

Journal of Basic and Environmental Sciences, 7 (2020) 45-50

ISSN Online: 2356-6388 Print: 2536-9202

Research paper

On a representable class of separated lattice EQ-algebras

Moataz El-Zekey^a, Mahmoud Khalaf^b

^a Department of Engineering Mathematics, Physics and Science, Faculty of Engineering, Damietta University, New Damietta, 34517, Egypt (E-mail: <u>moataz.elzekey@du.edu.eg</u>)

^b Department of basic Science, Faculty of Engineering, Benha University, Egypt

(E-mail: <u>mahmoud.khalaf@bhit.bu.edu.eg</u>)

Abstract

In this paper, we introduce and study a class of separated lattice EQ-algebras that may be represented as subalgebras of products of linearly ordered ones. Such algebras are called representable. Namely, we enrich separated lattice EQ-algebras with a unary operation (the so called Baaz delta), fulfilling some additional assumptions. The resulting algebras are called ℓEQ_{Δ}^{s} -algebras. One of the main results of this paper is to characterize the class of representable ℓEQ_{Δ}^{s} -algebras. We also supply a number of useful results, leading to this characterization.

Received; 20 Nov. 2019, Revised form; 17 Dec. 2019, Accepted; 17 Dec. 2019, Available online 1 Jan. 2020.

1. Introduction

EQ-algebras were introduced by Novák (2006) [1] and Novák and Baets (2009) [2] as generalization of residuated lattices (see [3]). Unlike the residuated lattices, the basic operation in it is a fuzzy equality while implication is derived from it. Its original motivation comes from the study of higher-order fuzzy logic [4] that was obtained as a generalization of simple type theory in the style of L. Henkin who developed in [5] a very elegant theory (cf. also [6]) in which the basic connective is equality.

EQ-algebras brought an idea to develop (fuzzy) manyvalued logics on the basis of fuzzy equality (equivalence) as the principal connective. Accordingly, a formal theory of new different many-valued logics, called EQ-logics, has been recently introduced by M. Dyba and V. Novák [7].

The current investigation of EQ-algebras (see [7-10]) shows that goodness, i.e. each element x is equal to **1** in the degree x, is sufficient for the resulting algebra has many reasonable properties. The goodness axiom implies that the algebra is separated (i.e., two elements equal in the degree **1** must be identical) but not vice-versa. Therefore, Separateness turned out to be indispensable for any kind of fuzzy equality-based logic.

One of the important algebraic consequences of goodness axiom is axiomatizing the class of representable good EQ-

2. EQ-algebras: an overview

Definition 1. ([9]) An algebra $\mathcal{E} = (E, \land, \otimes, \sim, \mathbf{1})$ of type (2, 2, 2, 0) is called an EQ-algebra where for all $a, b, c, d \in E$:

(E1)	$(E, \land, 1)$	is	a ∧-se	emilattice	with	top	element	1.	We	set	$a \leq b$	iff $a \wedge b = a$,
(E2)	$(E, \otimes, 1)$	is	а	monoid	and \otimes	is	isotone	in	both		arguments	w.r.t. $a \leq b$,
(E3)	$a \sim a = 1$,											(reflexivity)
(E4) $((a \land b) \sim c) \otimes (d \sim a) \leq c \sim (d \land b),$											(substitution)	
(E5) $(a \sim b) \otimes (c \sim d) \leq (a \sim c) \sim (b \sim d),$												(congruence)
(E6) $(a \wedge b \wedge c) \sim a \leq (a \wedge b) \sim a$,											(monotonicity)	
(E7) $a \otimes b \leq a \sim b$.												

The binary operation " \land " is called meet (infimum), " \otimes " is called multiplication, and " \sim " is a fuzzy equality. We set, for $a, b \in E$:

Open Access

algebras (expanded by Delta-connective) (see [8, 9]). This is mainly based on the fact that good EQ-algebras give raise to BCK-algebras [11, 12].

In this paper, we continue the study of EQ-algebras. We introduce and study a class of separated (not necessarily good) lattice EQ-algebras that may be represented as subalgebras of products of linearly ordered ones. Such algebras are called representable. Namely, we enrich separated lattice EQ-algebras with a unary operation (the so called Baaz delta), fulfilling some additional assumptions. The resulting algebras are called ℓEQ_{Δ}^{s} -algebras. One of the main results of this paper is to characterize the class of representable ℓEQ_{Δ}^{s} -algebras. We show that prelinearity alone characterizes the representable class of ℓEQ_{Δ}^{s} -algebras. We also supply a number of useful results, leading to this characterization.

This paper is structured as follows: in the next section we overview the basic definitions and properties of EQ-algebras and their special. In Section 4 we introduce and study the class of ℓEQ_{Λ}^{s} -algebras and we devote Section 5 to summarize the results.

$$a \to b = (a \land b) \sim a \tag{1}$$

$$\tilde{a} = a \sim 1 \tag{2}$$

The derived operation (1) will be called *implication*. If **0** is a bottom element of *E*, then we define the unary operation \neg on *E*, for all $a \in E$, by

$$\neg a = a \sim \mathbf{0} \tag{3}$$

Definition 2. ([4, 8]) Let \mathcal{E} be an EQ-algebra. We say that it is:

- (a) *separated* if for all $a, b \in E$, $a \sim b = 1$ implies a = b,
- (b) good if for all $a \in E$, $\tilde{a} = a$,

(c) *lattice* EQ-algebra (ℓ EQ-algebra) if the underlying \wedge -semilattice is a lattice in which the following substitution axiom holds for all $a, b, c, d \in E$:

 $((a \lor b) \sim c) \otimes (d \sim a) \leq (d \lor b) \sim c$

(d) prelinear if for all $a, b \in E$, **1** is the unique upper bound in E of the set $\{(a \to b), (b \to a)\}$.

Note that every good EQ-algebra is separated, but not vice-versa (see [4]). EQ-algebra has many interesting properties (see [4, 9]). We only mention some of them that will used later.

Lemma 1. ([9, 13]) Let \mathcal{E} be an EQ-algebra. Then the following properties hold for all $a, b, c \in E$:

- (a) $a \sim b = b \sim a;$
- (b) $(a \sim b) \otimes (b \sim c) \leq (a \sim c);$
- (c) $b \leq \tilde{b} \leq a \rightarrow b;$
- (d) $a \otimes b \leq a \wedge b \leq a, b;$
- (e) $(a \sim b) \leq a \rightarrow b$ and $a \rightarrow a = 1$;
- (f) If $a \le b$ then $a \to b = 1$, $c \to a \le c \to b$ and $b \to c \le a \to c$;
- (g) $(a \rightarrow b) \leq (c \rightarrow a) \rightarrow (c \rightarrow b);$
- (h) $(a \rightarrow b) \leq (b \rightarrow c) \rightarrow (a \rightarrow c);$
- (i) $a \to (b \to c) \le b \to (a \to \tilde{c});$
- (j) $a \to (b \to c) \le (a \otimes b) \to \tilde{c}^4$;

(k) If \mathcal{E} is ℓ EQ-algebra, then $(a \to c) \otimes (b \to c) \leq (a \lor b) \to c$.

Proposition 1. ([9]) The following statements are equivalent:

(a) An EQ-algebra \mathcal{E} is separated.

(b) $a \le b$ iff $a \to b = 1$ for all $a, b \in E$.

This means that the implication operation " \rightarrow " in a separated EQ-algebra precisely reflects the ordering " \leq ".

3. ℓEQ^s_{Λ} -algebras

Definition 3. A ℓEQ_{Δ}^{s} -algebra is an algebra $\mathcal{E}_{\Delta} = (E, \Lambda, \vee, \otimes, \sim, \Delta, \mathbf{0}, \mathbf{1})$ that is a separated ℓEQ -algebra with a bottom element **0** expanded by a unary operation $\Delta: E \to E$ fulfilling the following axioms:

- (E Δ 1) Δ **1** = **1**;
- (E Δ 2) $\Delta a \leq a$;
- (E Δ 3) $\Delta a \leq \Delta \Delta a$;
- (E Δ 4) $\Delta(a \sim b) \leq \Delta a \sim \Delta b$;
- (E Δ 5) $\Delta(a \wedge b) = \Delta a \wedge \Delta b$;
- (E Δ 6) $\Delta(a \lor b) \leq \Delta a \lor \Delta b;$
- (E Δ 7) $\Delta a \lor \neg \Delta a = 1$;
- (E Δ 8) Δ ($a \sim b$) \leq ($a \otimes c$) \sim ($a \otimes c$);
- (E Δ 9) $\Delta(a \sim b) \leq (c \otimes a) \sim (c \otimes b)$.

Note that the axioms (E Δ 1), (E Δ 2),..., (E Δ 7) are from [9], and the two inequalities (E Δ 8) and (E Δ 9) are from [10]. They are necessary to assure good behavior of the multiplication with respect to the crisp equality. If we omit " Δ " in (E Δ 8) and (E Δ 9) then the resulting EQ-algebra becomes residuated (see [9]).

Lemma 2. Let \mathcal{E}_{Δ} be a $\ell E Q^s_{\Delta}$ -algebra. For all $a, b, c \in E$, it holds that:

- (a) If $a \leq b$, then $\Delta a \leq \Delta b$;
- (b) $\Delta(a \rightarrow b) \leq \Delta a \rightarrow \Delta b;$
- (c) $\Delta(a \lor b) = \Delta a \lor \Delta b;$
- (d) $\Delta \Delta a = \Delta a$;
- (e) $a \otimes \Delta(a \to b) \leq b, \ \Delta(a \to b) \otimes a \leq b;$
- (f) $a \otimes \Delta(a \sim b) \leq b, \ \Delta(a \sim b) \otimes a \leq b;$
- (g) $\Delta(a \sim \mathbf{1}) = \Delta a$ and $\Delta(\mathbf{1} \rightarrow a) = \Delta a$;
- (h) $\Delta b \leq c \rightarrow (b \otimes c) \text{ and } \Delta b \leq c \rightarrow (c \otimes b);$
- (i) $\Delta a = \Delta a \otimes \Delta a;$
- (j) $\Delta a \leq \Delta b \rightarrow \Delta c \text{ iff } \Delta a \otimes \Delta b \leq \Delta c \text{ and } \Delta b \otimes \Delta a \leq \Delta c;$
- (k) If \mathcal{E}_{Δ} is prelinear, then $\Delta(a \to b) \lor \Delta(b \to a) = 1$;
- (1) $\Delta(a \to b) \le (a \otimes c) \to (b \otimes c)$, and $\Delta(a \to b) \le (c \otimes a) \to (c \otimes b)$.

Proof. (a): Assume $a \le b$ ($a \land b = a$). Hence, by (E Δ 5), we have

 $\Delta(a \wedge b) = \Delta a \wedge \Delta b = \Delta a$; that is $\Delta a \leq \Delta b$. (b): From (E Δ 4) and (E Δ 5), we get $\Delta(a \to b) = \Delta((a \land b) \sim a) \le \Delta(a \land b) \sim \Delta b = (\Delta a \land \Delta b) \sim \Delta b$ $= \Delta a \rightarrow \Delta b.$ (c): From item (a) (because $a, b \le a \lor b$), we can have, $\Delta a, \Delta b \le \Delta (a \lor b)$. Therefore, $\Delta a \lor \Delta b \le \Delta (a \lor b)$. Hence, by this and $(E\Delta 6)$, the result holds. (d): Direct from (E Δ 2) with item (a), we obtain $\Delta\Delta a \leq \Delta a$. Hence, by this and (E Δ 3), the result holds. (e): From (E Δ 2), Lemma 1(d) and the order properties of " \rightarrow ", we get $\Delta(a \to b) \le (a \to b) \le (a \otimes \Delta(a \to b)) \to b,$ $\neg \Delta(a \rightarrow b) = \Delta(a \rightarrow b) \rightarrow \mathbf{0} \le \Delta(a \rightarrow b) \rightarrow b \le (a \otimes \Delta(a \rightarrow b)) \rightarrow b$ (since $0 \le b$). Thus, by (E Δ 7) and Proposition 1, $(a \otimes \Delta(a \rightarrow b)) \rightarrow b = 1$; that is $(a \otimes \Delta(a \rightarrow b)) \leq b$. Similarly, $\Delta(a \rightarrow b) \otimes a \leq b$. (f): Directly from item (e) by Lemma 1(e). (g): By item (d), $(E\Delta 4)$ and item (f), we get $\Delta(a \sim \mathbf{1}) = \Delta\Delta(a \sim \mathbf{1}) = \mathbf{1} \otimes \Delta\Delta(\mathbf{1} \sim a) \leq \Delta\mathbf{1} \otimes \Delta(\Delta\mathbf{1} \sim \Delta a) \leq \Delta a.$ On the other hand, $\Delta a \leq \Delta (a \sim 1)$ by item (a) (since $a \leq (a \sim 1)$). In particular, $\Delta(\mathbf{1} \rightarrow a) = \Delta((\mathbf{1} \land a) \sim \mathbf{1}) = \Delta(a \sim \mathbf{1}) = \Delta a$. (h): From item (g), $(E\Delta 8)$ and Lemma 1(e), we get $\Delta b = \Delta (\mathbf{1} \sim b) \le (\mathbf{1} \otimes c) \sim (b \otimes c) \le (\mathbf{1} \otimes c) \rightarrow (b \otimes c)$ $= c \rightarrow (b \otimes c).$ Similarly, $\Delta b \leq c \rightarrow (c \otimes b)$. (i): By item (h), item (d) and order properties of " \rightarrow ", we obtain $\Delta a = \Delta \Delta a \leq \Delta a \rightarrow (\Delta a \otimes \Delta a)$ and $\neg \Delta a = \Delta a \rightarrow \mathbf{0} \leq \Delta a \rightarrow (\Delta a \otimes \Delta a)$ (since $\mathbf{0} \leq (\Delta a \otimes \Delta a)$). Thus, by (E Δ 7) and Proposition 1, $\Delta a \rightarrow (\Delta a \otimes \Delta a) = \mathbf{1}$; that is $\Delta a \leq (\Delta a \otimes \Delta a)$. On the other hand, $(\Delta a \otimes \Delta a) \leq \Delta a$ by Lemma 1(d). (i): Assume $\Delta a \leq \Delta b \rightarrow \Delta c$, then by Lemma 1(d) and the order properties of " \rightarrow ", $\Delta a \leq \Delta b \rightarrow \Delta c \leq (\Delta a \otimes \Delta b) \rightarrow \Delta c$ and $\neg \Delta a = \Delta a \rightarrow \mathbf{0} \leq \Delta a \rightarrow \Delta c \leq (\Delta a \otimes \Delta b) \rightarrow \Delta c.$ Thus, by (E Δ 7), and Proposition 1, ($\Delta a \otimes \Delta b$) $\rightarrow \Delta c = 1$; that is ($\Delta a \otimes \Delta b$) $\leq \Delta c$. Similarly, ($\Delta b \otimes \Delta a$) $\leq \Delta c$. Conversely, assume $(\Delta a \otimes \Delta b) \leq \Delta c$. Hence, by item (d) and item (h), we obtain $\Delta a = \Delta \Delta a \leq \Delta b \to (\Delta a \otimes \Delta b) \leq \Delta a \to \Delta c.$ Similarly, for $(\Delta b \otimes \Delta a) \leq \Delta c$. (k): By $(E\Delta 1)$, the prelinearity and item (c), we get $\mathbf{1} = \Delta \mathbf{1} = \Delta((a \to b) \lor (b \to a)) = \Delta(a \to b) \lor \Delta(b \to a).$ (1): Using (E Δ 8) and the order properties of " \rightarrow ", we have $\Delta(a \to b) = \Delta((a \land b) \sim a) \le ((a \land b) \otimes c) \sim (a \otimes c)$ $\leq (a \otimes c) \rightarrow ((a \wedge b) \otimes c)$ $\leq (a \otimes c) \rightarrow (b \otimes c).$ Similarly, $\Delta(a \rightarrow b) \leq (c \otimes a) \rightarrow (c \otimes b)$. **Definition 4.** Let $\mathcal{E}_{\Delta} = (E, \land, \lor, \oslash, \sim, \Delta, 0, 1)$ be a $\ell E Q_{\Delta}^{s}$ -algebra. A subset $F \subseteq E$ is called a *filter* of \mathcal{E}_{Δ} if for all $a, b \in E$: (a) $1 \in F$. (b) if $a, a \rightarrow b \in F$, then $b \in F$. if $a \in F$, then $\Delta a \in F$. (c) Note that a (prime) filer F on a ℓEQ^s_{Δ} -algebra $\mathcal{E}_{\Delta} = (E, \Lambda, \vee, \otimes, \sim, \Delta, 0, 1)$ is a (prime) prefilter (in the sense given in [9]) on its separated EQ-algebra $\mathcal{E} = (E, \Lambda, \otimes, \sim, 1)$ satisfying (c). So all the properties of (prime) prefilters on a separated EQ-algebra (see [8, 9]) are also properties of (prime) filers on a ℓEQ^{S}_{A} -algebra, including the following result: **Lemma 3.** (see [9]) Let F be a filter of a ℓEQ_{Λ}^{s} -algebra \mathcal{E}_{Λ} . For all $a, b \in E$ it holds that: If $a \in F$ and $a \leq b$ then $b \in F$; (a) If $a, a \sim b \in F$ then $b \in F$; (b)

(c) If $a, b \in F$ then $a \land b \in F$.

Lemma 4. Let *F* be a filter of a ℓEQ^{s}_{Δ} -algebra \mathcal{E}_{Δ} . For all *a*, *b*, *c*, *a'*, *b'* \in *E* such that $a \sim b \in F$ and $a' \sim b' \in F$, it holds that

- (a) If $a \to b \in F$, then $(a \otimes c) \to (b \otimes c) \in F$ and $(c \otimes a) \to (c \otimes b) \in F$
- (b) If $a, b \in F$ then $a \otimes b \in F$;
- (c) $(a \otimes a') \sim (b \otimes b') \in F$ and $(a' \otimes a) \sim (b' \otimes b) \in F$;
- (d) $(\Delta a \sim \Delta b) \in F$.

Proof. (a): Assume $a \to b \in F$. Since F is a filter, then $\Delta(a \to b) \in F$. Hence, by Lemma 2(1) and Lemma 3(a), we get $\Delta(a \to b) \le (a \otimes c) \to (b \otimes c) \in F.$

Similarly, $(c \otimes a) \rightarrow (c \otimes b) \in F$.

(b): From Lemma 1(c) and Lemma 3(a), it follows that $b \le 1 \rightarrow b \in F$. From item (a), it then follows that $(a \otimes \mathbf{1}) \rightarrow (a \otimes b) = a \rightarrow (a \otimes b) \in F.$

Hence, by Definition 4 of a filter, $a \otimes b \in F$.

(c): By Definition 4, $\Delta(a \sim b)$ and $\Delta(a' \sim b') \in F$. Thus, by (E Δ 8) and (E Δ 9), we get

 $\Delta(a \sim b) \otimes \Delta(a' \sim b') \leq$

 $\leq ((a \otimes a') \sim (b \otimes a')) \otimes ((b \otimes a') \sim (b \otimes b'))$

 $\leq (a \otimes a') \sim (b \otimes b')$

Hence, by Lemma 3(a) and item (b), the result holds. Similarly, $(a' \otimes a) \sim (b' \otimes b) \in F$. (d): By Definition 4 and Lemma 3(a)

 $\Delta(a \sim b) \in F$ implies $\Delta a \sim \Delta b \in F$ (since $\Delta(a \sim b) \leq \Delta a \sim \Delta b$).

Lemma 5. Let \mathcal{E}_{Δ} be a ℓEQ^{s}_{Δ} -algebra. Given a filter $F \subseteq E$, the following relation on \mathcal{E}_{Δ} is a congruence relation:

$$a \approx_F b$$
 iff $a \sim b \in F$

(5)

Proof. Indeed, axiom (E3), Lemma 1(a) and Lemma 1(b) guarantee that \approx_F is an equivalence relation. As an immediate consequence of Lemma 4, all the operations of \mathcal{E}_{Δ} are compatible with the relation given by (5); that is

 $a \approx_F b$ and $a' \approx_F b'$ imply $(a \wedge a') \approx_F (b \wedge b')$, $(a \vee b') \approx_F (b \vee b')$, $(a \sim a') \approx_F (b \sim b')$, $(a \otimes a') \approx_F (b \otimes a') \approx_F (b \otimes a')$ b'), and ($\Delta a \approx_F \Delta b$).

Then, \approx_F is a congruence relation.

Let \mathcal{E}_{Δ} be a $\ell E Q_{\Delta}^{s}$ -algebra. For $a \in E$, we denote its equivalence class with respect to \approx_{F} by $[a]_{F}$ and by E/F the quotient set associated with \approx_F . Furthermore, we define the factor algebra

 $\mathcal{E}_{\Lambda}/F = \langle E/F, \Lambda_{F}, \vee_{F}, \otimes_{F}, \sim_{F}, \Delta_{F}, \mathbf{0}_{F}, \mathbf{1}_{F} \rangle.$

in the standard way as follows:

 $E/F = \{[a]_F | a \in E\}$, and the binary operations on E/F are defined by $[a]_F \wedge_F [b]_F = [a \wedge b]_F;$ $[a]_F \vee_F [b]_F = [a \vee b]_F;$ $[a]_F \sim_F [b]_F = [a \sim b]_F;$ $[a]_F \otimes_F [b]_F = [a \otimes b]_F;$ $\Delta_F[a]_F = [\Delta a]_F.$

The top and the bottom elements are $\mathbf{1}_F = [\mathbf{1}]_F = \{b \in E | b \sim \mathbf{1} \in F\} = F, \mathbf{0}_F = [\mathbf{0}]_F = \mathbf{0}$, respectively. Also, we can define a binary relation " \leq_F " on E/F as follows:

 $[a]_F \leq_F [b]_F$ iff $[a]_F \wedge_F [b]_F = [a]_F$ iff $a \wedge b \approx_F a$ iff $a \to b \in F$ (6) Then, we have the following result. Its proof proceeds in a standard way.

Theorem 1. Let *F* be a filter of a ℓEQ^s_{Δ} -algebra \mathcal{E}_{Δ} . The factor algebra $\mathcal{E}_{\Delta}/F = \langle E/F, \wedge_F, \vee_F, \otimes_F, \sim_F, \Delta_F, \mathbf{0}_F, \mathbf{1}_F \rangle$ is a ℓEQ^s_{Δ} -algebra, and the mapping $f: E \to E/F$ defined by $f(a) = [a]_F$ is a homomorphism of \mathcal{E}_{Δ} .

For a nonempty subset X of a ℓEQ_{Δ}^{s} -algebra \mathcal{E}_{Δ} , the smallest filter of \mathcal{E}_{Δ} which contains X, i.e. $\bigcap \{F \in \mathcal{F}(\mathcal{E}_{\Delta}): X \subseteq F\}$ is said to be a filter of \mathcal{E}_{Δ} generated by X and will be denoted by $\langle X \rangle$. Obviously, if X is a filter then $\langle X \rangle = X$. It is clear that if $X_1 \subseteq X_2$, then $\langle X_1 \rangle \subseteq \langle X_2 \rangle$. If $X = Y \cup \{a\}$, we will write $\langle Y, a \rangle$ for $\langle X \rangle$. The set of non-negative integers will be denoted by ω , for $a, b \in E, n \in \omega$, we define $a \to b = b, a \to a \to b = a \to (a \to b)$. If $a = 1, a \to a \to b$ is denoted by \tilde{b}^{n+1} .

The following theorem gives a characterization of a filter generated by a set. REOS Theorem 2. I

Let X be a nonempty subset of a
$$\ell EQ_{\Delta}^{s}$$
-algebra \mathcal{E}_{Δ} . Then

 $\langle X \rangle = \{ a \in E : \Delta b_1 \to (\Delta b_2 \to \cdots (\Delta b_n \to a) \dots) \} = 1$, for some $b_i \in X, n \in \omega \}$.

Proof. Put $M = \{a \in E : \Delta b_1 \to (\Delta b_2 \to \dots (\Delta b_n \to a) \dots)\} = 1$, for some $b_i \in X, n \in \omega\}$. Now, we show that M is a filter of \mathcal{E}_{Δ} . Since all $b_i \in M$, $b_i \leq 1$, therefore by Lemma 2(a) and $(E\Delta 1) \Delta b_i \leq \Delta 1 = 1$ so $\Delta b_i \rightarrow 1 = 1$; i.e., $1 \in M$. Now, let $a, a \rightarrow b \in M$, then there exist $b_1, b_2, \dots, b_n, b'_1, b'_2, \dots, b'_m \in X$ such that

 $\Delta b_1 \rightarrow (\Delta b_2 \rightarrow \dots (\Delta b_n \rightarrow a) \dots)) = \mathbf{1}$ and

 $\Delta b_1^{\prime} \to (\Delta b_2^{\prime} \to \dots (\Delta b_m^{\prime} \to (a \to b))\dots)) = \mathbf{1}$

Hence, by Lemma 1(g), we have:

 $a \to b \le (\Delta b_n \to a) \to (\Delta b_n \to b)$

 $\leq (\Delta b_{n-1} \to (\Delta b_n \to a)) \to (\Delta b_{n-1} \to (\Delta b_n \to b)).$

By continuing this way, we get that

 $a \to b \leq (\Delta b_1 \to (\Delta b_2 \to \dots (\Delta b_n \to a)\dots)) \to (\Delta b_1 \to (\Delta b_2 \to \dots (\Delta b_n \to b)\dots)).$ Then, by order properties of " \to ", Lemma 2(a) and (E $\Delta 1$), we conclude that

 $a \rightarrow b \leq \mathbf{1} \rightarrow (\Delta b_1 \rightarrow (\Delta b_2 \rightarrow \cdots (\Delta b_n \rightarrow b) \dots))$

 $\leq \Delta b_0 \to (\Delta b_1 \to (\Delta b_2 \to \dots (\Delta b_n \to b) \dots)),$ where $b_0 \in M$. Hence,

 $\Delta b'_m \to (a \to b) \leq \Delta b'_m \to \Delta b_0 \to ((\Delta b_1 \to (\Delta b_2 \to \dots (\Delta b_n \to b)\dots))).$ We can obtain by continuing

 $\Delta b_1' \to (\Delta b_2' \to \dots (\Delta b_m' \to (a \to b)) \dots) \leq \Delta b_1' \to (\Delta b_2' \to \dots (\Delta b_m' \to (\Delta b_0 \to (\Delta b_1 \to (\Delta b_2 \to \dots (\Delta b_n \to (\Delta b_1 \to (\Delta b_2 \to \dots (\Delta b_n \to (\Delta b_1 \to (($ *b*)...)))...). Then, $\Delta b_1' \to (\Delta b_2' \to \dots (\Delta b_m' \to (\Delta b_0 \to (\Delta b_1 \to (\Delta b_2 \to \dots (\Delta b_n \to b) \dots))) \dots) = \mathbf{1}.$ And so $b \in M$. Finally, we will prove that $\Delta a \in M$ whenever $a \in M$. Assume that $a \in M$, then $(\Delta b_1 \rightarrow (\Delta b_2 \rightarrow \dots (\Delta b \rightarrow a)\dots)) = \mathbf{1}$ for some $b_1, b_2, \dots, b_n \in X$. By (E Δ 1), Lemma 2(b), Lemma 2(d), and the order properties of " \rightarrow ", $\mathbf{1} = \Delta \mathbf{1} = \Delta (\Delta b_1 \to (\Delta b_2 \to \cdots (\Delta b_n \to a) \dots))$ $\leq (\Delta \Delta b_1 \rightarrow (\Delta \Delta b_2 \rightarrow \cdots (\Delta \Delta b_n \rightarrow \Delta a) \dots))$ $= (\Delta b_1 \to (\Delta b_2 \to \dots (\Delta b \to \Delta a) \dots)).$ Hence, $\Delta a \in M$. Therefore, *M* is a filter of \mathcal{E}_{Δ} . Let $F \in \mathcal{F}(\mathcal{E}_{\Delta}), X \subseteq F$ and $a \in M$, then $(\Delta b_1 \rightarrow (\Delta b_2 \rightarrow \dots (\Delta b_n \rightarrow a)\dots)) = \mathbf{1}$, for some $b_i \in X$ and $n \in \omega$. Since $\mathbf{1}, \Delta b_1, \Delta b_2, \dots, \Delta b_n \in F$, we imply $a \in F$. Thus, $M \subseteq F$. Therefore, M is the smallest filter of \mathcal{E}_{Δ} containing X. i.e. $M = \langle X \rangle.$ **Theorem 3.** Let *F* be a filter of a ℓEQ^s_{Δ} -algebra \mathcal{E}_{Δ} . Then $\langle F, a \rangle = \{ b \in E : \Delta a \to b \in F \}$ **Proof.** Let $b \in \langle F, a \rangle$, then by Theorem 2 and Lemma 1(i) for some $f_1, f_2, \ldots, f_n \in F, n, k_1, k_2 \in \omega$ $\Delta f_1 \to (\Delta f_2 \to \dots (\Delta f_n \to (\Delta a \to^{k_1} \tilde{b}^{k_2})\dots) = \mathbf{1}.$ Since F is a filter and $\mathbf{1} \in F$, then $\Delta a \rightarrow^{k_1} \tilde{b}^{k_2} \in F$. Hence, by Lemma 1(i) and Lemma 2(i) we get, $\Delta a \to^{k_1} \tilde{b}^{k_2} \le (\Delta a \otimes ... \otimes \Delta a) \to \tilde{b}^{k_3} = \Delta a \to \tilde{b}^{k_3} \in F$ for some $k_3 \in \omega$. Since F is a filter, then by Lemma 2(b), (d) and (g) and Lemma 3(a), we obtain $\Delta(\Delta a \to \tilde{b}^{k_3}) \leq \Delta \Delta a \to \Delta \tilde{b}^{k_3} = \Delta a \to \Delta b \leq \Delta a \to b \in F$ Thus, $b \in \{b \in E : \Delta f \to (\Delta a \to b) = 1 \text{ for some } f \in F\}$. Conversely, since $\langle F, a \rangle$ is a filter, and $a \in \langle F, a \rangle$, then $\Delta a \in \langle F, a \rangle$. If $\Delta a \to b \in F$, then $\Delta a \to b \in \langle F, a \rangle$, and hence, $b \in \langle F, a \rangle$. By the following theorem, we determine filters generated by join of two elements. **Theorem 4.** Let *F* be a filter of a ℓEQ^s_{Δ} -algebra \mathcal{E}_{Δ} , and $a, b \in E$. Then $a \lor b \in F$ implies $\langle F, a \rangle \cap \langle F, b \rangle = F$; **Proof.** It is clear that $F \subseteq \langle F, a \rangle \cap \langle F, b \rangle$. Let $a \lor b \in F$, then by Definition 4 and Lemma 2(c), $\Delta(a \lor b) = \Delta a \lor \Delta b \in F$ F. Now let $c \in \langle F, a \rangle \cap \langle F, b \rangle$, then by Theorem 3, we get $\Delta a \to c \in F$ and $\Delta b \to c \in F$ for some $f \in F$. Hence, by Lemma 4(b), we have $(\Delta a \rightarrow c) \otimes (\Delta b \rightarrow c) \in F$. By this, Lemma 1(k) and Lemma 3(a), we have $(\Delta a \to c) \otimes (\Delta b \to c) \leq (\Delta a \lor \Delta b) \to c \in F.$ Therefore, $c \in F$. Thus, $\langle F, a \rangle \cap \langle F, b \rangle \subseteq F$. We extend to ℓEQ_{Λ}^{s} -algebra the following result, proved by El-Zekey in [8]. The proof is completely the same as El-Zekey's. **Proposition 2.** Let F be a filter of a prelinear ℓEQ^s_{Δ} -algebra \mathcal{E}_{Δ} . Then F is prime iff E/F is a chain, i.e., is linearly (totally) ordered by \leq_F . **Theorem 5.** Let \mathcal{E}_{Δ} be a prelinear ℓEQ_{Δ}^{s} -algebra and let $a \in E, a \neq 1$. Then, there is a prime filter F on \mathcal{E}_{Δ} not containing a.

Proof. There are filters not containing a, e.g. $F_0 = \{1\}$. We shall show that if F is any filter not containing a and $x, y \in E$ such that $(x \to y) \notin F$ and $(y \to x) \notin F$, then there is a filter $F' \supseteq F$ not containing a but containing either $(x \to y) \in F$ or $(y \to x) \in F$. Note that the least filter F' containing F as a subset and $u \in E$ as an element is $F' = \{v \in E : \Delta u \to v \in F\}$. Indeed, F' is obviously a filter by Theorem 3 equivalently $F' = \langle F, u \rangle$.

Thus, assume $(x \to y) \notin F$, $(y \to x) \notin F$ and let F_1, F_2 be the smallest filters containing F as a subset and $(x \to y)$, $(y \to x)$ respectively as an element. We claim that $a \notin F_1$ or $a \notin F_2$. Assume the contrary; then,

 $\Delta(x \to y) \to a \in F \text{ and } \Delta(y \to x) \to a \in F.$

Hence, by Lemma 4(b), we have

 $(\Delta(x \to y) \to a) \otimes (\Delta(y \to x) \to a) \in F.$

By this, Lemma 1(k) and Lemma 3(a), we have

 $(\Delta(x \to y) \to a) \otimes (\Delta(y \to x) \to a) \le (\Delta(x \to y) \lor \Delta(y \to x)) \to a$ = **1** \to a \in F.

Thus, $a \in F$ (since $\mathbf{1} \in F$) a contradiction. Hence $a \notin F_1$ or $a \notin F_2$.

Now, if \mathcal{E}_{Δ} is countable (which will be our case in the proof of completeness), then we may arrange all pairs (x, y) from E^2 into a sequence $\{(x_n, y_n) | n \text{ natural}\}$, put $F_0 = \{1\}$ and having constructed F_n such that $p \notin F_n$ we take $F_{n+1} \supseteq F_n$ such that $p \notin F$ according to our construction; if possible we take F_{n+1} such that $(x_n \to y_n) \in F_{n+1}$, if not, we take that with $(y_n \to x_n) \in F_{n+1}$. Our desired prime filter is the union

$$\bigcup_{n} F_{n}$$

If \mathcal{E}_{Δ} is uncountable, then one has to use the axiom of choice and work similarly with a transfinite sequence of filters.

Theorem 6. (Representation theorem). Let \mathcal{E}_{Δ} be a prelinear $\ell E Q_{\Delta}^{s}$ -algebra. Then, each \mathcal{E}_{Δ} is subdirectly embeddable into a product of linearly ordered $\ell E Q_{\Delta}^{s}$ -algebras; i.e., \mathcal{E}_{Δ} is representable.

Proof. Let \mathcal{P} be the set of all prime filters of \mathcal{E}_{Δ} . For $F \in \mathcal{P}$. Thus, by Theorem 1, the natural homomorphism $h: \mathcal{E}_{\Delta} \to \prod_{F \in \mathcal{P}} \mathcal{E}_{\Delta} / \approx_{F} defined by <math>h(a) = \langle [a]_{F} \rangle_{F \in \mathcal{P}}$ is a subdirect embedding of \mathcal{E}_{Δ} into a direct product of $\{\mathcal{E}_{\Delta} / \approx_{F} : F \in \mathcal{P}\}$. It remains to show that it is one-one. If $a, b \in F$ and $a \neq b$ then $a \leq b$ or $b \leq a$. Without loss of generality, then $(a \to b) \neq 1$ in E. By Theorem 5, let F be a prime filter on E not containing $(a \to b)$; then in $\mathcal{E}_{\Delta} / F, [a]_{F} \leq [b]_{F}$, hence $[a]_{F} \neq [b]_{F}$ and therefore $h(a) \neq h(b)$. Using Proposition 2 and Theorem 2, $\mathcal{E}_{\Delta} / \approx_{F}$ is linearly ordered ℓEQ_{Δ}^{S} -algebra for each $F \in \mathcal{P}$, which completes the proofs.

4. Conclusions

In this paper, we introduced and studied a class of separated (not necessarily good) lattice EQ-algebras that may be represented as subalgebras of products of linearly ordered ones. Such algebras are called representable. Namely, we enriched separated lattice EQ-algebras with a unary operation (the so called Baaz delta), fulfilling some additional assumptions. The resulting algebras are called ℓEQ_{Δ}^{s} -algebras. One of the main results of this paper is to characterize the class of representable ℓEQ_{Δ}^{s} -algebras. We showed that prelinearity alone characterizes the representable class of ℓEQ_{Δ}^{s} -algebras. We also supplied a number of useful results, leading to this characterization.

References

[1] V. Novák, EQ-algebras: primary concepts and properties, Proc. Czech-Japan Seminar, Ninth Meeting. Kitakyushu& Nagasaki, Citeseer, 2006, pp. 219-223.

[2] V. Novak, B. De Baets, EQ-algebras, Fuzzy Sets and Systems 160 (2009) 2956-2978.

[3] P. Hájek, Metamathematics of fuzzy logic, Kluwer, Dordrecht, 2001.

[4] V. Novak, EQ-algebra-based fuzzy type theory and its extensions, Logic J. IGPL Logic Journal of the IGPL 19 (2011) 512-542.

[5] J.R. Guard, Henkin L. A theory of propositional types. Fundamenta mathematicae, vol. 52 (1963), pp. 323344. (See Errata, Fundamenta mathematicae, vol. 53 no. 1 (1963), p. 119.), J. symb. log. The Journal of Symbolic Logic 30 (1965) 385.

[6] P.B. Andrews, An introduction to mathematical logic and type theory : to truth through proof, Kluwer Academic Publishers, Dordrecht, 2002.

[7] M. Dyba, V. Novák, EQ-logics: Non-commutative fuzzy logics based on fuzzy equality, Fuzzy Sets and Systems 172 (2011) 13-32.

[8] M. El-Zekey, Representable good EQ-algebras, Soft Computing 14 (2010) 1011-1023.

[9] M. El-Zekey, V. Novak, R. Mesiar, On good EQalgebras, Fuzzy Sets And Systems 178 (2011) 1-23.

[10] M. Dyba, M. El-Zekey, V. Novák, Noncommutative first-order EQ-logics, Fuzzy Sets and Systems 292 (2016) 215-241.

[11] I. Fleischer, Subdirect products of totally ordered BCK-algebras, Journal of Algebra 111 (1987) 384-387.
[12] H. Ono, Y. Komori, Logics Without the Contraction Rule, The Journal of Symbolic Logic 50 (1985) 169-201.

[13] N. Mohtashamnia, L. Torkzadeh, The lattice of prefilters of an EQ-algebra, Fuzzy Sets and Systems 311 (2017) 86-98.