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Abstract

In this paper, we introduce and study a class of separated lattice EQ-algebras that may be represented as subalgebras of
products of linearly ordered ones. Such algebras are called representable. Namely, we enrich separated lattice EQ-algebras
with a unary operation (the so called Baaz delta), fulfilling some additional assumptions. The resulting algebras are called
¢EQf% -algebras. One of the main results of this paper is to characterize the class of representable #EQ3-algebras. We also

supply a number of useful results, leading to this characterization.
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1. Introduction

EQ-algebras were introduced by Novak (2006) [1] and
Novéak and Baets (2009) [2] as generalization of residuated
lattices (see [3]). Unlike the residuated lattices, the basic
operation in it is a fuzzy equality while implication is
derived from it. Its original motivation comes from the
study of higher-order fuzzy logic [4] that was obtained as
a generalization of simple type theory in the style of L.
Henkin who developed in [5] a very elegant theory (cf. also
[6]) in which the basic connective is equality.

EQ-algebras brought an idea to develop (fuzzy) many-
valued logics on the basis of fuzzy equality (equivalence)
as the principal connective. Accordingly, a formal theory
of new different many-valued logics, called EQ-logics, has
been recently introduced by M. Dyba and V. Novék [7].

The current investigation of EQ-algebras (see [7-10])
shows that goodness, i.e. each element x is equal to 1 in
the degree x, is sufficient for the resulting algebra has
many reasonable properties. The goodness axiom implies
that the algebra is separated (i.e., two elements equal in the
degree 1 must be identical) but not vice-versa. Therefore,
Separateness turned out to be indispensable for any kind of
fuzzy equality-based logic.

One of the important algebraic consequences of goodness
axiom is axiomatizing the class of representable good EQ-

2. EQ-algebras: an overview

E:
(E1) (E, A1) s
(E2) (E, ®1) is a
(E3) a~a=1,

(E4) ((aAb)~c)®(d~a)<c~(dAb),
(E5) (@a~bD)®(c~d)<(a~c)~(b~d),
(E6) (anbAc)~a<(aAb)~a,
(E"Ya®b<a~b.

monoid and ®

The binary operation " A " is called meet (infimum), " ® " is called multiplication, and " ~

fora,b € E:

a A-semilattice  with  top

algebras (expanded by Delta-connective) (see [8, 9]). This
is mainly based on the fact that good EQ-algebras give raise
to BCK-algebras [11, 12].

In this paper, we continue the study of EQ-algebras. We
introduce and study a class of separated (not necessarily
good) lattice EQ-algebras that may be represented as
subalgebras of products of linearly ordered ones. Such
algebras are called representable. Namely, we enrich
separated lattice EQ-algebras with a unary operation (the so
called Baaz delta), fulfilling some additional assumptions.
The resulting algebras are called #EQ7}-algebras. One of the
main results of this paper is to characterize the class of
representable £EQj-algebras. We show that prelinearity
alone characterizes the representable class of ¢EQj-
algebras. We also supply a number of useful results, leading
to this characterization.

This paper is structured as follows: in the next section we
overview the basic definitions and properties of EQ-
algebras and their special. In Section 4 we introduce and
study the class of #EQ%-algebras and we devote Section 5
to summarize the results.

Definition 1. ([9]) An algebra € = (E, A, &®,~,1) of type (2, 2, 2,0) is called an EQ-algebra where for all a, b, c,d €

element 1. We set a<b iffanb=a,
isotone in both arguments w.rt.a <b,
(reflexivity)

(substitution)

(congruence)

(monotonicity)

" is a fuzzy equality. We set,
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a->b=(aAb)~a Q)
d=a~1 2
The derived operation (1) will be called implication. If 0 is a bottom element of E, then we define the unary operation —
onE, foralla € E, by
—a=a~0 3)
Definition 2. ([4, 8]) Let £ be an EQ-algebra. We say that it is:
(@) separatedifforalla,b € E,a ~b = 1impliesa = b,
(b) goodifforalla € E, @ =a,
(c) lattice EQ-algebra (?EQ-algebra) if the underlying A-semilattice is a lattice in which the following
substitution axiom holds for all a, b, c,d € E:
((avb)~c)®@~a)<(dVvb)~c 4)
(d) prelinear if for all @, b € E, 1 is the unique upper bound in E of the set {(a — b), (b - a)}.

Note that every good EQ-algebra is separated, but not vice-versa (see [4]). EQ-algebra has many interesting properties
(see [4, 9]). We only mention some of them that will used later.

Lemma 1. ([9, 13]) Let € be an EQ-algebra. Then the following properties hold for all a, b, c € E:

@ a~b=b~a;

(b) (@a~b)®(~c)<(a~c);

() b<hb<a- b;

d a®b<aAb<a,b;

e (@~b)<a—-b and a—>a=1,;

(f) Ifa<bthena—-b=1c—-a<c-bandb->c<a-—c;

(9 (@-b)<(c-a)-(c—b)

(hy (@a-b)<sb-c)-(a-o)

i) a=»b-c)<b-(a—0);

() a-»®-oc)=<(a®b) >

(k) If&isfEQ-algebra,then(a > c)® (b > ¢c) < (aVb) - c.
Proposition 1. (J9]) The following statements are equivalent:

(@) An EQ-algebra € is separated.

(b) a<biffa-b=1foralla,b€eE.

This means that the implication operation " — " in a separated EQ-algebra precisely reflects the ordering " < ".
3. PEQj-algebras

Definition 3. A PEQ}-algebraisanalgebra &, = (E, A, V, ®,~, A, 0,1) thatis a separated #EQ-algebra with a bottom
element 0 expanded by a unary operation A: E — E fulfilling the following axioms:

(EAL) A1 =1;

(EA2) Aa < a;

(EA3) Aa < AAag;

(EA4) A(a ~ b) < Aa ~ Ab;

(EA5) A(a Ab) = Aa A Ab;

(EAB) A(aV b) < AaV Ab;

(EA7) AaV —Aa =1,

(EA8) A(a~b)<(a®c)~ (a®c);
(EA9) A(a~Db) <(c®a)~ (c®Db).

Note that the axioms (EAL), (EA2),..., (EA7) are from [9], and the two inequalities (EA8) and (EA9) are from [10]. They
are necessary to assure good behavior of the multiplication with respect to the crisp equality. If we omit "A" in (EA8) and
(EA9) then the resulting EQ-algebra becomes residuated (see [9]).

Lemma 2. Let &, be a /EQ}-algebra. For all a, b, ¢ € E, it holds that:

@) If a < b, then Aa < Ab;

(b)  A(a - b) < Aa — Ab;

(© A(a Vv b) = AaV Ab;

(d) AAa = Aaq;

(e) a®A(a->b)<bh, Ala—>b)®a<hb;

) a®@A(a~b)<bh, Ala~b)R®ac<hb;

(9) A(a~1)=Aaand A(1 - a) = Aa;

(hy Ab<c->(b®c)andAb <c - (c® b);

() Aa = Aa @ Aa;

) Aa < Ab - Ac iff Aa ® Ab < Ac and Ab ® Aa < Ac;
(k) If £, is prelinear, then A(a = b) VA(b = a) = 1;

() Aa-b)<(@®c)» (b®c),andA(a - b) < (c®a) - (cQ b).

Proof. (a): Assume a < b (a A b = a). Hence, by (EA5), we have
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A(a Ab) = Aa AAb = Aa; thatis Aa < Ab.
(b): From (EA4) and (EA5), we get
A(a - b) =A((aAb) ~a) <A(aAb) ~Ab = (Aa AAb) ~ Ab
= Aa — Ab.

(c): From item (a) (because a, b < a V b), we can have, Aa, Ab < A(a V b). Therefore, Aa V Ab < A(a V b). Hence, by
this and (EA6), the result holds.

(d): Direct from (EA2) with item (a), we obtain AAa < Aa. Hence, by this and (EA3), the result holds.

(e): From (EA2), Lemma 1(d) and the order properties of " — ", we get

A(a—-b)<(a—=b)<(a®A(a - b)) - b,

—Ala->b)=Aa->b)->0<A(a->b)>b<(a®A(a—>b))—>b
(since 0 < b). Thus, by (EA7) and Proposition 1,

(a® A(a = b)) » b =1;thatis (a ® A(a = b)) < b.

Similarly, A(a - b) ® a < b.

(f): Directly from item (e) by Lemma 1(e).

(9): By item (d), (EA4) and item (f), we get

Ala~1)=AA(a~1)=1®AA(1 ~ a) < A1 ® A(A1 ~ Aa) < Aa.

On the other hand, Aa < A(a ~ 1) by item (a) (since a < (a ~ 1)).

In particular, A(1 - a) =A((1 Aa) ~1) =A(a ~ 1) = Aa.

(h): From item (g), (EA8) and Lemma 1(e), we get

Ab=A1~b<AR®)~bR®)<AR®Rc)»B®c)
=c- (b® o).
Similarly, Ab < ¢ - (¢ ® b).
(i): By item (h), item (d) and order properties of " —
Aa = AAa < Aa - (Aa ® Aa) and
—-Aa =Aa - 0 < Aa » (Aa ® Aa)

(since 0 < (Aa ® Aa)). Thus, by (EA7) and Proposition 1, Aa = (Aa @ Aa) = 1; that is Aa < (Aa ® Aa). On the
other hand, (Aa ® Aa) < Aa by Lemma 1(d).

(1): Assume Aa < Ab - Ac, then by Lemma 1(d) and the order properties of " - ",

Aa < Ab - Ac < (Aa ® Ab) — Ac and
—Aa = Aa - 0 < Aa - Ac < (Aa ® Ab) — Ac.
Thus, by (EA7), and Proposition 1, (Aa ® Ab) — Ac = 1; that is (Aa @ Ab) < Ac. Similarly, (Ab ® Aa) < Ac.
Conversely, assume (Aa ® Ab) < Ac. Hence, by item (d) and item (h), we obtain
Aa = AAa < Ab - (Aa ® Ab) < Aa - Ac.
Similarly, for (Ab ® Aa) < Ac.
(k): By (EAL), the prelinearity and item (c), we get
1=A1=A((a—=b)Vv(b—a)=A(a—-b)VAD - a).
(I): Using (EA8) and the order properties of " — ", we have
Ala-»b)=A((anb) ~a) < ((anb)®c)~(a®c)
<(@®c)- ((anb)®c)
<@®c)- (b o).

Similarly, A(a » b) < (c® a) - (c ® b). [

Definition 4. Let &, = (E, A, V, ®, ~, A,0,1) be a PEQj-algebra. A subset F € E is called a filter of &, if for
alla,b € E:

@) 1€F.
(b) ifa,a > b €F,thenb €F.
(c) ifa € F,then Aa € F.

Note that a (prime) filer F on a fEQj-algebra &, = (E, A, V, ®, ~, A,0,1) is a (prime) prefilter (in the sense given
in [9]) on its separated EQ-algebra € = (E, A, &, ~,1) satisfying (c). So all the properties of (prime) prefilters on a
separated EQ-algebra (see [8, 9]) are also properties of (prime) filers on a #EQ}-algebra, including the following result:

Lemma 3. (see [9]) Let F be a filter of a #EQ} -algebra €,. For all a, b € E it holds that:

@) Ifa€e Fanda < bthenb € F,;
(b) Ifa,a~beFthenb €F;
(c) Ifa,b € FthenaAb EF.

Lemma 4. Let F be a filter of a #EQ} -algebra £,. Forall a, b,c,a’, b’ € E suchthata ~ b € Fanda’' ~ b’ € F, itholds

that

, we obtain

)] fa->beF, then(a®c)»b®c)eFand(c®a) > (cQ®b)EF
(b) Ifa bEF thena®bEF;

(c) (a®a)~Bb)eFand(a' ®a) ~(b'® b) EF;

(d) (Aa ~ Ab) EF.
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Proof. (a): Assume a — b € F. Since F is afilter, then A(a — b) € F. Hence, by Lemma 2(I) and Lemma 3(a), we get
Ala-b)<(@®c)> (b®c)EF.
Similarly, (c ® a) > (c ® b) € F.
(b): From Lemma 1(c) and Lemma 3(a), it follows thatb < 1 — b € F. From item (a), it then follows that
@a®1)=(a®b)=a—->(a@b) EF.
Hence, by Definition 4 of a filter,a @ b € F.
(c): By Definition 4, A(a ~ b) and A(a’ ~ b") € F. Thus, by (EA8) and (EA9), we get
Ala~b)®A(a' ~b") <
<((@®a)~b®a)N®((bRa)~(bDb))
<@®a)~(beb)
Hence, by Lemma 3(a) and item (b), the result holds. Similarly, (¢’ ® a) ~ (b’ ® b) € F.
(d): By Definition 4 and Lemma 3(a)

A(a ~ b) € F implies Aa ~ Ab € F (since A(a ~ b) < Aa ~ Ab). [
Lemma 5. Let €, be a #EQ;-algebra. Given a filter F < E, the following relation on &, is a congruence relation:
a=pgbiffa~b€eF (5)

Proof. Indeed, axiom (E3), Lemma 1(a) and Lemma 1(b) guarantee that ~ is an equivalence relation. As an immediate

consequence of Lemma 4, all the operations of £, are compatible with the relation given by (5); that is
axpgband a' =g b'imply(ana’) = (bAD'),(aVvb)=p(bVD'),(a~a)=p(b~b'),(a®ad)=r(b®
b"), and (Aa =y Ab).

Then, = is a congruence relation. |

Let €4, be a YEQj-algebra. For a € E, we denote its equivalence class with respect to =5 by [a]z and by E/F the
quotient set associated with ~. Furthermore, we define the factor algebra

Er/F =(E/F, Ap, Vi, @p,~p A, Op, 1p).
in the standard way as follows:
E/F = {[alr| a € E}, and the binary operations on E /F are defined by
lalr Ap [b]p = [a A D]E;

lalr Vr [b]F = [aV D]g;

lalp ~F [b]F = [a ~ b]F;

lalr ®F [b]r = [a ® b]F;

Aplalr = [Aa]F.

The top and the bottom elementsare 1 = [1] = {b € E|b ~ 1 € F} = F, 0z = [0] = 0, respectively.

Also, we can define a binary relation " <z " on E/F as follows:

[alg <g [b]F iff [a]p Ap [b]r =[alp iff aAb=pa iffa>b€EF (6)

Then, we have the following result. Its proof proceeds in a standard way.

Theorem 1. Let F be a filter of a #EQ}-algebra £,. The factor algebra €, /F = (E/F, Ap, Vi, Qp, ~p, Ap, 0p, 15) is
a YEQ}-algebra, and the mapping f: E — E/F defined by f(a) = [a]r is a homomorphism of €,.

For a nonempty subset X of a EQ$-algebra £,, the smallest filter of £, which contains X, i.e. N{F € F(E,):X € F}is
said to be a filter of £, generated by X and will be denoted by (X). Obviously, if X is a filter then (X) = X. Itis clear that
if X; € X,, then (X;) € (X;). If X =Y U {a}, we will write (Y, a) for (X). The set of non-negative integers will be denoted
by w, fora,b € E,n € w, we define a »° b = b,a >"*' b =a - (a »>" b). Ifa = 1,a »™* b is denoted by h™*+*.

The following theorem gives a characterization of a filter generated by a set.

Theorem 2. Let X be a nonempty subset of a #EQ}-algebra €,. Then

(X) ={a € E:Ab; —» (Ab; — -+ (Ab, — a) ...)) = 1, for some b; € X,n € w}.

Proof. Put M = {a € E: Ab, —» (Ab, —...(Ab, = a)...)) = 1, for some b; € X,n € w}. Now, we show that M is a
filter of £,. Since all b; € M, b; < 1, therefore by Lemma 2(a) and (EA1) Ab; <A1 =1s0Ab; > 1 =1;ie,1€M.
Now, leta,a —» b € M, then there exist by, b,, ..., by, b1, b3, ..., by, € X such that

Ab; — (Ab, >...(Ab, » a)...)) = 1and
Ab; = (Ab, —...(Ab,, > (a > b))...)) =1
Hence, by Lemma 1(g), we have:
a - b < (Ab, - a) - (Ab, - b)
< (Aby_y = (b, = a)) = (Aby—y = (Aby, = D).

By continuing this way, we get that

a - b < (Ab; » (Ab, —...(Ab, — a)...)) = (Aby — (Ab, —>...(Ab, = D)...)).

Then, by order properties of " — ", Lemma 2(a) and (EA1), we conclude that

a—-b<1- (Aby - (Ab, = - (Ab, = D) ...))
< Aby - (Ab; = (Ab, -...(Ab, - b)...)),

where b, € M. Hence,

Ab;, = (a = b) < Ab;, = Aby = ((Ab; = (Ab, — ... (Ab, = b)...))).

We can obtain by continuing
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Ab; = (Aby —...(Ab,, = (a = b))...) < Ab; = (Ab; — ... (Ab,, = (Aby — (Ab; = (Ab, —...(Ab, —
b)...)))...).

Then,

Ab] > (Ab) —...(Ab;, » (Aby » (Aby » (Ab, —...(Ab, » b)...)))...) =1.

And so b € M. Finally, we will prove that Aa € M whenever a € M. Assume that a € M, then

(Ab; = (Ab, > ...(Ab = a)...)) = 1 for some by, b,,..., b, € X.
By (EAL), Lemma 2(b), Lemma 2(d), and the order properties of "—",
1 = A1 = A(Ab, = (Ab, - -+ (Ab, = a) ...))
< (AAb; — (AAb, — - (AAD, - Aa) ...))
= (Ab; = (Ab,; —...(AD = Aa)...)).
Hence, Aa € M. Therefore, M is a filter of £,. Let F € F(&€,),X € F and a € M, then
(Aby = (Ab, —>...(Ab, = a)...)) = 1,forsome b; € X and n € w.

Since 1, Aby, Ab,,...,Ab, € F,weimply a € F. Thus, M € F. Therefore, M is the smallest filter of £, containing X. i.e.
M = (X). [

Theorem 3. Let F be a filter of a fEQ%-algebra €,. Then

(F,a)={b € E:Aa > b €EF}
Proof. Let b € (F, a), then by Theorem 2 and Lemma 1(i) for some fi, f5,..., fn € F,n, ky, k, € @
Af, = (Af, = ... (Af,, = (Aa k1 bk2)...)) = 1.
Since Fisafilter and 1 € F, then Aa —** b*2 € F. Hence, by Lemma 1(i) and Lemma 2(i) we get,
Aa -1 bk2 < (Aa ® ...® Aa) » b¥3 = Aa » b¥3 € F
for some k3 € w. Since F is a filter, then by Lemma 2(b), (d) and (g) and Lemma 3(a), we obtain
A(Aa - b*3) < AAa — Ab*3 =Aa > Ab < Aa - b EF

Thus, b € {b € E:Af - (Aa —» b) = 1 for some f € F}.

Conversely, since (F,a) is a filter, anda € (F,a), thenAa € (F,a). If Aa—> b € F, thenAa —» b € (F,a), and
hence, b € (F, a). ]

By the following theorem, we determine filters generated by join of two elements.

Theorem 4. Let F be a filter of a #EQ}-algebra E,, and a, b € E. Then

aV b € Fimplies (F,a) N (F,b) = F;

Proof. It is clear that F < (F,a) N {F,b). Leta Vv b € F, then by Definition 4 and Lemma 2(c), A(aV b) = Aa V Ab €
F.Now let ¢ € (F,a) n (F, b), then by Theorem 3, we get Aa — ¢ € F and Ab — c € F forsome f € F. Hence, by Lemma
4(b), we have (Aa — ¢) ® (Ab — ¢) € F. By this, Lemma 1(k) and Lemma 3(a), we have

(Aa > ¢c) @ (Ab > ¢) < (Aa Vv Ab) > c EF.

Therefore, c € F. Thus, (F,a) N {F,b) € F. ]

We extend to #EQ%-algebra the following result, proved by El-Zekey in [8]. The proof is completely the same as El-
Zekey's.

Proposition 2. Let F be a filter of a prelinear #EQ}-algebra €,. Then F is prime iff E/F is a chain, i.e., is linearly
(totally) ordered by <p.

Theorem 5. Let &, be a prelinear PEQ%-algebra and leta € E,a # 1. Then, there is a prime filter F on &, not
containing a.

Proof. There are filters not containing a, e.g. F, = {1}. We shall show that if F is any filter not containing a and x,y €
E suchthat (x » y) € F and (y — x) € F, then there is afilter F' 2 F not containing a but containing either (x - y) € F
or (y - x) € F. Note that the least filter F’' containing F asasubsetand u € E asanelementis F' = {v € E: Au - v € F}.
Indeed, F' is obviously a filter by Theorem 3 equivalently F' = (F, u).

Thus, assume (x - y) € F,(y - x) & F and let F;, F, be the smallest filters containing F as a subsetand (x — y), (y =
x) respectively as an element. We claim that a € F, or a ¢ F,. Assume the contrary; then,

A(x >y) >a€Fand Aly >x) > a€F.
Hence, by Lemma 4(b), we have
Ax->y)»a) @By ->x)>a)EF.
By this, Lemma 1(k) and Lemma 3(a), we have
Ax->y)»a) @AY »>x)»>a)<(Ax->y)VAY->x)) ~>a
=1->a€F.

Thus, a € F (since 1 € F) a contradiction. Hence a € F, ora ¢ F,.

Now, if &, is countable (which will be our case in the proof of completeness), then we may arrange all pairs (x,y)
from E? into a sequence {(x,, ,,)|n natural}, put F, = {1} and having constructed F, such that p & F, we take F,., 2 E,
such that p € F according to our construction; if possible we take F,,, such that (x,, = y,) € F,,1, if not, we take that
with (y,, = x,,) € F,, 1. Our desired prime filter is the union

U
n
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If €, is uncountable, then one has to use the axiom of choice and work similarly with a transfinite sequence of filters.

Theorem 6. (Representation theorem). Let £, be a prelinear #EQ}-algebra. Then, each &, is subdirectly embeddable
into a product of linearly ordered #EQj-algebras; i.e., €, is representable.

Proof. Let PP be the set of all prime filters of £,. For F € . Thus, by Theorem 1, the natural homomorphism h: €, —
[Irep En/=F defined by h(a) = ([a]F)rep i a subdirect embedding of &, into a direct product of {E,/~p : F € P}. It
remains to show that it is one-one. If a,b € Fand a # b thena £ b or b £ a. Without loss of generality, then (a — b) #
1in E. By Theorem 5, let F be a prime filter on E not containing (a — b); then in €, /F, [alz % [b]F, hence [a]r # [b]r
and therefore h(a) # h(b). Using Proposition 2 and Theorem 2, £, /~ is linearly ordered #EQ}-algebra for each F € P,

which completes the proofs.
4. Conclusions

In this paper, we introduced and studied a class of
separated (not necessarily good) lattice EQ-algebras that
may be represented as subalgebras of products of linearly
ordered ones. Such algebras are called representable.
Namely, we enriched separated lattice EQ-algebras with a
unary operation (the so called Baaz delta), fulfilling some
additional assumptions. The resulting algebras are called
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