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1. Introduction 

EQ-algebras were introduced by Novák (2006) [1] and 

Novák and Baets (2009) [2] as generalization of residuated 

lattices (see [3]). Unlike the residuated lattices, the basic 

operation in it is a fuzzy equality while implication is 

derived from it. Its original motivation comes from the 

study of higher-order fuzzy logic [4] that was obtained as 

a generalization of simple type theory in the style of L. 

Henkin who developed in [5] a very elegant theory (cf. also 

[6]) in which the basic connective is equality. 

EQ-algebras brought an idea to develop (fuzzy) many-

valued logics on the basis of fuzzy equality (equivalence) 

as the principal connective. Accordingly, a formal theory 

of new different many-valued logics, called EQ-logics, has 

been recently introduced by M. Dyba and V. Novák [7]. 

The current investigation of EQ-algebras (see [7-10]) 

shows that goodness, i.e. each element 𝑥 is equal to 𝟏 in 

the degree 𝑥, is sufficient for the resulting algebra has 

many reasonable properties. The goodness axiom implies 

that the algebra is separated (i.e., two elements equal in the 

degree 𝟏 must be identical) but not vice-versa. Therefore, 

Separateness turned out to be indispensable for any kind of 

fuzzy equality-based logic. 

One of the important algebraic consequences of goodness 

axiom is axiomatizing the class of representable good EQ-

algebras (expanded by Delta-connective) (see [8, 9]). This 

is mainly based on the fact that good EQ-algebras give raise 

to BCK-algebras [11, 12]. 

In this paper, we continue the study of EQ-algebras. We 

introduce and study a class of separated (not necessarily 

good) lattice EQ-algebras that may be represented as 

subalgebras of products of linearly ordered ones. Such 

algebras are called representable. Namely, we enrich 

separated lattice EQ-algebras with a unary operation (the so 

called Baaz delta), fulfilling some additional assumptions. 

The resulting algebras are called ℓEQΔ
s -algebras. One of the 

main results of this paper is to characterize the class of 

representable ℓEQΔ
s -algebras. We show that prelinearity 

alone characterizes the representable class of ℓEQΔ
s -

algebras. We also supply a number of useful results, leading 

to this characterization. 

This paper is structured as follows: in the next section we 

overview the basic definitions and properties of EQ-

algebras and their special. In Section 4 we introduce and 

study the class of ℓEQΔ
s -algebras and we devote Section 5 

to summarize the results.

 

2. EQ-algebras: an overview 

Definition 1. ([9]) An algebra ℰ = (𝐸, ∧, ⊗, ∼, 𝟏) of type (2, 2, 2,0) is called an EQ-algebra where for all 𝑎, 𝑏, 𝑐, 𝑑 ∈
𝐸: 

(E1) (𝐸, ∧, 𝟏) is a ∧-semilattice with top element 1. We set 𝑎 ≤ 𝑏 iff 𝑎 ∧ 𝑏 = 𝑎, 

(E2) (𝐸, ⊗, 𝟏) is a monoid and ⊗ is isotone in both arguments w.r.t. 𝑎 ≤ 𝑏, 

(E3) 𝑎 ~ 𝑎 = 𝟏,                                                                              (reflexivity) 

(E4) ((𝑎 ∧ 𝑏) ∼ 𝑐) ⊗ (𝑑 ∼ 𝑎) ≤ 𝑐 ∼ (𝑑 ∧ 𝑏),                              (substitution)   

(E5) (𝑎 ∼ 𝑏) ⊗ (𝑐 ∼ 𝑑) ≤ (𝑎 ∼ 𝑐) ∼ (𝑏 ∼ 𝑑),                                    (congruence)  

(E6) (𝑎 ∧ 𝑏 ∧ 𝑐) ∼ 𝑎 ≤ (𝑎 ∧ 𝑏) ∼ 𝑎,                                             (monotonicity) 

(E7) 𝑎 ⊗ 𝑏 ≤ 𝑎 ∼ 𝑏. 

The binary operation " ∧ " is called meet (infimum), " ⊗ " is called multiplication, and " ∼ " is a fuzzy equality. We set, 

for 𝑎, 𝑏 ∈ 𝐸: 
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 𝑎 → 𝑏 = (𝑎 ∧ 𝑏) ∼ 𝑎 (1) 

 �̃� = 𝑎 ∼ 𝟏 (2) 

The derived operation (1) will be called implication. If 0 is a bottom element of  𝐸, then we define the unary operation ¬ 

on 𝐸, for all 𝑎 ∈ 𝐸, by 

 ¬𝑎 = 𝑎 ∼ 𝟎 (3) 

Definition 2. ([4, 8]) Let ℰ be an EQ-algebra. We say that it is: 

(a)  separated if for all 𝑎, 𝑏 ∈ 𝐸, 𝑎 ∼ 𝑏 = 𝟏 implies 𝑎 = 𝑏, 

(b)  good if for all 𝑎 ∈ 𝐸, �̃� = 𝑎, 

(c) lattice EQ-algebra (ℓEQ-algebra) if the underlying ∧-semilattice is a lattice in which the following 

substitution axiom holds for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐸: 

 ((𝑎 ∨ 𝑏) ∼ 𝑐) ⊗ (𝑑 ∼ 𝑎) ≤ (𝑑 ∨ 𝑏) ∼ 𝑐 (4) 

(d) prelinear if for all 𝑎, 𝑏 ∈ 𝐸, 1 is the unique upper bound in 𝐸 of the set {(𝑎 → 𝑏), (𝑏 → 𝑎)}. 

Note that every good EQ-algebra is separated, but not vice-versa (see [4]). EQ-algebra has many interesting properties 

(see [4, 9]). We only mention some of them that will used later. 

Lemma 1. ([9, 13]) Let ℰ be an EQ-algebra. Then the following properties hold for all 𝑎, 𝑏, 𝑐 ∈ 𝐸: 

(a) 𝑎 ∼ 𝑏 = 𝑏 ∼ 𝑎; 

(b) (𝑎 ∼ 𝑏) ⊗ (𝑏 ∼ 𝑐) ≤ (𝑎 ∼ 𝑐); 

(c) 𝑏 ≤ �̃� ≤ 𝑎 → 𝑏; 

(d) 𝑎 ⊗ 𝑏 ≤ 𝑎 ∧ 𝑏 ≤ 𝑎, 𝑏; 

(e) (𝑎 ∼ 𝑏) ≤ 𝑎 → 𝑏   𝑎𝑛𝑑  𝑎 → 𝑎 = 𝟏; 

(f) If 𝑎 ≤ 𝑏 then 𝑎 → 𝑏 = 𝟏, 𝑐 → 𝑎 ≤ 𝑐 → 𝑏 and 𝑏 → 𝑐 ≤ 𝑎 → 𝑐; 

(g) (𝑎 → 𝑏) ≤ (𝑐 → 𝑎) → (𝑐 → 𝑏);        

(h) (𝑎 → 𝑏) ≤ (𝑏 → 𝑐) → (𝑎 → 𝑐); 

(i) 𝑎 → (𝑏 → 𝑐) ≤ 𝑏 → (𝑎 → �̃�); 

(j) 𝑎 → (𝑏 → 𝑐) ≤ (𝑎 ⊗ 𝑏) → �̃�4; 

(k) If ℰ is ℓEQ-algebra, then (𝑎 → 𝑐) ⊗ (𝑏 → 𝑐) ≤ (𝑎 ∨ 𝑏) → 𝑐. 

Proposition 1. ([9]) The following statements are equivalent: 

(a) An EQ-algebra ℰ is separated. 

(b) 𝑎 ≤ 𝑏 iff 𝑎 → 𝑏 = 𝟏 for all 𝑎, 𝑏 ∈ 𝐸. 

This means that the implication operation " → " in a separated EQ-algebra precisely reflects the ordering " ≤ ". 

3. 𝓵𝐄𝐐𝚫
𝐬 -algebras 

Definition 3. A ℓEQΔ
s -algebra is an algebra ℰΔ = (𝐸, ∧, ∨, ⊗, ∼, Δ, 𝟎, 𝟏) that is a separated ℓEQ-algebra with a bottom 

element 𝟎 expanded by a unary operation Δ: 𝐸 → 𝐸 fulfilling the following axioms: 

(EΔ1)   Δ𝟏 = 𝟏; 

(EΔ2)   Δ𝑎 ≤ 𝑎; 

(EΔ3)   Δ𝑎 ≤ ΔΔ𝑎; 

(EΔ4)   Δ(𝑎 ∼ 𝑏) ≤ Δ𝑎 ∼ Δ𝑏; 

(EΔ5)   Δ(𝑎 ∧ 𝑏) = Δ𝑎 ∧ Δ𝑏; 

(EΔ6)   Δ(𝑎 ∨ 𝑏) ≤ Δ𝑎 ∨ Δ𝑏; 

(EΔ7)   Δ𝑎 ∨ ¬Δ𝑎 = 𝟏; 

(EΔ8)   Δ(𝑎 ∼ 𝑏) ≤ (𝑎 ⊗ 𝑐) ∼ (𝑎 ⊗ 𝑐); 

(EΔ9)   Δ(𝑎 ∼ 𝑏) ≤ (𝑐 ⊗ 𝑎) ∼ (𝑐 ⊗ 𝑏). 

Note that the axioms (EΔ1), (EΔ2),…, (EΔ7) are from [9], and the two inequalities (EΔ8) and (EΔ9) are from [10]. They 

are necessary to assure good behavior of the multiplication with respect to the crisp equality. If we omit  "Δ" in (EΔ8) and 

(EΔ9) then the resulting EQ-algebra becomes residuated (see [9]). 

Lemma 2. Let ℰΔ be a ℓEQΔ
s -algebra. For all 𝑎, 𝑏, 𝑐 ∈ 𝐸, it holds that: 

(a)  If  𝑎 ≤ 𝑏, then  Δ𝑎 ≤ Δ𝑏; 

(b)  Δ(𝑎 → 𝑏) ≤ Δ𝑎 → Δ𝑏; 

(c)  Δ(𝑎 ∨ 𝑏) = Δ𝑎 ∨ Δ𝑏; 

(d)  ΔΔ𝑎 = Δ𝑎; 

(e)  𝑎 ⊗ Δ(𝑎 → 𝑏) ≤ 𝑏, Δ(𝑎 → 𝑏) ⊗ 𝑎 ≤ 𝑏; 

(f)  𝑎 ⊗ Δ(𝑎 ∼ 𝑏) ≤ 𝑏, Δ(𝑎 ∼ 𝑏) ⊗ 𝑎 ≤ 𝑏; 

(g)  Δ(𝑎 ∼ 𝟏) = Δ𝑎 and  Δ(𝟏 → 𝑎) = Δ𝑎; 

(h)  Δ𝑏 ≤ 𝑐 → (𝑏 ⊗ 𝑐) and Δ𝑏 ≤ 𝑐 → (𝑐 ⊗ 𝑏); 

(i)  Δ𝑎 = Δ𝑎 ⊗ Δ𝑎; 

(j)  Δ𝑎 ≤ Δ𝑏 → Δ𝑐 iff  Δ𝑎 ⊗ Δ𝑏 ≤ Δ𝑐 and Δ𝑏 ⊗ Δ𝑎 ≤ Δ𝑐; 

(k)  If ℰΔ is prelinear, then Δ(𝑎 → 𝑏) ∨ Δ(𝑏 → 𝑎) = 𝟏; 

(l)  Δ(𝑎 → 𝑏) ≤ (𝑎 ⊗ 𝑐) → (𝑏 ⊗ 𝑐), and Δ(𝑎 → 𝑏) ≤ (𝑐 ⊗ 𝑎) → (𝑐 ⊗ 𝑏). 

Proof. (a): Assume 𝑎 ≤ 𝑏 (𝑎 ∧ 𝑏 = 𝑎). Hence, by (EΔ5), we have  
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      Δ(𝑎 ∧ 𝑏) = Δ𝑎 ∧ Δ𝑏 = Δ𝑎; that is  Δ𝑎 ≤ Δ𝑏. 

(b): From (EΔ4) and (EΔ5), we get 

      ∆(𝑎 → 𝑏) = Δ((𝑎 ∧ 𝑏) ∼ 𝑎) ≤ ∆(𝑎 ∧ 𝑏) ∼ ∆𝑏 = (∆𝑎 ∧ Δ𝑏) ∼ ∆𝑏 

                                                                                  = ∆𝑎 → ∆𝑏. 

(c): From item (a) (because 𝑎, 𝑏 ≤ 𝑎 ∨ 𝑏), we can have, Δ𝑎, Δ𝑏 ≤ Δ(𝑎 ∨ 𝑏). Therefore, Δ𝑎 ∨ Δ𝑏 ≤ Δ(𝑎 ∨ 𝑏). Hence, by 

this and (EΔ6), the result holds. 

(d): Direct from (EΔ2) with item (a), we obtain ΔΔ𝑎 ≤ Δ𝑎. Hence, by this and (EΔ3), the result holds. 

(e): From (EΔ2), Lemma 1(d) and the order properties of " → ", we get 

      Δ(𝑎 → 𝑏) ≤ (𝑎 → 𝑏) ≤ (𝑎 ⊗ Δ(𝑎 → 𝑏)) → 𝑏, 

     ¬Δ(𝑎 → 𝑏) = Δ(𝑎 → 𝑏) → 𝟎 ≤ Δ(𝑎 → 𝑏) → 𝑏 ≤ (𝑎 ⊗ Δ(𝑎 → 𝑏)) → 𝑏 

(since 𝟎 ≤ 𝑏). Thus, by (EΔ7) and Proposition 1, 

       (𝑎 ⊗ Δ(𝑎 → 𝑏)) → 𝑏 = 𝟏; that is (𝑎 ⊗ Δ(𝑎 → 𝑏)) ≤ 𝑏. 

Similarly, Δ(𝑎 → 𝑏) ⊗ 𝑎 ≤ 𝑏. 

(f): Directly from item (e) by Lemma 1(e). 

(g): By item (d), (EΔ4) and item (f), we get 

     Δ(𝑎 ∼ 𝟏) = ΔΔ(𝑎 ∼ 𝟏) = 𝟏 ⊗ ΔΔ(𝟏 ∼ 𝑎) ≤ Δ𝟏 ⊗ Δ(Δ𝟏 ∼ Δ𝑎) ≤ Δ𝑎. 

On the other hand, Δ𝑎 ≤ Δ(𝑎 ∼ 𝟏) by item (a) (since 𝑎 ≤ (𝑎 ∼ 𝟏)). 

In particular, Δ(𝟏 → 𝑎) = Δ((𝟏 ∧ 𝑎) ∼ 𝟏) = Δ(𝑎 ∼ 𝟏) = Δ𝑎. 

(h): From item (g), (EΔ8) and Lemma 1(e), we get 

      Δ𝑏 = Δ(𝟏 ∼ 𝑏) ≤ (𝟏 ⊗ 𝑐) ∼ (𝑏 ⊗ 𝑐) ≤ (𝟏 ⊗ 𝑐) → (𝑏 ⊗ 𝑐) 
                                                                     = 𝑐 → (𝑏 ⊗ 𝑐). 

Similarly, Δ𝑏 ≤ 𝑐 → (𝑐 ⊗ 𝑏). 

(i): By item (h), item (d) and order properties of " → ", we obtain 

      Δ𝑎 = ΔΔ𝑎 ≤ Δ𝑎 → (Δ𝑎 ⊗ Δ𝑎) and 

     ¬Δ𝑎 = Δ𝑎 → 𝟎 ≤ Δ𝑎 → (Δ𝑎 ⊗ Δ𝑎) 

(since 𝟎 ≤ (Δ𝑎 ⊗ Δ𝑎)). Thus, by (EΔ7) and Proposition 1, Δ𝑎 → (Δ𝑎 ⊗ Δ𝑎) = 𝟏; that is Δ𝑎 ≤ (Δ𝑎 ⊗ Δ𝑎). On the 

other hand, (Δ𝑎 ⊗ Δ𝑎) ≤ Δ𝑎 by Lemma 1(d). 

(j): Assume Δ𝑎 ≤ Δ𝑏 → Δ𝑐, then by Lemma 1(d) and the order properties of  " → ", 

      Δ𝑎 ≤ Δ𝑏 → Δ𝑐 ≤ (Δ𝑎 ⊗ Δ𝑏) → Δ𝑐 and 

      ¬Δ𝑎 = Δ𝑎 → 𝟎 ≤ Δ𝑎 → Δ𝑐 ≤ (Δ𝑎 ⊗ Δ𝑏) → Δ𝑐. 

Thus, by (EΔ7), and Proposition 1, (Δ𝑎 ⊗ Δ𝑏) → Δ𝑐 = 𝟏; that is (Δ𝑎 ⊗ Δ𝑏) ≤ Δ𝑐. Similarly, (Δ𝑏 ⊗ Δ𝑎) ≤ Δ𝑐. 

Conversely, assume (Δ𝑎 ⊗ Δ𝑏) ≤ Δ𝑐. Hence, by item (d) and item (h), we obtain 

      Δ𝑎 = ΔΔ𝑎 ≤ Δ𝑏 → (Δ𝑎 ⊗ Δ𝑏) ≤ Δ𝑎 → Δ𝑐. 

Similarly, for (Δ𝑏 ⊗ Δ𝑎) ≤ Δ𝑐. 

(k): By (EΔ1), the prelinearity and item (c), we get 

      𝟏 = Δ𝟏 = Δ((𝑎 → 𝑏) ∨ (𝑏 → 𝑎)) = Δ(𝑎 → 𝑏) ∨ Δ(𝑏 → 𝑎).  
(l): Using (EΔ8) and the order properties of  " → ", we have 

      ∆(𝑎 → 𝑏) = ∆((𝑎 ∧ 𝑏) ∼ 𝑎) ≤ ((𝑎 ∧ 𝑏) ⊗ 𝑐) ∼ (𝑎 ⊗ 𝑐) 
                                                     ≤ (𝑎 ⊗ 𝑐) → ((𝑎 ∧ 𝑏) ⊗ 𝑐) 

                                                     ≤ (𝑎 ⊗ 𝑐) → (𝑏 ⊗ 𝑐). 

Similarly, ∆(𝑎 → 𝑏) ≤ (𝑐 ⊗ 𝑎) → (𝑐 ⊗ 𝑏).                                                                    ∎ 

Definition 4. Let ℰΔ = (𝐸, ∧, ∨, ⊗, ∼, Δ, 𝟎, 𝟏) be a ℓEQΔ
s -algebra. A subset 𝐹 ⊆ 𝐸 is called a filter of ℰΔ if for 

all 𝑎, 𝑏 ∈ 𝐸: 

(a)  𝟏 ∈ 𝐹. 

(b)  if 𝑎, 𝑎 → 𝑏 ∈ 𝐹, then 𝑏 ∈ 𝐹. 

(c)  if 𝑎 ∈ 𝐹, then Δ𝑎 ∈ 𝐹. 

Note that a (prime) filer 𝐹 on a ℓEQΔ
s -algebra ℰΔ = (𝐸, ∧, ∨, ⊗, ∼, Δ, 𝟎, 𝟏) is a (prime) prefilter (in the sense given 

in [9]) on its separated EQ-algebra ℰ = (𝐸, ∧, ⊗, ∼, 𝟏) satisfying (c). So all the properties of (prime) prefilters on a 

separated EQ-algebra (see [8, 9]) are also properties of (prime) filers on a ℓEQΔ
s -algebra, including the following result: 

Lemma 3. (see [9]) Let 𝐹 be a filter of a ℓEQΔ
s -algebra ℰΔ. For all 𝑎, 𝑏 ∈ 𝐸 it holds that: 

(a)  If 𝑎 ∈ 𝐹 and 𝑎 ≤ 𝑏 then 𝑏 ∈ 𝐹; 

(b)  If 𝑎, 𝑎 ∼ 𝑏 ∈ 𝐹 then 𝑏 ∈ 𝐹; 

(c)  If 𝑎, 𝑏 ∈ 𝐹 then 𝑎 ∧ 𝑏 ∈ 𝐹. 

Lemma 4. Let 𝐹 be a filter of a ℓEQΔ
s -algebra ℰΔ. For all 𝑎, 𝑏, 𝑐, 𝑎′, 𝑏′ ∈  𝐸 such that 𝑎 ∼ 𝑏 ∈ 𝐹 and 𝑎′ ∼ 𝑏′ ∈ 𝐹, it holds 

that 

(a)  If 𝑎 → 𝑏 ∈ 𝐹, then (𝑎 ⊗ 𝑐) → (𝑏 ⊗ 𝑐) ∈ 𝐹 and (𝑐 ⊗ 𝑎) → (𝑐 ⊗ 𝑏) ∈ 𝐹 

(b)  If  𝑎, 𝑏 ∈ 𝐹  then  𝑎 ⊗ 𝑏 ∈ 𝐹; 

(c)  (𝑎 ⊗ 𝑎′) ∼ (𝑏 ⊗ 𝑏′) ∈ 𝐹 and (𝑎′ ⊗ 𝑎) ∼ (𝑏′ ⊗ 𝑏) ∈ 𝐹; 

(d)  (Δ𝑎 ∼ Δ𝑏) ∈ 𝐹. 



Moataz El-Zekey & Mahmoud Khalaf, J. Bas. & Environ. Sci., 7 (2020) 45–50 

48 

 

Proof. (a): Assume 𝑎 → 𝑏 ∈ 𝐹. Since 𝐹 is a filter, then Δ(𝑎 → 𝑏) ∈ 𝐹. Hence, by Lemma 2(l) and Lemma 3(a), we get 

      Δ(𝑎 → 𝑏) ≤ (𝑎 ⊗ 𝑐) → (𝑏 ⊗ 𝑐) ∈ 𝐹. 

Similarly, (𝑐 ⊗ 𝑎) → (𝑐 ⊗ 𝑏) ∈ 𝐹. 

(b): From Lemma 1(c) and Lemma 3(a), it follows that 𝑏 ≤ 𝟏 → 𝑏 ∈ 𝐹. From item (a), it then follows that 

      (𝑎 ⊗ 𝟏) → (𝑎 ⊗ 𝑏) = 𝑎 → (𝑎 ⊗ 𝑏) ∈ 𝐹. 

Hence, by Definition 4 of a filter, 𝑎 ⊗ 𝑏 ∈ 𝐹. 

(c): By Definition 4, Δ(𝑎 ∼ 𝑏) and Δ(𝑎′ ∼ 𝑏′) ∈ 𝐹. Thus, by (EΔ8) and (EΔ9), we get 

      Δ(𝑎 ∼ 𝑏) ⊗ Δ(𝑎′ ∼ 𝑏′) ≤ 
                                   ≤ ((𝑎 ⊗ 𝑎′) ∼ (𝑏 ⊗ 𝑎′)) ⊗ ((𝑏 ⊗ 𝑎′) ∼ (𝑏 ⊗ 𝑏′)) 
                                   ≤ (𝑎 ⊗ 𝑎′) ∼ (𝑏 ⊗ 𝑏′) 

Hence, by Lemma 3(a) and item (b), the result holds. Similarly, (𝑎′ ⊗ 𝑎) ∼ (𝑏′ ⊗ 𝑏) ∈ 𝐹. 

(d): By Definition 4 and Lemma 3(a) 

      Δ(𝑎 ∼ 𝑏) ∈ 𝐹 implies Δ𝑎 ∼ Δ𝑏 ∈ 𝐹 (since Δ(𝑎 ∼ 𝑏) ≤ Δ𝑎 ∼ Δ𝑏).             ∎ 

Lemma 5. Let ℰΔ be a ℓEQΔ
s -algebra. Given a filter 𝐹 ⊆ 𝐸, the following relation on ℰΔ is a congruence relation: 

 𝑎 ≈𝐹 𝑏  iff  𝑎 ∼ 𝑏 ∈ 𝐹 (5) 

Proof. Indeed, axiom (E3), Lemma 1(a) and Lemma 1(b) guarantee that  ≈𝐹 is an equivalence relation. As an immediate 

consequence of Lemma 4, all the operations of  ℰΔ are compatible with the relation given by (5); that is  

𝑎 ≈𝐹 𝑏 and  𝑎′ ≈𝐹 𝑏′ imply (𝑎 ∧ 𝑎′) ≈𝐹 (𝑏 ∧ 𝑏′), (𝑎 ∨ 𝑏′) ≈𝐹 (𝑏 ∨ 𝑏′), (𝑎 ∼ 𝑎′) ≈𝐹 (𝑏 ∼ 𝑏′), (𝑎 ⊗ 𝑎′) ≈𝐹 (𝑏 ⊗
𝑏′), and (Δ𝑎 ≈𝐹 Δ𝑏). 

Then, ≈𝐹 is a congruence relation.                                                                      ∎ 

Let ℰΔ be a  ℓEQΔ
s -algebra. For 𝑎 ∈ 𝐸, we denote its equivalence class with respect to  ≈𝐹 by  [𝑎]𝐹 and by 𝐸/𝐹 the 

quotient set associated with ≈𝐹 . Furthermore, we define the factor algebra 

ℰΔ/𝐹 = 〈𝐸/𝐹, ∧𝐹 , ∨𝐹 , ⊗𝐹 , ∼𝐹 , Δ𝐹 , 𝟎𝐹 , 𝟏𝐹〉. 
in the standard way as follows: 

      𝐸/𝐹 = {[𝑎]𝐹| 𝑎 ∈ 𝐸}, and the binary operations on 𝐸/𝐹 are defined by 
[𝑎]𝐹 ∧𝐹 [𝑏]𝐹 = [𝑎 ∧ 𝑏]𝐹; 

[𝑎]𝐹 ∨𝐹 [𝑏]𝐹 = [𝑎 ∨ 𝑏]𝐹; 

[𝑎]𝐹 ∼𝐹 [𝑏]𝐹 = [𝑎 ∼ 𝑏]𝐹; 
[𝑎]𝐹 ⊗𝐹 [𝑏]𝐹 = [𝑎 ⊗ 𝑏]𝐹; 

Δ𝐹[𝑎]𝐹 = [Δ𝑎]𝐹. 

The top and the bottom elements are 𝟏𝐹 = [𝟏]𝐹 = {𝑏 ∈ 𝐸|𝑏 ∼ 𝟏 ∈ 𝐹} = 𝐹, 𝟎𝐹 = [𝟎]𝐹 = 𝟎, respectively. 

Also, we can define a binary relation " ≤𝐹 " on 𝐸/𝐹 as follows: 

 [𝑎]𝐹 ≤𝐹 [𝑏]𝐹   iff  [𝑎]𝐹 ∧𝐹 [𝑏]𝐹 = [𝑎]𝐹   iff  𝑎 ∧ 𝑏 ≈𝐹 𝑎  iff  𝑎 → 𝑏 ∈ 𝐹 (6) 

Then, we have the following result. Its proof proceeds in a standard way. 

Theorem 1. Let 𝐹 be a filter of a ℓEQΔ
s -algebra ℰΔ. The factor algebra ℰΔ/𝐹 = 〈𝐸/𝐹, ∧𝐹 , ∨𝐹 , ⊗𝐹 , ∼𝐹 , Δ𝐹 , 𝟎𝐹 , 𝟏𝐹〉 is 

a ℓEQΔ
s -algebra, and the mapping 𝑓: 𝐸 ⟶ 𝐸/𝐹 defined by 𝑓(𝑎) = [𝑎]𝐹 is a homomorphism of ℰΔ. 

For a nonempty subset 𝑋 of a ℓEQΔ
s -algebra ℰΔ, the smallest filter of ℰΔ which contains 𝑋, i.e. ⋂{𝐹 ∈ ℱ(ℰ𝛥): 𝑋 ⊆ 𝐹} is 

said to be a filter of  ℰΔ generated by 𝑋 and will be denoted by 〈𝑋〉. Obviously, if 𝑋 is a filter then 〈𝑋〉 = 𝑋. It is clear that 

if 𝑋1 ⊆ 𝑋2, then 〈𝑋1〉 ⊆ 〈𝑋2〉. If 𝑋 = 𝑌 ∪ {𝑎}, we will write 〈𝑌, 𝑎〉 for 〈𝑋〉. The set of non-negative integers will be denoted 

by 𝜔, for 𝑎, 𝑏 ∈ 𝐸, 𝑛 ∈ 𝜔, we define  𝑎 →0 𝑏 = 𝑏, 𝑎 →𝑛+1 𝑏 = 𝑎 → (𝑎 →𝑛 𝑏). If 𝑎 = 𝟏, 𝑎 →𝑛+1 𝑏 is denoted by �̃�𝑛+1. 

The following theorem gives a characterization of a filter generated by a set. 

Theorem 2. Let 𝑋 be a nonempty subset of a ℓEQΔ
s -algebra ℰ𝛥. Then 

〈𝑋〉 = {𝑎 ∈ 𝐸: Δ𝑏1 → (Δ𝑏2 → ⋯ (Δ𝑏𝑛 → 𝑎) … )) = 𝟏, for some 𝑏𝑖 ∈ 𝑋, 𝑛 ∈ 𝜔}. 

Proof. Put  𝑀 = {𝑎 ∈ 𝐸: Δ𝑏1 → (Δ𝑏2 →. . . (Δ𝑏𝑛 → 𝑎). . . )) = 𝟏, for some 𝑏𝑖 ∈ 𝑋, 𝑛 ∈ 𝜔}. Now, we show that 𝑀 is a 

filter of  ℰΔ. Since all 𝑏𝑖 ∈ 𝑀, 𝑏𝑖 ≤ 𝟏, therefore by Lemma 2(a) and (EΔ1) Δ𝑏𝑖 ≤ Δ𝟏 = 𝟏 so Δ𝑏𝑖 → 𝟏 = 𝟏; i.e., 𝟏 ∈ 𝑀. 

Now, let 𝑎, 𝑎 → 𝑏 ∈ 𝑀, then there exist 𝑏1, 𝑏2, . . . , 𝑏𝑛 , 𝑏1
′ , 𝑏2

′ , . . . , 𝑏𝑚
′ ∈ 𝑋 such that 

      Δ𝑏1 → (Δ𝑏2 →. . . (Δ𝑏𝑛 → 𝑎). . . )) = 𝟏 and 

      Δ𝑏1
′ → (Δ𝑏2

′ →. . . (Δ𝑏𝑚
′ → (𝑎 → 𝑏)). . . )) = 𝟏 

Hence, by Lemma 1(g), we have: 

      𝑎 → 𝑏 ≤ (Δ𝑏𝑛 → 𝑎) → (Δ𝑏𝑛 → 𝑏) 
                 ≤ (Δ𝑏𝑛−1 → (Δ𝑏𝑛 → 𝑎)) → (Δ𝑏𝑛−1 → (Δ𝑏𝑛 → 𝑏)). 

By continuing this way, we get that 

𝑎 → 𝑏 ≤ (Δ𝑏1 → (Δ𝑏2 →. . . (Δ𝑏𝑛 → 𝑎). . . )) → (Δ𝑏1 → (Δ𝑏2 →. . . (Δ𝑏𝑛 → 𝑏). . . )). 

Then, by order properties of " → ", Lemma 2(a) and (EΔ1), we conclude that 

      𝑎 → 𝑏 ≤ 𝟏 → (Δ𝑏1 → (Δ𝑏2 → ⋯ (Δ𝑏𝑛 → 𝑏) … )) 

                 ≤ Δ𝑏0  → (Δ𝑏1 → (Δ𝑏2 →. . . (Δ𝑏𝑛 → 𝑏). . . )), 

where 𝑏0 ∈ 𝑀. Hence, 

      Δ𝑏𝑚
′ → (𝑎 → 𝑏) ≤ Δ𝑏𝑚

′ → Δ𝑏0 → ((Δ𝑏1 → (Δ𝑏2 → . . . (Δ𝑏𝑛 → 𝑏). . . ))). 

We can obtain by continuing 
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      Δ𝑏1
′ → (Δ𝑏2

′ →. . . (Δ𝑏𝑚
′ → (𝑎 → 𝑏)). . . ) ≤ Δ𝑏1

′ → (Δ𝑏2
′ → . . . (Δ𝑏𝑚

′ → (Δ𝑏0 → (Δ𝑏1 → (Δ𝑏2 →. . . (Δ𝑏𝑛 →
𝑏). . . ))). . . ). 

Then, 

Δ𝑏1
′ → (Δ𝑏2

′ →. . . (Δ𝑏𝑚
′ → (Δ𝑏0 → (Δ𝑏1 → (Δ𝑏2 →. . . (Δ𝑏𝑛 → 𝑏). . . ))). . . ) = 𝟏. 

And so 𝑏 ∈ 𝑀. Finally, we will prove that Δ𝑎 ∈ 𝑀 whenever 𝑎 ∈ 𝑀. Assume that 𝑎 ∈ 𝑀, then 

      (Δ𝑏1 → (Δ𝑏2 → . . . (Δ𝑏 → 𝑎). . . )) = 𝟏 for some 𝑏1, 𝑏2, . . . , 𝑏𝑛 ∈ 𝑋. 

By (EΔ1), Lemma 2(b), Lemma 2(d), and the order properties of  "→", 

      𝟏 = Δ𝟏 = Δ(Δ𝑏1 → (Δ𝑏2 → ⋯ (Δ𝑏𝑛 → 𝑎) … )) 

                   ≤ (ΔΔ𝑏1 → (ΔΔ𝑏2 → ⋯ (ΔΔ𝑏𝑛 → Δ𝑎) … )) 

                   = (Δ𝑏1 → (Δ𝑏2 →. . . (Δ𝑏 → Δ𝑎). . . )). 

Hence, Δ𝑎 ∈ 𝑀. Therefore, 𝑀 is a filter of ℰΔ. Let 𝐹 ∈ ℱ(ℰΔ), 𝑋 ⊆ 𝐹 and 𝑎 ∈ 𝑀, then 

      (Δ𝑏1 → (Δ𝑏2 →. . . (Δ𝑏𝑛 → 𝑎). . . )) = 𝟏, for some 𝑏𝑖 ∈ 𝑋 and 𝑛 ∈ 𝜔. 

Since 𝟏, Δ𝑏1, Δ𝑏2, . . . , Δ𝑏𝑛 ∈ 𝐹, we imply 𝑎 ∈ 𝐹. Thus, 𝑀 ⊆ 𝐹. Therefore, 𝑀 is the smallest filter of ℰΔ containing 𝑋. i.e. 

𝑀 = 〈𝑋〉.                                                            ∎ 

Theorem 3. Let 𝐹 be a filter of a ℓEQΔ
s -algebra ℰΔ. Then 

〈𝐹, 𝑎〉 = {𝑏 ∈ 𝐸: Δ𝑎 → 𝑏 ∈ 𝐹} 

Proof. Let 𝑏 ∈ 〈𝐹, 𝑎〉, then by Theorem 2 and Lemma 1(i) for some 𝑓1, 𝑓2, . . . , 𝑓𝑛 ∈ 𝐹, 𝑛, 𝑘1, 𝑘2 ∈ 𝜔 

      Δ𝑓1 → (Δ𝑓2 → . . . (Δ𝑓𝑛 → (Δ𝑎 →𝑘1 �̃�𝑘2). . . ) = 𝟏. 

Since  𝐹 is a filter and 𝟏 ∈ 𝐹, then Δ𝑎 →𝑘1 �̃�𝑘2 ∈ 𝐹. Hence, by Lemma 1(i) and Lemma 2(i) we get, 

      Δ𝑎 →𝑘1 �̃�𝑘2 ≤ (Δ𝑎 ⊗ … ⊗ Δ𝑎) → �̃�𝑘3 = Δ𝑎 → �̃�𝑘3 ∈ 𝐹 

for some 𝑘3 ∈ 𝜔. Since  𝐹 is a filter, then by Lemma 2(b), (d) and (g) and Lemma 3(a), we obtain 

      Δ(Δ𝑎 → �̃�𝑘3) ≤ ΔΔ𝑎 → Δ�̃�𝑘3 = Δ𝑎 → Δ𝑏 ≤ Δ𝑎 → 𝑏 ∈ 𝐹 

Thus, 𝑏 ∈ {𝑏 ∈ 𝐸: Δ𝑓 → (Δ𝑎 → 𝑏) = 𝟏 for some 𝑓 ∈ 𝐹}. 

Conversely, since 〈𝐹, 𝑎〉 is a filter, and 𝑎 ∈ 〈𝐹, 𝑎〉, then Δ𝑎 ∈ 〈𝐹, 𝑎〉. If  Δ𝑎 → 𝑏 ∈ 𝐹, then Δ𝑎 → 𝑏 ∈ 〈𝐹, 𝑎〉, and 

hence, 𝑏 ∈ 〈𝐹, 𝑎〉.                                                                 ∎ 

By the following theorem, we determine filters generated by join of two elements. 

Theorem 4. Let 𝐹 be a filter of a ℓEQΔ
s -algebra ℰΔ, and 𝑎, 𝑏 ∈ 𝐸. Then 

𝑎 ∨ 𝑏 ∈ 𝐹 implies 〈𝐹, 𝑎〉 ∩ 〈𝐹, 𝑏〉 = 𝐹; 

Proof. It is clear that 𝐹 ⊆ 〈𝐹, 𝑎〉 ∩ 〈𝐹, 𝑏〉. Let 𝑎 ∨ 𝑏 ∈ 𝐹, then by Definition 4 and Lemma 2(c), Δ(𝑎 ∨ 𝑏) = Δ𝑎 ∨ Δ𝑏 ∈
𝐹. Now let  𝑐 ∈ 〈𝐹, 𝑎〉 ∩ 〈𝐹, 𝑏〉, then by Theorem 3, we get Δ𝑎 → 𝑐 ∈ 𝐹 and Δ𝑏 → 𝑐 ∈ 𝐹 for some 𝑓 ∈ 𝐹. Hence, by Lemma 

4(b), we have (Δ𝑎 → 𝑐) ⊗ (Δ𝑏 → 𝑐) ∈ 𝐹. By this, Lemma 1(k) and Lemma 3(a), we have 

      (Δ𝑎 → 𝑐) ⊗ (Δ𝑏 → 𝑐) ≤ (Δ𝑎 ∨ Δ𝑏) → 𝑐 ∈ 𝐹. 
Therefore, 𝑐 ∈ 𝐹. Thus, 〈𝐹, 𝑎〉 ∩ 〈𝐹, 𝑏〉 ⊆ 𝐹.                                                                         ∎ 

We extend to ℓEQΔ
s -algebra the following result, proved by El-Zekey in [8]. The proof is completely the same as El-

Zekey's. 

Proposition 2. Let  𝐹 be a filter of a prelinear ℓEQΔ
s -algebra ℰΔ. Then 𝐹 is prime iff 𝐸/𝐹 is a chain, i.e., is linearly 

(totally) ordered by  ≤𝐹. 

Theorem 5. Let ℰΔ be a prelinear ℓEQΔ
s -algebra and let 𝑎 ∈ 𝐸, 𝑎 ≠ 𝟏. Then, there is a prime filter 𝐹 on  ℰΔ not 

containing  𝑎. 

Proof. There are filters not containing 𝑎, e.g. 𝐹0 = {𝟏}. We shall show that if 𝐹 is any filter not containing 𝑎 and 𝑥, 𝑦 ∈
𝐸 such that (𝑥 → 𝑦) ∉ 𝐹 and (𝑦 → 𝑥) ∉ 𝐹, then there is a filter 𝐹′ ⊇ 𝐹 not containing 𝑎 but containing either (𝑥 → 𝑦) ∈ 𝐹 

or (𝑦 → 𝑥) ∈ 𝐹. Note that the least filter 𝐹′ containing 𝐹 as a subset and 𝑢 ∈ 𝐸 as an element is 𝐹′ = {𝑣 ∈ 𝐸: Δ𝑢 → 𝑣 ∈ 𝐹}. 

Indeed, 𝐹′ is obviously a filter by Theorem 3 equivalently  𝐹′ = 〈𝐹, 𝑢〉. 
Thus, assume (𝑥 → 𝑦) ∉ 𝐹, (𝑦 → 𝑥) ∉ 𝐹 and let 𝐹1, 𝐹2 be the smallest filters containing 𝐹 as a subset and (𝑥 → 𝑦), (𝑦 →

𝑥) respectively as an element. We claim that 𝑎 ∉ 𝐹1 or 𝑎 ∉ 𝐹2. Assume the contrary; then, 

      Δ(𝑥 → 𝑦) → 𝑎 ∈ 𝐹 and  Δ(𝑦 → 𝑥) → 𝑎 ∈ 𝐹. 

Hence, by Lemma 4(b), we have 

      (Δ(𝑥 → 𝑦) → 𝑎) ⊗ (Δ(𝑦 → 𝑥) → 𝑎) ∈ 𝐹. 

By this, Lemma 1(k) and Lemma 3(a), we have 

      (Δ(𝑥 → 𝑦) → 𝑎) ⊗ (Δ(𝑦 → 𝑥) → 𝑎) ≤ (Δ(𝑥 → 𝑦) ∨ Δ(𝑦 → 𝑥)) → 𝑎 
                                                                  = 𝟏 → 𝑎 ∈ 𝐹. 

Thus, 𝑎 ∈ 𝐹 (since 𝟏 ∈ 𝐹) a contradiction. Hence 𝑎 ∉ 𝐹1 or 𝑎 ∉ 𝐹2. 

Now, if  ℰΔ is countable (which will be our case in the proof of completeness), then we may arrange all pairs  (𝑥, 𝑦) 

from  𝐸2 into a sequence {(𝑥𝑛 , 𝑦𝑛)|𝑛 natural}, put 𝐹0 = {𝟏} and having constructed 𝐹𝑛 such that 𝑝 ∉ 𝐹𝑛 we take  𝐹𝑛+1 ⊇ 𝐹𝑛 

such that  𝑝 ∉ 𝐹 according to our construction; if possible we take 𝐹𝑛+1 such that  (𝑥𝑛 → 𝑦𝑛) ∈ 𝐹𝑛+1, if not, we take that 

with  (𝑦𝑛 → 𝑥𝑛) ∈ 𝐹𝑛+1. Our desired prime filter is the union 

⋃ 𝐹𝑛

𝑛
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If  ℰΔ is uncountable, then one has to use the axiom of choice and work similarly with a transfinite sequence of filters.                                                                                         

 ∎ 

Theorem 6. (Representation theorem). Let  ℰΔ be a prelinear  ℓEQΔ
s -algebra. Then, each ℰΔ is subdirectly embeddable 

into a product of linearly ordered ℓEQΔ
s -algebras; i.e., ℰΔ is representable. 

Proof. Let 𝓟 be the set of all prime filters of  ℰΔ. For 𝐹 ∈ 𝓟. Thus, by Theorem 1, the natural homomorphism  ℎ: ℰΔ →
∏  ℰΔ/≈𝐹𝐹∈𝓟  defined by  ℎ(𝑎) = 〈[𝑎]𝐹〉𝐹∈𝓟 is a subdirect embedding of  ℰΔ into a direct product of  {ℰΔ/≈𝐹 : 𝐹 ∈ 𝓟}. It 

remains to show that it is one-one. If 𝑎, 𝑏 ∈ 𝐹 and 𝑎 ≠ 𝑏 then 𝑎 ≰ 𝑏 or 𝑏 ≰ 𝑎. Without loss of generality, then (𝑎 → 𝑏) ≠
𝟏 in 𝐸. By Theorem 5, let  𝐹 be a prime filter on  𝐸 not containing (𝑎 → 𝑏); then in ℰΔ/𝐹, [𝑎]𝐹 ≰ [𝑏]𝐹, hence [𝑎]𝐹 ≠ [𝑏]𝐹 

and therefore  ℎ(𝑎) ≠ ℎ(𝑏). Using Proposition 2 and Theorem 2, ℰΔ/≈𝐹 is linearly ordered ℓEQΔ
s -algebra for each 𝐹 ∈ 𝓟, 

which completes the proofs.                                                                                                                    ∎ 

4. Conclusions 

In this paper, we introduced and studied a class of 

separated (not necessarily good) lattice EQ-algebras that 

may be represented as subalgebras of products of linearly 

ordered ones. Such algebras are called representable. 

Namely, we enriched separated lattice EQ-algebras with a 

unary operation (the so called Baaz delta), fulfilling some 

additional assumptions. The resulting algebras are called 

ℓEQΔ
s -algebras. One of the main results of this paper is to 

characterize the class of representable ℓEQΔ
s -algebras. We 

showed that prelinearity alone characterizes the 

representable class of ℓEQΔ
s -algebras. We also supplied a 

number of useful results, leading to this characterization.
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