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The integrated production and outbound distribution scheduling (IPODS) framework 

presented in this paper addresses the critical need for coordinated manufacturing and 

distribution in industrial engineering and supply chain management. The proposed 

solution employs the Ant Colony System (ACS) to optimize production scheduling 

and vehicle routing. The framework comprises four stages: production scheduling, 

order completion and patch formation, vehicle assignment, and vehicle routing with 

departure time optimization. Initially, ACS is utilized to determine optimal schedules 

for parallel machine production, minimizing overall production time. Subsequently, 

order completion times are calculated, and orders are grouped into patches to 

streamline logistics. These patches are then assigned to vehicles from an available 

fleet, ensuring efficient utilization and load balancing. Finally, ACS is applied to 

solve the vehicle routing problem, determining optimal routes and departure times to 

minimize travel costs and ensure timely deliveries. This framework enhances the 

efficiency and effectiveness of managing integrated production and distribution 

tasks, providing significant and improved operational performance. 
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1. Introduction 

Integrated production and outbound distribution 

scheduling (IPODS) is essential in the fields of 

industrial engineering and supply chain management. 

This concept involves coordinating manufacturing 

processes with the subsequent distribution of finished 

products. The primary goal is to boost both production 

efficiency and delivery performance [1]. By aligning 

production schedules with distribution plans, 

companies aim to cut costs, reduce lead times, and 

improve overall operational efficiency [2]. 

In the past, production and distribution activities 

were often managed separately, which led to increased 

costs and suboptimal performance [3]. This separation 

can cause bottlenecks, excessive inventory, and delays 

in meeting customer demands [4]. However, 

integrated scheduling tackles these challenges by 

harmonizing production and distribution activities. 

This ensures that production output matches 

distribution capabilities, leading to a smoother and 

more efficient supply chain operation [5]. 

A critical aspect of IPODS is developing 

mathematical models and algorithms to effectively 

coordinate production and distribution schedules. 

These models typically consider various factors such 

as production capacities, transportation constraints, 

inventory levels, and customer demand patterns [6]. 

By incorporating these elements, the models can 

generate schedules that optimize resource use, 

minimize costs, and ensure timely delivery of 

products. Balancing the trade-offs between production 

efficiency and distribution effectiveness is a key 
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challenge in IPODS. For example, producing large 

batches of products may be cost-effective from a 

manufacturing perspective, but it can lead to higher 

inventory holding costs and distribution delays. 

Conversely, producing smaller batches can reduce 

inventory costs and improve responsiveness to 

customer demands, but may result in higher 

production costs due to frequent setup changes. 

Integrated scheduling models strive to find an optimal 

balance that maximizes overall supply chain 

performance [7]. 

Recent advancements in information technology 

and data analytics have significantly contributed to the 

development of more sophisticated IPODS models. 

The use of real-time data, advanced forecasting 

techniques, and machine learning algorithms allows 

for more accurate demand predictions and more 

responsive production and distribution schedules. 

Additionally, integrating IPODS with enterprise 

resource planning (ERP) systems and supply chain 

management software provides a seamless flow of 

information across the entire supply chain, enhancing 

coordination and decision-making [8]. 

Implementing IPODS offers numerous benefits. 

Companies can achieve substantial cost savings 

through improved resource utilization, reduced 

inventory levels, and lower transportation costs. 

Moreover, better coordination between production and 

distribution activities leads to improved customer 

service levels, as products are delivered more reliably 

and on time. This, in turn, can increase customer 

satisfaction and loyalty [9-11]. 

In conclusion, integrated production and outbound 

distribution scheduling is a crucial strategy for modern 

supply chain management. By aligning production 

processes with distribution activities, companies can 

achieve greater efficiency, cost savings, and customer 

satisfaction. As the business environment becomes 

increasingly competitive and complex, the importance 

of effective IPODS will continue to grow, driving 

further innovations and advancements in this vital area 

of industrial engineering and supply chain 

management. 

The remaining sections of the research are 

organized as follows: In Section 2, the Literature 

Review, an overview of existing research and 

theoretical foundations, identifying gaps and 

contextualizing the current study. Section 3, the 

Problem Statement, clearly defines the research 

problem, outlining the specific issues or challenges 

that the study aims to address. Section 4, 

Methodology, details the research design, methods, 

and procedures employed. Section 5, The Proposed 

Framework, introduces the proposed framework, 

explaining its components and how it addresses the 

identified problem. Finally, Section 6, the Conclusion, 

summarizes the key findings, discusses their 

implications, and suggests potential directions for 

future research. 

2. Literature review 

The optimization of production planning, 

distribution, and scheduling is a cornerstone of 

industrial engineering, critical for enhancing 

efficiency and meeting the ever-increasing demands of 

customers. Over the years, extensive research has been 

conducted to address these complex issues. Prior 

comprehensive reviews have laid a strong foundation 

in this field, with [12] covering the advancements up 

to 2016 and [13] extending the review from 2017 to 

early 2022. Building on these foundational reviews, 

our current review focuses on the most recent 

developments from 2022 to the present. This period 

has witnessed significant innovations in Integrated 

Production, Distribution, and Scheduling Problems 

(IPDSP). Recent studies have explored a variety of 

advanced methodologies, including mixed-integer 

linear programming models, hybrid algorithms, and 

multi-objective evolutionary algorithms. These 

approaches aim to improve production efficiency, 

minimize costs, and optimize scheduling in dynamic 

and uncertain environments. 

In this review, we synthesize the findings from the 

latest research, providing a detailed examination of the 

methodologies and their practical applications in 

integrated production and distribution systems. Our 

aim is to offer insights into the most current trends and 

advancements, building on the substantial body of 

knowledge established by the preceding reviews. 

 Tibaldo, et al. [14] discuss the concept of lot sizing 

within the context of production planning, particularly 

in Integrated Production, Distribution, and Scheduling 

Problems (IPDSP). Lot sizing, which involves 

dividing customer orders or demands into batches for 

processing in different units, is crucial when dealing 

with perishability as it allows for parallel production 

and expedited shipping. Incorporating lot sizing into 

production planning models can improve delivery 

times, enhance production capacity utilization, and 

optimize resource efficiency. The terms "lot sizing" 

and "batching problem" are used interchangeably, 

referring to decisions on batch sizes for product orders. 

The document also highlights a mixed-integer linear 

programming model that integrates batching, 

production, and distribution activities across multiple 
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batch production plants with non-identical units to 

optimize the allocation of customer demands. 

Atasagun and Karaoğlan [15] explore the 

Integrated Production, Order Acceptance, and 

Distribution Scheduling problem with Multiple Plants 

and Multiple Vehicles, focusing on perishable 

products. Their goal is to optimize production, order 

acceptance, and distribution scheduling to maximize 

efficiency while considering various constraints and 

objectives. They propose a mixed-integer 

programming (MIP) formulation for small instances 

and a Variable Neighborhood Search (VNS) algorithm 

for larger instances. Similarly, Horváth [16] addresses 

the integrated production and outbound distribution 

scheduling problem, aiming to optimize supply chain 

operations by minimizing the makespan, defined as 

the return time of the vehicle after completing its final 

trip. They propose a variable neighborhood search 

approach incorporating two new local search operators 

to tackle this challenge effectively. 

Su, et al. [17] and Zhang, et al. [18] both focus on 

minimizing the maximum completion time in their 

respective studies. Su, et al. [17] present an ensemble 

method called EGTOA-SA, which combines group 

teaching optimization and simulated annealing. This 

approach proves to be superior through comparisons 

with other optimization algorithms and a mathematical 

programming solver, showcasing its effectiveness in 

addressing the scheduling issue. On the other hand, 

Zhang, et al. [18]discuss the integration of production 

and distribution in supply chains, focusing on 

scheduling flexible job shops and distribution to 

minimize the maximum completion time. They 

propose a cooperative evolutionary algorithm with 

simulated annealing that utilizes three populations to 

search for factory assignment, machine assignment, 

and operation sequence. The cooperation strategy and 

heuristic rule implemented in their model demonstrate 

its competitiveness and efficiency in solving the 

integration problem. 

Guo, et al. [19] and Tan, et al. [20] address the 

complexities of integrating production and 

distribution scheduling in dynamic and uncertain 

environments. Guo, et al. [19] tackle the Integrated 

Distributed Production and Distribution Scheduling 

Problem in Group Manufacturing, considering 

Uncertain Travel Time (IDPDSP-GM-UTT). They 

propose a joint distributed hybrid flow-shop 

production and batch distribution scheduling approach 

that accounts for uncertain travel times, aiming to 

minimize the total cost involved in the production and 

distribution process. Tan, et al. [20] focus on the 

integrated scheduling of distributed production and 

distribution (ISDPD) in the manufacturing industry, 

emphasizing the need for shared transportation 

resources (STR) and a flexible job shop production 

environment within the ISDPD framework. They 

highlight the computational challenges associated 

with solving ISDPD problems efficiently and propose 

various initialization methods, such as scoring-based, 

saving-based, batch-based, and earliest-departure rule 

initialization methods, to optimize production 

efficiency and scheduling. 

Hou, et al. [21] and Luo, et al. [22] both address 

multi-objective optimization in their respective 

research. Hou, et al. [21] discuss the integrated green 

production and distribution scheduling, where 

decisions need to be made regarding factory 

assignment, job processing sequences, processing 

speeds, vehicle allocation, and delivery sequences. 

Their objective is to minimize two main criteria: total 

tardiness (TT) and total carbon emissions (TCE). They 

propose a Q-learning-based multi-objective 

evolutionary algorithm (Q-MEA) to balance time 

efficiency, energy consumption, and carbon emissions 

in a distributed flow shop setting. Luo, et al. [22] focus 

on a bi-objective integrated scheduling problem 

(PISP) involving production, inventory, and 

distribution activities simultaneously to minimize total 

earliness/tardiness (E/T) penalty costs and total energy 

consumption. They employ a modified NSGA-II 

(MNSGA) as a solving technique, introducing a three-

layer encoding method for chromosome 

representation, adaptive crossover, and mutation 

operators for global search, and an objective-oriented 

local search operator to enhance local exploitation 

ability. 

Fu, et al. [23] and Zhang, et al. [24] propose hybrid 

algorithms to solve integrated scheduling problems. 

Fu, et al. [23] address the integrated scheduling of an 

open shop production phase and a vehicle routing 

distribution phase. They formulate the problem as a 

mixed integer programming model to optimize job 

allocation among groups, group processing routes and 

sequences on machines, job assignment among 

vehicles, and delivery routes of vehicles, aiming to 

minimize the maximum completion time (MCT). 

They propose a hybridization algorithm combining 

Brainstorm Optimization (BSO) and Q-learning, 

demonstrating its effectiveness and competitiveness 

through comparisons with existing meta-heuristics 

and an exact solver CPLEX. Similarly, Zhang, et al. 

[24] focus on an Integrated Production and 

Distribution Scheduling (IPDS) problem with the 

objective of minimizing makespan and total weighted 

earliness and tardiness in a two-stage process 
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involving production and distribution. They combine 

Brainstorm Optimization (BSO) with a Reinforcement 

Learning (RL) algorithm, specifically Q-learning, to 

address the IPDS problem, showcasing its superiority 

over existing meta-heuristics and optimization tools in 

generating high-quality solutions. 

Based on the comprehensive review of recent 

advancements in Integrated Production, Distribution, 

and Scheduling Problems (IPDSP) from 2022 to the 

present, future research should focus on several key 

areas. One crucial direction is the development of 

more sophisticated algorithms, incorporating 

emerging techniques such as deep learning and neural 

networks to handle increasing complexity and scale. 

Additionally, real-time and adaptive scheduling 

solutions are needed to respond promptly to dynamic 

production and distribution conditions, including 

uncertainties and disruptions. Sustainability and green 

logistics should also be prioritized, with models that 

balance economic performance and environmental 

impact, emphasizing carbon emissions, energy 

consumption, and waste reduction. The integration of 

IoT and Industry 4.0 technologies presents 

opportunities for smarter decision-making processes 

through real-time data and predictive maintenance. 

Moreover, the trend towards mass customization 

necessitates flexible production systems that can adapt 

to varying customer demands. Collaborative and 

distributed manufacturing networks require new 

optimization models for efficient coordination. Future 

research should also explore multi-criteria decision-

making approaches to balance conflicting objectives 

like cost, time, quality, and sustainability. Empirical 

studies and real-world applications are essential to 

validate theoretical advancements, with case studies 

from different industries demonstrating practical 

applicability. Integrating human expertise with 

automated systems can enhance overall efficiency, 

highlighting the importance of human-machine 

collaboration. Finally, understanding the impact of 

policies and regulations on IPDSP is crucial, as 

companies must adapt their strategies to different 

regulatory environments effectively. Addressing these 

areas will push the boundaries of integrated 

production, distribution, and scheduling, leading to 

more efficient, sustainable, and resilient industrial 

systems. 

Based on the provided gaps, we will examine the 

ant colony system to solve the proposed problem with 

more realistic dimensions such as parallel machine 

scheduling in production stage while using a fleet of 

vehicles in distribution stage which dealt as a vehicle 

routing problem. We also examine dividing the orders 

into batches and determine the optimal time for each 

vehicle to start its trip. 

3. Problem statement 

This study addresses the challenges within a time-

sensitive make-to-order (MTO) supply chain that 

encompasses both production and distribution stages. 

As shown in Figure 1, in the production phase, the 

plant (serving as either the producer or supplier) 

utilizes identical machines to process individual 

customer items concurrently, with each item 

representing a specific customer order. Once the items 

are completed, they enter the distribution phase, where 

they are transported to their respective customer 

destinations by vehicles, adhering to predetermined 

customer time windows. 

All vehicles initiate their journeys from the plant 

depot and return to the same location after completing 

their deliveries. For each customer item, delivering 

earlier than the lower limit of its time window results 

in an earliness penalty, while delivering later than the 

upper limit incurs a tardiness penalty. 

  The core problem lies in determining the optimal 

allocation of customer items to machines and vehicles, 

sequencing the item processing on the machines, and 

planning the delivery routes and departure times of the 

vehicles. The primary objective is to minimize the 

total distribution cost, which includes both 

transportation costs and the penalties associated with 

time window violations. 

 
 

Fig. 1. An example of integrated production and 

distribution problem. 
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4. Methodology 

The Ant Colony System (ACS) is a heuristic 

optimization approach inspired by the natural foraging 

behavior of ants. It mimics how ants discover efficient 

routes to food by leaving and following pheromone 

trails, which guide subsequent ants in their path 

selection. This algorithm is particularly effective for 

solving intricate combinatorial optimization problems, 

such as the Traveling Salesman Problem (TSP), where 

the objective is to determine the shortest possible route 

that visits each city exactly once and returns to the 

starting point. Figure 2 shows the flowchart of main 

steps of ACS. 

In ACS, the process begins with ants constructing 

solutions by traversing a network of nodes. Their 

movement is influenced by two primary factors: 

pheromone intensity and heuristic information. 

Pheromones, which are chemical markers left on paths 

by ants, affect the probability of other ants choosing 

those same paths. As ants travel, they deposit 

pheromones proportional to the quality of their 

solutions—shorter routes receive more pheromone 

deposits. The pheromone level on an edge connecting 

nodes ⅈ and 𝑗 at time 𝑡 is updated using: 

 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌). 𝜏𝑖𝑗(𝑡) +  𝛥𝜏𝑖𝑗(𝑡)                (1) 

 

The quantity of pheromone deposited on an edge is 

determined by the quality of the solution found. For 

each ant, the pheromone increments 𝛥𝜏𝑖𝑗  on edge (ⅈ, 𝑗) 

is calculated as: 

 

𝛥𝜏𝑖𝑗
𝑘 =

𝑄

𝐿𝑘

                 (2) 

 

where 𝐿𝑘 represents the tour length created by ant 𝑘, 

and 𝑄 is a scaling constant. Ants that discover shorter 

tours contribute more pheromone, thus reinforcing 

these paths. 

Ants choose their next step based on a probability 

function that integrates both pheromone levels and 

heuristic information. The probability 𝑝𝑖𝑗  of selecting 

edge (ⅈ, 𝑗) when at node ⅈ is computed using: 

 

𝑝𝑖𝑗
𝑡 =

[𝜏𝑖𝑗(𝑡)]𝛼 ⋅ [𝜂𝑖𝑗]𝛽

𝛴𝑙∈𝑎𝑙𝑙𝑜𝑤𝑒𝑑[𝜏𝑖𝑙(𝑡)]𝛼 ⋅ [𝜂𝑖𝑙]
𝛽

                (3) 

 

In this formula, 𝜂𝑖𝑗 denotes heuristic information, 

such as the reciprocal of the distance between nodes ⅈ 
and 𝑗. The parameters 𝛼 and 𝛽 control the impact of 

pheromone intensity and heuristic data, respectively. 

The algorithm starts with an initial pheromone level 

across all edges. Ants then iteratively build solutions, 

and after each iteration, pheromone levels are updated 

according to the solutions found, with better solutions 

receiving more pheromone. This iterative process 

continues until a stopping condition is met, such as a 

set number of iterations or convergence to a stable 

solution. 

By combining global search capabilities provided 

by pheromone trails with local search advantages from 

heuristic information, ACS proves to be a versatile and 

effective method for addressing a variety of complex 

optimization problems. 

4.1. Algorithm Steps 

1. Initialization: Initialize pheromone levels 𝜏𝑖𝑗 

on all edges. 

2. Ants Construction: Deploy ants to construct 

solutions based on the probability function. 

3. Pheromone Update: Update pheromone levels 

on the edges based on the solutions found. 

4. Repeat: Repeat the process for a predefined 

number of iterations or until convergence. 

 

 

Fig. 2. Flowchart of Ant colony system. 
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5. The proposed hybrid framework 

The proposed framework addresses the integrated 

parallel machine production and vehicle routing 

problem by employing an Ant Colony System (ACS) 

to optimize production scheduling and vehicle routing. 

The framework consists of several stages, each 

leveraging ACS for enhanced efficiency. This 

comprehensive approach ensures that production and 

distribution processes are aligned and efficient, 

minimizing delays and costs. 

5.1. Production Scheduling Using Ant Colony System 

5.1.1. Overview 

The initial stage of the framework involves the use 

of ACS to tackle the production scheduling problem. 

Here, the ACS algorithm is utilized to determine the 

optimal schedule for production tasks across parallel 

machines. The objective is to minimize the overall 

production time and ensure the timely completion of 

each order. The ACS algorithm simulates the 

behaviour of ants finding paths to optimize the 

scheduling of production tasks. By adjusting 

pheromone levels and exploring various scheduling 

configurations, the algorithm identifies the most 

efficient schedule that aligns with production 

constraints. 

5.1.2. Detailed Process: 

 Task Identification: 

All production tasks are identified, including their 

respective processing times and machine 

requirements. 

 ACS Initialization: 

The ACS algorithm is initialized, setting initial 

pheromone levels uniformly. Each ant in the system 

represents a potential solution to the scheduling 

problem. 

 Ant Movement and Solution Construction: 

Ants traverse through the task nodes, constructing 

potential schedules. They probabilistically select the 

next task based on pheromone levels and heuristic 

information (e.g., shortest processing time). 

 Pheromone Update: 

After all ants have constructed their schedules, 

pheromone levels are updated. Successful paths 

(schedules that minimize production time) receive 

increased pheromone levels, guiding future ant 

movements. 

 Iteration and Convergence: 

The process iterates, with ants continuously 

updating their solutions and pheromone levels until 

convergence is achieved. The optimal schedule is the 

one with the highest pheromone level and the least 

total production time. 

 Output: 

The final output is the optimal schedule for all 

production tasks, ensuring that each machine's 

utilization is maximized, and overall production time 

is minimized. 

 

5.2. Order Completion Time and Patch Formation 

5.2.1. Overview 

Once the production schedule is determined, the 

next step involves calculating the completion time for 

each order. These completion times are crucial for 

managing the subsequent logistics. Orders are then 

divided into patches based on their completion times. 

This division ensures that orders are grouped in a way 

that optimizes the logistics and transportation process. 

Each patch represents a set of orders that are scheduled 

for delivery together, which simplifies the routing and 

assignment processes in the next stages. 

5.2.2. Detailed Process: 

 Completion Time Calculation: 

Based on the production schedule, the completion 

time for each order is calculated. This includes 

accounting for any dependencies between tasks and 

the sequence in which they are processed. 

 Order Grouping: 

Orders are grouped into patches based on their 

completion times. This step involves clustering orders 

that are completed within a similar time frame. 

 Patch Formation: 

Each patch represents a batch of orders that are 

scheduled for delivery together. The grouping aims to 

simplify the logistics process and enhance the 

efficiency of vehicle routing. 
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 Optimization of Patches: 

The patches are optimized to balance the load 

across different delivery time frames, ensuring that no 

single patch is overloaded. 

5.3. Vehicle Assignment 

5.3.1. Overview 

With the patches established, the framework 

proceeds to allocate each patch to a vehicle from the 

available fleet. This step involves assigning patches to 

vehicles in a manner that optimizes fleet utilization 

and balances the load across vehicles. The allocation 

is based on factors such as vehicle capacity, 

availability, and operational constraints. The goal is to 

ensure that each vehicle is assigned a patch that it can 

efficiently handle, considering both the physical 

capacity and the scheduling requirements. 

5.3.2. Detailed Process: 

 Vehicle Fleet Assessment: 

The current fleet of vehicles is assessed, including 

their capacities, availability, and operational 

constraints (e.g., maximum driving hours, 

maintenance schedules). 

 Patch Allocation: 

Each patch is allocated to a vehicle in a way that 

optimizes fleet utilization. The assignment considers 

factors such as vehicle capacity, geographical 

location, and delivery deadlines. 

 Balancing Load: 

The allocation process aims to balance the load 

across the fleet. Overloading a single vehicle is 

avoided to ensure that all vehicles operate efficiently. 

 Constraint Handling: 

Operational constraints, such as maximum load 

capacity and route restrictions, are strictly adhered to 

during the allocation process. 

5.4. Vehicle Routing and Departure Time 

Optimization 

5.4.1. Overview 

The final stage involves using the ACS to 

determine the optimal routes for each vehicle assigned 

to a patch. The vehicle routing problem (VRP) is 

addressed by applying the ACS to find the most 

efficient paths that minimize travel time and cost. 

Additionally, the optimal departure time for each 

vehicle is determined using a predefined procedure. 

This procedure integrates the production completion 

times and routing constraints to ensure that vehicles 

depart at times that align with their assigned routes and 

avoid delays. 

5.4.2. Detailed Process: 

 Route Initialization: 

Initial routes are generated for each vehicle based 

on the geographical locations of the orders in each 

patch. 

 ACS for Route Optimization: 

The ACS algorithm is applied to optimize these 

routes. Ants explore different paths, updating 

pheromone levels based on the efficiency of each 

route. 

 Cost Minimization: 

The algorithm aims to minimize travel time and 

cost, considering factors such as distance, traffic 

conditions, and delivery priorities. 

 Departure Time Calculation: 

Optimal departure times for each vehicle are 

determined. This step integrates production 

completion times with route constraints to ensure 

timely deliveries. 

 Iteration and Adjustment: 

The routing and departure time optimization 

process iterates until the most efficient routes and 

schedules are found. 

 Final Output: 

The final output includes the optimal routes for 

each vehicle and their respective departure times, 

ensuring that deliveries are completed within the 

required time frames. 

 

In summary, as shown in Figure 3, this framework 

effectively integrates the ACS for both production 

scheduling and vehicle routing. By sequentially 

addressing production scheduling, order patching, 

vehicle assignment, and route optimization, the 

framework aims to enhance the overall efficiency and 

effectiveness of managing parallel machine 

production and vehicle routing tasks. This detailed 

explanation covers each step in the proposed hybrid 

framework, providing a comprehensive understanding 

of how ACS is employed to optimize both production 

scheduling and vehicle routing. 
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Fig. 3. The proposed framework for solving the 

IPODS problem. 

6. Conclusion 

The study presents a comprehensive framework for 

solving the integrated parallel machine production and 

vehicle routing problem, leveraging the capabilities of 

the Ant Colony System (ACS). By addressing 

production scheduling, order patching, vehicle 

assignment, and route optimization sequentially, the 

proposed solution effectively enhances the 

coordination between production and distribution 

activities. The use of ACS in both production 

scheduling and vehicle routing ensures optimal 

resource utilization and cost minimization. The 

integration of completion times, patch formation, and 

optimal departure times further refines the logistics 

process, leading to significant improvements in 

overall supply chain performance. As the competitive 

and complex business environment evolves, the 

importance of such integrated scheduling frameworks 

will continue to grow, driving further innovations and 

advancements in industrial engineering and supply 

chain management. Future research should focus on 

incorporating real-time data, advanced forecasting 

techniques, and sustainability considerations to further 

enhance the robustness and applicability of the 

proposed framework. 
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