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ale rats were divided into three equal groups ¢ i

Ad:,l,ti,:f;?s were injected i.p with physiological s;’[incp(O.‘)r"Z/oOI::glll)a(llsa?lﬂdrl(. G7roup + Control
groufr)(’)ups were treated With19.7 & 39.4 pg AuNPs/kg.b.wt of 20 nm sizeq AyuN)Ir‘ ddi_lys; Fs
t“Oﬂclivclv. Blood and Kkidney tissuc samples were collected from control ang lsr Imly for T days,
es cdiffcr'en‘ time points (after 1, 3, S and 7 days from start of experiment i
four crificed at each time point. b

ated groups at
where five rats /
group were sa

The results rcvcalec-l that AuNPs exposure at 39.4 pg/kg.b.wt significantly enhanced
sephrotoxicity by increasing serum urea and creatinine levels from the 1+ day till the end cof
e,\perimcm compared to the COITCSPOHdmg.control values and those of rats taken the therapeutic
dose (19.7 pg/kg.b.wt). Moreover, intraperitoneal injection of rats with AuNPs at the toxic dose
(394 pg/kg.b.wt) significantly reduced renal tissue GSH content and CAT activity (P<0.05)
throughout the experiment with marked increase of MDA production throughout the study when
compared to control and low-dose groups.

COMET assay showed that AuNPs exposure induced renal apoptosis which was exhibited
through the recorded significant decrease in intact cells %, head diameter, and head DNA % in the
double therapeutic dose of AuNPs-treated group compared to the control and therapeutic dose of
AuNPs-treated groups. The nephrotoxic effect of AuNPs was also confirmed by the observed renal
histopathological alterations especially at the high dose.

Feywords: Gold nanoparticles (AuNPs), nephrotoxicity, renal apoptosis, MDA, GSH, CAT, rats.

Introduction Furthermore, Nanoparticles easily pass
cell membranes and can interact with
- Gold nanoparticles (AuNPs) are intracellular metabolism (Hanley et al.,
"ely used in biomedical research (Liu 2009). As nano-scale gold-particles may
md Ye, 2013). AuNPs of various sizes exhibit size-related properties that Fllffe;
i . Morphologies  had attracted significantly from the kno.wn properties 0
CUHS}derabIe interest  for  medical non nano-scaled gold-particles, one cannot
Mlations_for example as drugs’ carrier predict reliably the interactions bettwiﬁin
Q;ESon ¢ al, 2007), tumor-detector AuNPs and living c?lls 11(113“16;031 is;né
(Mc;/[:h al, 2008), photothermal agent 2007). ~ Because ]ic(:ations of  such
“XDerim ﬁna ® 21, 2011). Nevertheless, b101nedltf:;lials :gszfssnwm of their toxicitg
POssibe Med; use of AuNPs presented {1anomanecw;,aly ok (Alkilany .a{,t
Ol ratj 41 hazards as the surface to e 2010). 1Its ChemicaI. react1v1}e/
M 0 causes catalytic properties Murphy; rtant, and oxidativeé damag
(Sl‘)ﬁket ;nake Particles very reactive becomes 1MpO bfe (Bhattacharya _—y

2013 to cells is possibie Loty 2009
> Mukherjec; 2008; AilloR tt, 2010)-
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Despite the huge potential bqneﬁt of
AuNPs in the field of bio.mcd'lcal and
industrial applications, very little is kqown
about their in vivo toxicity and tissue
bioavailability in  animals. Although
AuNPs were recognized as being nontoxic
(Merchant, 1998; Connor et al., 2005;
and Shukla et al., 2005), there have been

still some reports suggesting ?hat goéd
nanoparticles  themselves m1ght20046;:

inherently toxic (Goodman et al.,.
Pernodet et al., 2006; Chithrani and
Chan, 2007; Pan et al., 2007;- and
Alkilany and Murphy, 2010). This 'has
been shown to depend on the physical
dimension, surface chemistry, and shape of
the AuNPs.

Therefore, this in vivo toxicity st}ldy was
designed to investigate the potential toxic
effects of AuNPs (20 nm) on Sprague—
Dawley rats after ip injection of elth_er
therapeutic or toxic dose to assess its
nephrotoxicity. To achieve this purpose
kidney functions were evaluated in
addition to oxidative stress and
genotoxicity parameters of AuNPs -treated
animals. Histopathological examination of
kidney tissues in treated rats was carried
out to confirm our results.

Materials and methods:

2.1. Animals:

Sixty adult female Sprague-Dawley
rats (150-200 g) obtained from Faculty of
Veterinary Medicine, Cairo University,
Egypt were used in this study. They were
kept under good ventilation and standard
hygienic conditions with free access to
food and drinking water ad libitum. Rats
were reared and treated in accordance with
the guidelines of animal bjoethics
committee from the faculty of Veterinary
Medicine, Cairo University,

2.2. Chemicals:

Gold hanoparticles (20 nm) stabilized as
a suspension in citrate buffer solution;
chemical reagents used for determinatior;
of the lipid peroxidation  marker

i MDA), I'CduCe
(1]]a|0n§i,aid?g>é?_?)’ Jevels and test lfits uSeg
glutathion ement of catalase activity were
for measzlJr from Sigma—Aldrich chemicg
pUrChgie Louis, ’ USA). Urea ang
CO'ati(niI;e test kits were purchased frop
](;rieodiagnostic Co, Egypt. All the othe;
chemicals wereé of analytical pure grade.

2.3. Animal groups and treatments:

rats were divided intg
ps, each of 20 rats a
: Group L: (Control group),-anjm]S
\?;:V\éa”y in?ected i.p with physiological
saline (0.9 % NaCl) dqlly.f:or 7 da)‘/s;
Group 1I: Animals were 1.p injected dall'y
with 19.7 pg AuNPs /kg.b.wt (therapeutic
dose) daily for 7 d?ys (Stefan et a'l.,
2013); Group III: Animals were daily ip
injected with 39.4 pg AuNPs/kg.b.wt
(double therapeutic dose) for 7 days.

Experimental
three equal grou

2.4. Samples preparation.

At each time point, animals were
anaesthetized under gentle anesthesia and
sacrificed. Blood and kidney tissues
samples were collected from control and
treated groups at four different time points
(after 1, 3, 5 and 7 days from the start of
experiment). Five rats / group were
sacrificed at each time point.

Blood samples were collected without
anticoagulant and used after serum
separation for assessment of kidney
function (urea and creatinine).

In addition, kidney tissues were
immediately dissected out of the body;
wiped off the blood and divided into three
parts. Two parts were kept in deep freezer
(-20); one of them was used for assessment
of GSH content, lipid peroxidation (MDA
content) and catalase activity (CAT) while
the other one was used for assessment of
AuNPs enotoxicity using COMET assay
(at the 7% day). The third part was kept in

formalin and subjected to histopathological
€Xamination,

2:3. Assessment of kidney functions:
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Urea and creatinine levels were
jined in the serum samples by the
netric method according to Fawcett

d Soctt (1960) and Schirmeister
zll 964), respecllvely.
16 Assessment of renal oxidative stress

detern
colort!

a]‘kerS-' . .
ét Lipid peroxides in the prepared renal

homogenates were determined
chemically s thiobarbituric agid reactive
qubstances (TBARS), according to the
method of Uchiyama and Mihara (1978).
The concentration of TBARS in the test
samples was expressed as nmol/ml using
serial dilutions of MDA (the standard

curve).

Reduced GSH was determined in the
prepared renal  tissue  homogenates
chemically using  Ellman’s  reagent
(Ellman, 1959). The concentration of
GSH in the test samples was expressed as
umol/m] using the constructed using serial
dilutions of GSH standard curve.

For CAT assay, tissue
homogenization was carried out in 5 -10
ml cold buffer per gram kidney tissue
using tissue homogenizer (Fossati, et al.,
1980). CAT activity was determined in the
prepared kidney tissue homogenates using
ready-made test kits according to the
method described by Aebi (1984).

tissue

2.7. Assessment of renal genotoxicily using
Comet assay:

Kidney tissue samples were chopped
and cells were isolated in Hank's Balanced
Salt Solution (HBSS) containing 20 mM
EDTA and 10% DMSO. The cell
suspension was prepared in HBSS solution
containing 20 mM EDTA and 1% DMSO.
From the suspension, the comet assay Was
performed as described by Singh et al-
(1988) and Tripathi and Jena (2009)-
From the final cell-agarose suspension,
80ul was spread over the microscopeé slide
Which {5 pre-coated with 1% normal
Melting point agarose. The cells were then
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containing 2.5 M NaCl
. mM Tris (pH 10.05
Triton X-100
h at 4 oC, After

detergent,
horizonta] e|
was allowed

were  placed |
ecttrophoresis u];it a?md llgN:
_ 0 unwin in i
alkaline solution contgint;(r)];g 2(330(1)11 g 11\1/}
NaOH and 1 mM EDTA, pH >13 r"?he
DNA was electrophoresed for 3( rr‘1in at
300 mA and 25 v (0.90 V/em). The slides
were neutralized with 0.4M Tris (pH 7.5);
stained with SYBR green-l (1:10,000
dilution) for 1 hr.; covered with cover ;lips
and stored in a humidified chamber. The
fluorescence-labeled DNA was visualized
using an automated imager fluorescence
microscope and the images were captured
with image analysis software.

2.8. Histopathological examination:

Kidney tissue samples taken from all
rat groups were fixed in 10% formalin for
24 hrs then prepared, stained, and
examined according to Banchroft et al.

(1996).

2.9. Statistical analysis:

Data were expressed as means *
standard error of means (SE). Statistical
analysis of the results was performed using
one-way analysis of variance (ANOVA)
procedure followed by Tukey-Kramer
multiple comparison post-tests using .the
Software GRAPHPAD INSTAT (Version
2). The 0.05 level of probability was used
as the criterion for significance.

Results:

3.1, Effects of gold nanoparticles on
kidney function: |
Fig. (1) illustrates the time course

level of rats after exposure
of serum urea [€ hchpory o)

AuNPs (0, 19.7 an |
’tlf)here was significant increase 1n ureage\\;ft:)l
xposure 0 uNPs (39.4 nghkeo-W)

o ed 3 day till the end 0

rom the (
Starctaer(iimgnt when it compared with the
exp
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corresponding control values and those
rats taken the therapeutic dose (19.7

g/kg.b.wt) at P<0.05. However, there was
no significant difference in urea levels
between AuNPs- therapeutic group and the
control one at all the time points.

The data in Fig. (2) indicates that
AuNPs exposure at 39.4 pg/kegb.wt
significantly enhanced nephrotoxicity by
increasing creatinine release into serum
especially in the high dose group
compared to the control and low dose.
There were no significant differences
between the AuNPs-therapeutic group and
the control one.

3.2. Effects of gold nanoparticles on
induction of renal oxidative stress:
Exposure of rats to AuNPs ip at doses
0, 19.7 and 39.4 ug/kg.b.wt resulted in an
observable dose and time-dependent
increase in renal MDA level and decrease
in its GSH content and CAT activity (Figs.

3.5).

3.3. Effects of Gold nanoparticles in
induction of renal apoptosis:

The effects of AuNPs in induction of
renal apoptosis were assessed by
investigating  DNA damage using the
single cell gel electrophoresis (comet)
assay and recorded in Table (3) and Fig.
(6). The results showed that AuNPs ip
injection of rats for 7 days induced
significant decrease in intact cells %, head
diameter, and head DNA % in the double
therapeutic dose of AuNPs-treated group
compared to the control and therapeutic
dose of AuNPs-treated groups while tail
%, tail length, tail DNA %, and tail
moment were significantly increased. In
AuNPs-treated group at the therapeutic
dose, the comet assay parameters showed
insignificant differences from the control
one except the head diameter, tail length,

and tail DNA % which were markedly
changed.
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3.4, Effects of gold nanapaiiicle,
renal histoarchiticiuie:

Gold  nanoparticles ‘
induced different time and dose depeige,
cahal I'\ismpathﬂlogi“-“I, ul(cruln;u§ in
treated groups. In AHNJ-’%‘ '“ﬁ’“l'"i‘?“ffally
treated group, focal inflammatory cejls
‘filtration in between the degencigieq
(ubules began to appear at the Isi day
while at the 3rd day of exposurc Gl fj,
end of experiment;  there vy
degeneration of tubules and‘almph‘/ of the
glomeruli with dilatation of blood yessels
and infiltration of focal inflammatory cells
(Fig. 7).

In the high dose (394 pg/kgb.vi
AuNPs- injected rats, the kidney tissue
showed  focal inflammatory  cells
infiltration in between the degenerated
tubules at the 3rd day (Fig. 8). At the 5th
day, there were severe congestion of blood
vessels (Fig. 9), focal haemorrhages and
inflammatory cells infiltration in between
the degenerated tubules at
corticomedullary junction (Fig. 10), and
fibroblastic cells proliferation in between
the atrophied tubules and congested
glomeruli (Fig. 11). At the 7th day of
AuNPs injection with the high dose, there
was an infiltration of inflammatory cells in
between the degenerated tubules (Fig. 12\

administiai

1

Table(3): Comet assay of kidney cells after ip tnjection of ranwitk
therapeutic or double therapeutic doses of AuNDPs ot 7days
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Fig. (7): Kidacy of a rat wreated with AuNPy sta Fig. (8): Kidaey of a rat rested with Auip
e 7 %o b fr & davy showing fochl dose of 39 4pgkgbwiford ‘!”h:"‘"‘mifbn
dose of 19 7 ug kg b wifor 5 days showing 109 { . cells nfilration in b ™
inflammatory cells infiltration (m) in between the inflammatory c¢ {“‘F. i thween g
degenenated tubules and auophied gomeruli with degenerated mbules (H& E, X 30)

dilatation of blood vessels(v) (H& E, X 40)

Fig. (9): Kidney of a rat weated with AuNPs ata  Fig. (10): Kidney of a rattreated with AuNPs ata
dose of 39.4 uz kg b wtfor 5 days showing severe  dose of 394 ugkg b wiforS days showing focal
congestion of blood vessels (H& E, X 40). haemonthages (h) and inflammatory cels
infiltration in berween the degenerated tubules at
corticomedullary junction () (H& E, X 40).

- y o* ,‘ Fo - 4 -
-, 5 "'ﬁ oo ffj{

™

¥ Y

neyofarattreated with AuNPs at2
'dosc of 394 ugkgbwt for 7 days showing
inflammatory cells infiltration in between ¢
and congested glomeruli (Hg, F, x 40) degenerated tubules (H& E, X 40).

Fig. (11): Kidney of a rat treated wigh y ‘ -
AuNPs at e

#OSC of 39.4 1g }gb‘}}! fors dl}‘s 5h0=&ing«~{0(5 Fig. (1 2):Kid
inflammatory cells infilration with fibroblastic

cells proliferationin between the atrophied tubuyles
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Discussion

s

sone g ;%?er;hnye AuNPs
® g Murphy: 20 important, and
e any 87 ity becomes imp : B ded]
(r\lld o react! . t0 cells 18 possible (Fadee
ch?nl:we damﬂgnncﬂ 2010). Qur results
o Gareit” { AuNPs 1P injection of rats
ond aize ﬂ(therapcutic dose) or 39.4
S o therapeutic dose) for 7

dﬂlg;'a_wt (doub_l'e and geno- toxic in a time
P@ISD“,BS e hf‘éént manner as indicated by
° 1ose depen functions; renal tissues
kldnciarkers with increased % of
alive streSS(l; NA strand breaks indicating
a gpwsis) and histopatholog_ical
" apm coincidence with this finding,
Jeralion’: and Jarrar (2011); Jung et al.
pdethalim oa ¢f al. (2012) and Abdelhalim
(Q012); g:;:lottﬂleb (2013) and Shrivastava
ond A§014) confirmed the nephro-; and geno-
M'L( fects Of AuNPs in experimental
w}.“calse ot different higher doses than
f;;zpeuﬁc one which was dependent on the
gize of AUNPs and duration (?f exposure. They
noreased BUN and creatinine levels; tissue
MDA and decreased renal GSH content and
CAT activity.
Since, membrane phospholipids are
major targets of oxidative damage, lipid
proxidation is often the first parameter
amlyzed for proving the involvement of free
radical damage. Lipid peroxidation produces a
pogressive loss of cell membrane integrity,
impairment in membrane transport function
ad disruption of cellular ion homeostasis
(Bano and Bhatt 2007). The increased MDA
}zrsst following AuNPs exposure in our
lipids lgrathg could be attributed to increa'sed
Pmdupctiz: ation due to increased free radical
(Chuang et al., 2014).
o daﬁTVheestrr:scorded AuNPs- in.duced renfa]
iney functios was re_ﬂccted' as disturbance in
Mt ofn and histological structure and
M0atici o dre{‘a_] cell - apoptosis. Gold
{ Ministration induced different
his dose  dependent renal
alterations,

an,
topathological

The
F‘na), be a?i?élmtoxicity induced by AuNPs
“Mloxie gfpu 0 10 their cytotoxic and
©s. In addition, it may be due to

\\
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the observed AuNPg

pathological alterationg in liver d
and kidpey

tissues especiall .
Y at the hjp
the observed AuNps. e high dose, Ay metal

Induceq Severe

It has been shown ex

(gzld nanorods can enter |
Ikilany and Murphy, 2009.

2008; Takahashi pety’cxl.?ogz,ﬂz)lg)l.ml;ta\:/,;;
generally accepted that larger particles (500
nm) enter cells via phagocytosis  while
receptor-mediated endocytosis (RME) was
suggested as the primary mechanism of cel
uptake for nanoparticles with dimensions Jess
than 100 nm (Conner and Schmid, 2003).
Oyelere ef al. (2007) qualitatively showed that
gold nanoparticles could enter the nucleus if
the particles were functionalized with a
nuclear targeting agent.

perimentally thag
mammalian cells

Once AuNPs are taken inside the cell,
they produce ROS and generate oxidative
stress, which is responsible for many
deleterious effects in the cell including DNA
damage, lipid peroxidation and protein
modification (Satoh, 1978). In addition, these
metallic nanoparticles or their radical
metabolites may be interacted with the
mitochondrion as that reported by Yu ef al,

(2009), which may lead to uncoupling
between oxidative phosphorylation and
electron transport in respiratory ~chain

(Michalowicz and Duda, 2000).

In vivo, Tedesco ef al. (2010) concluded
that small AuNPs seemed to have greater
effects on thiol-containing protein profiles in
Mpytilus edulis than Cd as a well-known
environmental pollutant. In particular, their
work showed that AuNP (5 nm) caused
significantly ~greater oxidative stress and
cytotoxicity effects than AuNPs of larger
average diameters (Pan et al., 2007; Tedes'co
et al., 2008, 2010). Reactive oxygen spemles
production could  result from ]\;;:
proportionately high surface area of Ajunm)
(Nel et al., 2006). Gold nanopartlclef: ( o
are known to catalyze NO production 11
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endogenous  S-nitroso a'dducts \;(1;[1)19 ) ﬂIl\lI(())]
arou;;s in blood serum (Jia ef .al., 2 odllcing.
reacts rapidly with superoxide p; l' iy
peroxynitrile which can iuterfact wit 1'. dlptivej
DNA. and proteins  via dlre.cr Od\]d?qted
reactions or via indirect, radical-mediz
damage (Senaratne ef al. 2006).

In vitro, AuNPs exposur¢ xpost llk?tl}i,
cause cytotoxicity that is associated t\'wn'
oxidativé stress, endogenous RO:S p-roduc 1001,
depletion of the intracellular antxox1dan210%()9 )
and mitochondrial damage (Yu ef al, " h.
Li ef al. (2010) showed that AuNPs, whic
were taken up by MRC-5 human lung
fibroblasts in  vitro, induced autophagy
concomitant with oxidative §tress. AuNP
treated cells also generated sigmf‘icapt]y' morc;
lipid hydroperoxides, a positive- fndlcatxon 83
lipid peroxidation. In addition, ' AuN
treatment also induced upregulation ?f
antioxidants, stress response genes and protein

expression.

In agreement with our results,
Shrivastava ef al. (2014) also demonstrated
significant increase in reactive oxygen species
(ROS) and depletion of antioxidant enzyme
status in erythrocytes and tissues of mice after
14 days oral administration of AuNPs. Hepatic
and renal toxicity was evident from liver and
kidney function tests. Inflammatory markers,
interleukin-6 and nitric oxide synthase were
increased in plasma following exposure to
these NPs. Toxic potential of these NPs was
further confirmed by increased 8-hydroxy-2'-
deoxyguanosine levels in urine, a biomarker of
DNA damage. They concluded that oxidative
stress was the major mechanism responsible
for the toxic manifestations induced by
AuNPs,

The increased renal cell’s DNA damage
and the consequently observed increased
apoptosis could be attributed to the AuNPs-
induced oxidative stress especially GSH
depletion as recorded by Gao ef al. (2011) and
Shrivastava et al, (2014),

Conclusion:

The study, could conclude that AuNPs
h:ad severe nephrotoxic effects in rats when
glven at the high (double therapeutic) dose,
However, at the low (therapeutic) dose, these
effects were minimum and only observed at
the last 2 time points of exposure. At the high
dose, they signiﬁcamly increased serum urea

creatinine levels and renal tisgyerg

Moreover,  they sign
content. i ic
decreased renal tissue's GSH content oy a(Zmy
activity  with different time 4, g

dependent rissue"s pathological alteraﬁOns Os¢
cellular apoptosis. All these' effects Werd
reflected by kidney dysfunction, "Xidalive
stress as well as cellular 'Ilpld perox; dalioe
apoptosis and histopathological alteratigp,

From our results,‘ W€ recommepgq thay
usage of gold r}anopamcles MUSt not exge, d
their therapeutiC _dg)sc t0  minimijze they
potential nephrotoxicity anfi co-ad{ninistram)n
of an antioxidant to alleviate their oxidatiyg

stress properties.

]
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