للتطور الهائل في أنظمة الذكاء ,  عالية الدقة  وقياسات صور  لتوفرهدت أنظمة الطائرات بدون طيار تطورا هائلا في الآونة الأخيرة  ش

في تطوير البنية التحتية لصرف المطر التي تمثل تحديا كبيرا في مواجهة  هاتين التقنيتين يمكن استخدام الاصطناعي خاصة تقنيات التعلم العميق.

في هذه الدراسة نقدم اطارا    تصنيفها كما ينبغي.  ممخاطر الفيضانات في المناطق الحضرية وتمثل استثمارا ضخما لكنها في كثير من الأحيان لا يت

نية  ورسم خرائط لها من الصور التي تم الحصول عليا بطائرة بدوت طيار واعتمادا على ب  االيا للكشف عن مداخل صرف المطر وتحديد موقعه

( SFMيعتمد الإطار على التداخل العالي للصور الجوية والتي تمت معالجتها باستخدام خوارزمية ),    (YOLOالشبكات العصبية في نموذج )

( الذي تم تدريبه لاكتشاف وتحديد مواقع مداخل صرف المطر في الصور  5YOLOvيستخدم الإطار نموذج )  . (Orthoimage)لإنشاء الصورة  

من حيث    (YOLOv5n, YOLOv5s, and YOLOv5x)تمت مقارنة خوارزميات الكشف الجديدة لكل من    سم/بكسل.  3المأخوذة بدقة  الجوية  

صورة تم   250تصنيف وتوطين مداخل صرف المطر. يتم تقييم هذا النهج من خلال التحقق من صحة النتائج من سحابة الصور المكونة من  

الصور مع أداء النماذج   ىمدخل صرف مطر. بالنظر ال222رات بدون طيار على مساحة أكبر من نصف كيلو متر مربع يوجد بها  ئالتقاطها بطا

ستدعاء في الأبحاث السابقة يوضح النموذج الجديد لهذه الدراسة الذي تم اختباره على صور الطائرات بدون طيار أداء مرضيا حيث يحسن الدقة والا

 .  ورسم خرائط لها% وله قدرة عالية في اكتشاف مداخل صرف المطر 92% واستدعاء 90ة ( يوفر دقYOLOv5xوتظهر النتائج ان )

  للمناطق المطر صرف  ،بدون طيار طائرات ،كشف الأجسام الصغيرة ،YOLOخوارزمية  ،المطررسم خرائط صرف الكلمات المفتاحية : 

 .ةالحضري

1 Introduction 
Urban growth is a continuing trend, and the development of entombed utility networks is an 

important part of its outgrowth, but locating network items is a hard mission. The object classification 

(larger than houses or equal ) in aerial images has been extensively researched in the last studies, but 

small object localization is very challenging and rarely studied because of many factors, such as the 

difference in object colors, crowded neighborhoods, aspect ratios, shadow effect, and non-uniform 

background [1]. 

 Artificial Intelligence (AI) and Remote sensing (RS) present an automated solution to error-

prone and expensive traditional data collection. (RS) processes depend on data collected for small 

infrastructure objects at street level that are found  on roads. In that respect, aerial imaging is very 

reliable; aerial imagery with high resolution can normally be georeferenced and rectified with 

centimeter-level accuracy. Although the georeferencing accuracy and rectification depend on the 

quantity and quality of GCPs, this is usually not important in height terrain urban areas. UAV imagery 

achieves this, particularly thanks to its large image overlap and very high GSD.  

Several studies investigated manhole cover detection, but sewer inlet (S.I) detection in aerial 

imagery has not been studied. From a standpoint of remote sensing, sewer inlets are like manhole 

covers  in terms of construction material, frequency, location of occurrence, and size. So, it's important 

to illustrate the latest research in the detection of manhole cover. (Pasquet 2017) combined detection 

method, predictions from the SVM support vector machine, and HOG features with detection from a 

geometric circle filter. Trained and tested on GSD 4 cm/pixel aerial imagery, the method achieved 

detection equal to 40% of total manholes with 80% precision [2]. More recently, (Commandre 2017) 

implemented a deep learning CNN to detect manholes using aerial imagery with a (5 cm/pix) 

resolution. although the resolution is lower, the performance achieved a recall of  50% and a precision 

of 69% [3]. The most of studies apply detection in single view, to enhance the performance of 

detection, (Vitry, Schindler et al. 2018) using multiple views, and a (Viola and Jones) model trained 

to detect (S.I) in aerial images with 3–3.5 cm/pixel resolution. In the Multiview approach compared 

with the single-view detector, results showed improvement in average precision, which increased from 

65% to 73% [1]. The proposed method by (Zhou 2022) Beginning, coarsely classifies the images into 
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types of rainy and non-rainy then based on the coarse classification results performs manhole cover 

detections. the method achieves an accuracy to detect manhole cover of 86% and F1-score of 87% 

using the SVM model [4].  

For aerial detection applications, (UAVs) are a natural competitor: when creating orthoimage 

using UAVs, recommended high overlap captured aerial images to reduce perspective distortion 

resulting from low flight height. It is recommended,  to have an overlap of more than  50% in the side 

and 70%  in the front as shown [5] The high accuracy achieved at  (50 m) a flight altitude and (10) 

GCPs.  also, proves that the accuracy of (X, Y) depends on the GCPs number. (Mirko 2019) illustrated 

the effect of the GCPs on the geometric accuracy of photogrammetric. The results illustrated that 3 

GCPs for georeferencing for GIS applications, recommended that 7 GCPs and cartographic production 

need 15 GCPs [6]. (Jiménez-Jiménez 2021) showed the DTMs' accuracy and quality depend on four 

factors: (1) the UAV system, either camera or UAV platforms; (2) image acquisition and flight 

planning (image overlap, flight altitude, flight line orientation, UAV speed, georeferencing, and 

camera configuration) (3) photogrammetric digital terrain model generation (software, ground 

filtering, and DEM generation) (4) geomorphology.  

They recommended optimizing process variables to have high-accuracy DTMs [7]. (Liu, Han et 

al. 2022) studied the influence of five factors on UAV photogrammetry (altitude, image resolution, 

overlap (side and front), GCPs, and focal length), The results prove a better design for processes that 

produce high accuracy [8].  

Since a few years, (J.Redmon 2016) presented a novel model based on a Convolution Neural 

Network for object detection named You Only Look Once (YOLO). They use a single CNN to predict 

bounding boxes and then class probabilities directly from the full image in one evaluation. So, the 

detection pipeline can be enhanced directly completely on prediction performance [9]. Since the 

original version (YOLOv1) of the novel model achieves a low (mAP), they have improved the model 

to a new version (YOLOv2) [10].  

YOLO deep learning method in the road field presents an applicable method  to the detection of  

road diseases like pavement crack prediction as illustrated [11].  (Zhu 2022) proposed the capture of 

road distress images using a UAV. depend on three CNN models for object detection YOLOv4, R-

CNN, and YOLOv3, were trained on the dataset, and compared their performance [12]. Agriculture 

field, (Puliti and Astrup 2022) used the YOLOv5 model to  recognize tree leaves and then classify trees 

depending on the leaves damage. UAV imagery was acquired from 89 study areas and was manually 

annotated into 55 thousand single trees classified into three classes based on their health. The results 

showed a precision of 76 % and recall of 78 % [13].  

Recently, new versions of the YOLO model, namely, YOLOv5n, YOLOv5s, and YOLOv5x, 

have become more accurate in object detection [14]. 
 

1.1  Scope and Novelty of Study 

The study aims to create an automated method for detecting small objects to identify sewer inlets 

using UAV clouds for orthophoto. In total, 250 images were acquired covering an area =0.57 square 

kilometers used as a case study with 220 S.I sewer inlets, Additionally, the optimal UAV flight settings 

were examined to ensure accurate orthophoto and DEM generation using the Agisoft Metashape 

program. Novel Object-detection algorithms, including YOLOv5n, YOLOv5s, and YOLOv5x were 

compared the classification  of sewer inlets. This study is the first clarification of the latest YOLO 

detector based on UAV images in the water management field. 
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2 Datasets and Study Area 

2.1 Data Acquisition 

A low-cost UAV (DJI Phantom ) is used to acquire images during a half-hour maximum flight 

time, The UAV has a 16 MP compact digital camera (8.8 mm Focal Length) controlled by UAV 

autopilot. The  GCPs coordinates were determined by a Trimble R8 GNSS. The UAV was flown over 

an area of 0.57 km2 and 90 m flight height. In total, 250 images were taken with a GSD of 3.5 cm/pixel 

UAV data source (vitry, et al 2018), and our results regarding orthoimage, Dem generation, and their 

errors against ground control points are considered identical. as shown in Table. 1.  

Table. 1 The study area Characteristics, and  UAV. 

Location  Zurich, Switzerland 

weather case during flight Overcast 

area  0.5 square kilometer  

Altitude  Average =90 m  

Lateral and Frontal overlap 

percentage  

60% and 70% respectively 

data quantity 250 images 

Acquisition data duration 2*0.5 hr. 

GSD Image  3-3.5 centimeter per pixel 

Resolution   4864 x 3648 pixels 

No. of GCPs 10  

 

2.2 Image processing and orthophoto production 

The Agisoft program was used for image processing [15] to evaluate the external and internal 

parameters of the camera and produce an orthoimage Fig.1 as well as DEM for the case study using 

the steps as shown in the program. The orthoimage is generated from the image projections by making 

a mosaic, for orthoimage georeferencing ten GCPs were used. The study area is shown in Fig.1 and 

the registration error is shown in Table. 2 The processing time to generate the orthophoto and DEM 

was 12 hours  (using core i5, 12 GB RAM, and card 2 GB). 

 

 

 

 

 

  



APPLICATION OF UAV AND GEOSPATIAL AI TECHNIQUES 

FOR SEWER INLETS LOCALIZATION AND MAPPING. 

160                                                             JAUES, 19, 72, 2024  

 

Table 2. Registration error of DEM and Orthoimage Generation evaluated at (GCPs). 

GCP Error X (cm) Error Y(cm) Error Z(cm) 

Min -1.9 -2.5 -6.4 

Max 2.3 3.3 5.9 

Mean (cm) 0.03 0.13 -0.59 

Sigma (cm) 1.32 1.99 2.98 

Root Mean Squar Error (cm) 1.32 2.00 3.04 

 

 

 

Fig.1. The Case Study (0.57 km2) Zurich, Switzerland. The Generated Orthoimage and DEM. 
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3 Experiment 
Table . Data collection instruments and image processing tools. 

Table 3. Methodology list: 

Seq  Tool Function  

1   UAV  DJI-phantom  Image acquisition. 
 

2 GPS Observation GCPs coordinates. 
 
 

3 Metashape Agisoft Orthophoto and DEM Generation. 

 

4 Python  The model writing language.  

5 Roboflow Dataset annotation.  

6 YOLO Detector Automatic Sewer inlets Localization. 
 

 
7 Google Colab Environment of Model Training and Validation.  

8 CPU Environment of Model testing.  

9 Arc GIS Map Production & Orthophoto Clipping and Merging.  

10 ANOVA Analysis of Variances for results. 

        

3.1  Experimental environment 

The  YOLOv5 detectors were trained using 250 full-scale images captured with a resolution of 

4864 x 3648 pixels, which needs a long processing time to train detectors. Because of the limited 

computing resources, the experiments were conducted on a Google Colab cloud server, as shown in 

Table 4.PyTorch 1.2.0 was the experimental frame.  

Python was used for writing object-detection algorithms.  

To accelerate training GPUs were used.  

 

Table 4  details of google colab server: 

NVIDIA- 525.85.12 Driver: 525.85.12 CUDA:12.0 

GPU Name   Fan Temp Perf  Bus-Id    .A Memory-Usage Volatile .GPU- M. 

Tesla  T4 

N/A 45C   P0     25W/70W 

0MiB / 15360 MiB 0%  Default  

N/A 

 

3.2 Framework of Machine learning 

Workflow to train YOLO,  as illustrated in Fig.3, The study depends on resizing original image 

into two image sizes before input to network. First, the original image was resized to 640 pixels in 

YOLO5n, YOLO5s, and YOLO5 x.  

Second, the original image was resized to 1280 pixels in YOLO5n6, YOLO5s6, and YOLO5 

x6. Before the training stage, Each  Sewer Inlet was labeled manually by rectangular boxes (ground-
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truth boxes) in all images.  The collected images were divided into a training dataset with proportions 

of 0.8  and a validation dataset with proportions of 0.2.  

Data augmentation using roboflow was performed to increase the training dataset by three times. 

Finally, the dataset for training based on epochs (100 to 300) was input to the YOLO network 

architecture.  

3.3 Model training 

The YOLOv5 Convolution Neural Network architecture is a single-stage detector consisting of 

three parts:  

The first component is named backbone to extract features of an input image using cross-stage 

partial architecture, that enhanced model size and speed of boosting [16], [17].  

The second component named the neck is used to enhance ability the model on object scaling 

and  unseen data transformation using path Aggregation net [18].  

The third and final component named Head, output vectors generated here with the confidence 

of class, bounding box, and scores. such a step is important to perform the final detection parameters.  

This step-in version 5 and previous versions have not changed [13].  

The Sewer Inlets prediction using the YOLOv5 model was studied in terms of precision, Recall, 

and F1 score. Fig. 2 shows the small objects (Sewer inlets) used in training.  

 

 

Fig. 2 The type of small objects (S.I) used in Experiment. 
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Fig.3. flowchart of the proposed methodology. 

3.4 . Loss function 

YOLOv5 model corrected confidence values and coordinates of the bounding box using the 

square error loss it is called the loss function [9]. Regression of the bounding box, objectness, and 

probability of a class, for the three scores, computed  the loss function then the compounded loss 

function [13]. 

3.5 Evaluation metrics 

Evaluation metrics of the model are Recall (R), Precision (P), which is equivalent to accuracy, 

and intersection over union (IoU) identical to mean average precision (mAP) [13] as illustrated in Eq. 

(1) and Eq. (2):  

𝐴𝑐𝑐𝑢𝑟 =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
                                                                    Eq. (1) 

𝐼𝑂𝑈 =
(𝐵𝑝∩ 𝐵𝑏)

(𝐵𝑝 ∪ 𝐵𝑏)
                                                                               Eq. (2) 
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Where:          Bp = Bounding Box predicted,          Bg = ground truth (BB), 

 (TP) = number of correctly predicted object samples,      

(FP) = predictions number where non-objects are founded,    

(FN) = number of undetected objects,       

Accuracy model evaluated by metrics, P, R, and F1 as shown in Table  and Equation. (3), (4) and (5) 

[19]: 

Table 5 The bounding box identifications: 

Ground Truth bounding box. 

 

Results 

Prediction 

 

 (Positive) (negative) 

Objects (existing actually) (TP) (FN) 

Nonobjects ( not existing 

actually) 

(FP) (TN) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                  Eq.  (3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                           Eq. (4)                          

                                          

𝐹1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                                      Eq. (5) 

 

Precision score equals correct prediction percentage, A greater IOU indicates a smaller P. Recall 

score equals all positives that is the model predicted. The F1 score indicates confirmation of R and P 

metrics, and it is the harmonic mean of them. AP equals the P–R curve integration, which equals the 

area under the P_R curve. 

3.6 post-processing and mapping 

The possibility of using YOLOv5n, YOLOv5s, and YOLOv5x for purposes of mapping with 

orthophoto  generating by image UAV, needs to add post-processing steps, as follows: First The UAV 

orthomosaic Tiling: As described by [20] the orthomosaic were tiled into suitable area geotiff tiles 

(The image size in the prediction stage equals the image size in the training stage) using an overlap = 

2 m between tiles. Second Predicting each tile: using the best weights generated from the training 

model, for each tile was predicted coordinates of bounding box.  Third, Image/map: YOLOv5  

predicted bounding box coordinates from the origin images top left corner in pixel values and then we 

converted it using the UTM coordinates to a geographical space. Fourth, Bounding/box: when the 

intersection between bounding boxes pairs was > 0.75, the smallest confidence of class and box is 

discarded. 
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4  Results and Discussion 

4.1 YOLOv5 detectors and  Sewer Inlets 

 

        .      (a) YOLOv5 (n)                               (b)YOLOv5 (s)                                 (c)YOLOv5(x) 

 

          (d) YOLOv5 (n6)                        (e)YOLOv5 (s6)                               (f)YOLOv5 (x6) 

Fig. 4 Sewer inlet  Precision Recall curve. 

 

               

                       (a). Img Size= 640                                                               (b) Img Size -1280. 

Fig. 5. Metrics (P-R, P, R and F1 score) for three YOLOv5 detectors. 
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Fig. 4. illustrates the P–R curves to predict the sewer inlet by three different YOLOv5 architectures. 

Fig. 5 (a) shows the Sewer inlets P, R, PR, and F1 score using the YOLOv5 detectors.  

YOLOv5n  exhibits inferior performance in sewer inlet detection,  with a mAP =15.8%. YOLOv5s 

exhibit a better performance than YOLOv5n with F1 score and recall of 33% and 57%, respectively. 

YOLOv5x demonstrated better overall performance, for a metric of an F1 score equal to 58% and a 

Recall equal to 72%. 

Fig. 4 and Fig. 5  (b) show the Sewer inlets P, R, PR, and F1 score using the YOLOv5 Modified 

detectors (n6, s6, x6),  results show better performance when the image size was modified in the 

training model from 640 to 1280.YOLOv5n performance in sewer inlet detection, a mAP increased 

from 15.8% to 55%. YOLOv5s6  achieved a better performance than YOLOv5s with F1 score and 

recall from 33% and 57% to 72% and 87% respectively. YOLOv5x6 demonstrated better overall 

performance, with an F1 score from 58% to 92% and a Recall from 72% to 93%. 

Vitry.2018 used the same  252 UAV images for S.inlet detection, achieving (AP) = 73% with 

a Viola–Jones classifier [1]. [21] used 400 UAV images to a training data set for pavement distress 

detection, the results were (mAP) = 53.1% with the YOLOv3 architecture. [22] conducted changes on 

YOLOv3 architecture to improve the performance of the original baseline, where the results for (mAP) 

were 52.3%. [23] used  the YOLOv3   tested on UAPD  for pavement distress detection, achieving 

(mAP) = 56.6%.  

Fig. 5 shows that YOLOv5x6 and YOLOv5s6 generally performed better than yolov5n6.  

Anchors that are used can extract the features of an object in all regions, through higher features of 

semantics and the sequence of low-level information of texture, YOLOv5n, yolov5s, and YOLOv5x 

are strong enough to detect sewer inlets.  

YOLOv5x6 has better performance and a higher mAP, vs. poor performance in YOLOv5n to 

predict Sewer inlets. More than that, with studied deeply can achieve better mAP value.  

The experiment was repeated on the three model versions to prove the model stability in the Sewer 

inlet prediction using this dataset. 

4.2 Effect of repeat training 

Five additional training experiments were performed to ensure the validity of the model 

prediction performance. The experimental configuration was the same as that in the previous training. 

Fig. 6 (a) and (b)  shows the mAP and F1 score of the third models. Fig. 6 illustrates in the general 

direction, the five experiments results were stable performance. The error is in the range of 3% between 

all experiments, with volatility, it is common. Although the same weights are used, the training results 

are slightly different each time. Due to the random selection of training images in each batch and the 

variety of gradients, it led to slightly different predictive results in each training round. The results of 

the YOLOv5x6 model once again showed a performance distinct from other models. 
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(a)                                                                                (b) 

Fig. 6. Model prediction with repeated training (mAP) and (F1 score) respectevly. 

4.3 Effect of MaxEpoch on dataset augmentation 

 

 

Fig. 7. Effect MaxEpochs on Dataset augmentation based on YOLOv5s6. 

The accuracy of Sewer Inlet prediction significantly depends on MaxEpoch adjusting. for 

suitable performance to the Sewer inlet detection using YOLOv5 detectors, MaxEpoch should be at 

least 100. An epoch refers to the total number of repeats for applying training on all images used in 

one round, it is important to deep learning performance [19]. Identifying the MaxEpochs numbers can 

improve model architecture performance to get a better prediction result, after that, no significant 

performance enhancement. This study used max iterations of 200 in the training stage. Fig. 7. shows 

the YOLOv5s6 testing metrics results to discuss its effects. When MaxEpochs increased up to 100, 

the model performance accuracy increased significantly for object detection.  Increasing MaxEpoch by 

more than 100 did not achieve significantly better accuracy, in addition increased training time in case 

200 images and 500 images, but it increased after 150 MaxEpochs in case 100 images. Based on the 

study results, the suitable  MaxEpoch ranged between 100 and 200 for achieving accuracies exceeding 
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72% by 500 images. in general dataset augmentation achieved higher (72%) accuracies at less than 

150 MaxEpoch. indicated to augmentation dataset reducing MaxEpochs. 

         

(a)                                                                              (b) 

Fig. 8. Effect of Dataset augmentation. 

The study presents the F1 score, Precision, Recall, and mAP for testing datasets, as shown in 

Fig. 8 (a). yolov5s6 achieved values (72%, 84%, 87%, and 72%) for the F1 score, Precision, Recall, 

and mAP. The reliability of autonomous Sewer Inlet detection in UAV images using convolution 

neural networks is dependent significantly on the size of the training and validation dataset. Through 

the training stage, 100, 200, and 500 training images were prepared with augmentation and then 

entered the network of YOLOv5. Fig.8 illustrates the results of YOLOv5  conducted using different 

datasets. Overall, the prediction metrics of Sewer Inlet increased with increasing the number of images.  

YOLOv5s6 achieves a better performance in accuracy, (Recall was increased from 76% to 87%) 

when augmentation was applied to training images. As shown in Fig. 8 (b) YOLOv5n6 showed 

relatively low accuracy to predict Sewer Inlet, When the dataset number was increased from 100 

images to 500 images, mAP increased to 55%. On the other hand, YOLOv5x6 gives the best accuracy.  

It is recommended, based on this evaluation, when training a YOLOv5 for reliably predicted Sewer 

inlets in UAV images, must use a minimum of 500 images. 

4.4 Results of YOLOv5 models 

Results of YOLOv5 model as shown in Fig. 9.(a). Predictions of Sewer inlets using YOLOv5x 

were generally better than YOLOv5s. Based on the mAP of the (S.I) was calculated as 75 %, for the 

three models. Sewer inlets detection using YOLOv5x6 was 90% for Recall, compared with 73% 

achieved  by (Vitry, 2018), proof of the potential of UAV sewer inlet prediction based on CNN. Sewer 

inlet prediction results by YOLOv5s6 and YOLOv5x6 are presented in Fig. 9.(a) and Fig. 9.(b), 

YOLOv5x6 is the best model in prediction. Sewer inlets have parallel features and are extensively 

annotated in a dataset, so, can be predicted well with high-confidence values as shown in Fig.9 (a) 

and (b). 
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(a) YOLOv5s                                                    (b) YOLOv5x 

Fig. 9. Sewer inlets detection results. 

4.5 Orthophoto Predictions 

The YOLOv5 model appeared excellent consistency between the visible Sewer Inlets and 

Bounding box prediction, and highlighted, in the Orthophoto as shown in Fig. 10. The model has an 

important advantage as the ability to recognize Sewer Inlets in crowded scenes and different features 

in Orthophoto with a (GSD) of 3.5 cm/pixel, the yolov5 model achieved 90% accuracy for Sewer 

Inlets detection. 

  

Fig. 10. Prediction of sewer inlets in Orthophoto after clipping. 

4.6 ANOVA Two-way test 

To analyze the model accuracy among Image sizes, ANOVA (two-way) is used [24] ,[25] ,[26] 

. The test is conducted to compare the (mAP) for two image sizes in each model. Two versions of the 

YOLO model (V5s and V5x) called M and two image sizes (640 and 1280) called S are taken as 

factors. ANOVA  first step, should be declared the null, and the alternative hypothesis [27]. A Null 

hypothesis is called H0. The alternative is called H1.  

H0: XM1 =XM2 = XM3:     :XMn (means of factor M is equal).                                     Eq.(6) 

H0: XS1 =XS2 = XS3:     :XSn (means of factor S is equal).                                        Eq. (7) 

H0: XMS1 =XMS2 = XMS3:     :XMSn (means M and S are equal)                                  Eq. (8) 
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ANOVA was performed as illustrated in  [28]. Here, the sum of squares was declared as three 

types: sum of square for factor M (SSM), sum of square for factor S (SSC), and sum of square for both 

factors M and S (SSMS).The two-way ANOVA can be calculated by declaring the factors M and S as 

model and class, respectively. The result of the calculation is shown in Table 6. From Table 6, the F-

value is calculated as 130. So, it is denoted as calculated F-value. 

F -value (calculated) =70                        image size                        Eq. (9) 

F -value (calculated) =1.43                         model                          Eq. (10) 

Critical F-value is 4.11. So, it is denoted as tabulated F-value. 

F -value (crit)= 4.11                                                                        Eq. (11)  

Table 6. ANOVA Results: 

 

Image size factor, the calculated F-value is 70 and the critical F-value is 4.11. Hence, the null 

hypothesis can be rejected, and the alternative hypothesis can be accepted. 

 Models’ factor, the calculated F-value is 1.43 and the critical F-value is 4.11. Hence, the null 

hypothesis can be accepted. Analysis proves that there is a significant relationship between the mean 

values of the S factor,  but there is no significant relationship between the mean values of the M factor. 

By declaring the models and Image size as two factors, the two-way analysis proves that the 

mean values of (mAP) vary between each image size, and the mean values of (mAP) no more change 

between each model.  (mAP) was better  During the 1280 image size, it reached 88% with yolov5x, 

but in 640 image size, it was less than 25% with yolov5s.       

5 Recommendation  
There are many possibilities for the development of an automated sewer inlet detection approach 

and drainage mapping  using aerial imagery, but  two main limitations need more study.  

First limitations, the sewer inlets are not visible in (UAV) images because they are temporarily 

covered by trees and debris or vehicles. This problem can be reduced by performing flights, at different 

times.  

The second limitations, there are many sewer inlet forms and situations, in our case study only 

one type of sewer inlet is trained. To adjust this variety , first must increase the training data variety, 

second, best adaptation of image capturing, like increasing camera tilt. Therefore, depending on  the 

relevance of the illustrated limitations and the completeness required of the data, it may be necessary 

either adjust the detection approach or  verify the detection results manually. 

Supplementary Materials: The data used in this paper is available online at 

https://zenodo.org/record/1197592 , 

Source of Variation SS df MS F P-value F crit

Image Size 20702.5 1 20702.5 70.24411 5.5577E-10 4.113165277

Models 422.5 1 422.5 1.433553 0.23901009 4.113165277

Interaction 562.5 1 562.5 1.908577 0.17563605 4.113165277

Within 10610 36 294.7222

Total 32297.5 39

https://zenodo.org/record/1197592
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6 Conclusion 
The paper studied how to develop a YOLOv5 model, through the combined use of a labeled 

database of  UAV images and Convolution Neural Networks, to predict sewer inlets accurately and 

mapping it. The important study results are that the model achieved suitable accuracy metrics for a 

sewer inlet, with a validated case study using 250 UAV full-scale images. 

Results show that the use of the YOLOv5 model increases (AP) from 0.73 to 0.90 as compared to 

a literature review using the same GSD of the dataset. The gain is attributed to the ability to exploit 

the full resolution of the raw UAV images. 

This study can identify more than 91% of the (S.I) with a precision of 90% and localize them when 

using a YOLOv5x6 detector that trained on 250 UAV images and max epochs 200 and based on 

YOLOv5n at the same factors was able to identify about 80% of the (S.I) with precision of 78%. 

Additionally, this study illustrated that increasing image size from 640 to 1280 in model 

training, a very important modification in yolov5 to achieve best accuracy in sewer inlet detection 

performance  in UAV imagery, where YOLOv5x6 achieved Precision, Recall=90%, and 92%, 

YOLOv5x achieved  Precision, Recall=78%, and 72%.Both P,  R, and mAP are substantially better 

than the last results for the sewer inlet and manhole cover detection.  

Now, urban water practitioners can create and update their inventory, the value added by the 

YOLOv5 detector is more than the incremental improvement that is usually gained by tuning the image 

classification method. Thus, this (S.I) detection solution can be used to develop the inventory of 

drainage infrastructure in urban areas. 
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