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Abstract – In recent years, as a result of population growth and the strong demand for energy resources, there 

has been an increase in greenhouse gas emissions. Thus, it is necessary to find solutions to reduce these 

emissions. This will make the use of electric vehicles (EV) more attractive and reduce the high dependency on 

internal combustion vehicles. However, the integration of electric vehicles will pose some challenges. For 

example, it will be necessary to increase the number of fast electric vehicle charging stations (FEVCS) to make 

electric mobility more attractive. Due to the high-power levels involved in these systems, there are voltage drops 

that affect the voltage profile of some nodes of the distribution networks. This paper presents a methodology 

based on a Particle Swarm Optimization (PSO) algorithm that is used to find the optimal location of fast 

charging stations that cause the minimum impact on the grid voltage profile so the voltage level will be very close 

to the base case without the FEVCS and also making the total active power losses in the distribution network 

very close to that of the base case but with the big load EVCS are added to network. Two case studies are 

considered to evaluate the behaviour of the distribution grid with different numbers of EV charging stations 

connected. From the results obtained, it can be concluded that the PSO provides an efficient way to find the best 

charging station locations, ensuring that the grid voltage profile is within the regulatory limits and that the value 

of losses is minimized. The proposed methodology is demonstrated with IEEE 33 bus distribution system. 

 

 

Keywords: Radial Distribution System, Fast Electric Vehicle Charging Station, particle swarm optimization, 

Optimal location. 

 

 

 

I. Introduction 

    We are living in a period of transition, with 

the primary goal of replacing fossil fuels with 

renewable energy sources. Because the 

transportation industry is one of the most 

polluting, releasing enormous amounts of 

greenhouse gases into the environment, there 

is a need to develop solutions to address this 

issue. Furthermore, there is a legislative 

framework that encourages long-term 

solutions for the sector. Solutions that can be 

implemented include the development of 

urban design and mobility that reduces the 

demand for transportation, and travel can be 

done on foot, by bicycle, or by public 

transportation [1]. However, the 

transportation component is always present, 

and it can be powered by electricity or 

combustion. Since the goal is to lessen 

reliance on fossil fuels, electric vehicles are a 

great alternative to combustion vehicles since 

they use electricity to charge their batteries, 

which can originate from renewable energy 

sources [2]. In this regard, fast electric 

vehicle charging stations (FEVCS) must be 
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built so that owners can charge their vehicles 

as quickly as possible. These DC-DC FEVCS 

(Mode 4) directly supply the vehicle's battery 

[3], and because to the large powers involved 

(usually greater than 22 kW), voltage drops 

emerge, impairing the network's voltage 

profile. According to standard NP EN 50160 

[4], the minimum voltage cannot exceed 10% 

of the maximum voltage in order to keep the 

network's voltage profile within regulatory 

limitations. 

As a result, it is critical to identify the ideal sites 

in the network for FEVCS placement in order to 

reduce the influence on grid voltage. Several 

scholars are researching various solutions to this 

challenge. [5] provides a discussion of the most 

generally utilized optimization algorithms for the 

optimal placement of FEVCS and their suitability 

for tackling objective multi-criteria situations. 

According to [6], GA can be applied to a variety 

of domains, including the resolution of 

optimization problems. 

In the following publications, two optimization 

strategies were utilized to find the best placement 

for FEVCS while minimizing a multi-objective 

problem. In [7], a GA was utilized, and it was 

verified that throughout the mutation process, as 

genes on a chromosome are altered, the diversity 

of the results is ensured, and with the evolution of 

generations, the convergence for the minimization 

of the objective function is impressive. In [8], a 

PSO is used. [9] employs a graph-based approach 

to mapping an urban area's streets. A path is built 

between two nodes, which are weighted using 

Dijkstra's algorithm before a GA is used to 

calculate the shortest distance between a FEVCS 

and a path's reference node. In [10,11], 

hierarchical GAs are used to find the best site for 

a substation and the best connections to wind 

turbines. The substation coordinates are 

determined using a binary chromosome. In [12], 

an optimization system called GWO is utilized, 

which is based on Gray wolves' natural behavior 

and hunting techniques. This approach can only 

be used to tackle continuous issues; however, 

binary integers are required to find the ideal 

position of FEVCS. In addition to the use of 

optimization methods, various solutions can be 

implemented to optimize the grid voltage profile. 

For example, in [13], a renewable energy source 

and a storage system were added, and the results 

were quite promising. 

The primary goal of this article is to identify the 

ideal sites for FEVCS to minimize power losses 

while keeping the network voltage profile within 

regulatory limits. To solve the optimization 

model, a particle swarm optimization (PSO) 

approach is utilized, which has been applied to a 

case study of the IEEE 33 bus radial network. The 

employment of PSO in this optimization problem 

has various advantages, beginning with the 

simplification they provide in formulating and 

solving the problem, which comprises many 

variables and, as a result, high-dimensional 

solution spaces. Furthermore, in many 

circumstances where other optimization 

algorithms fail to discover a solution, the PSO 

finds an excellent one. Aside from calculating the 

voltage drops in the various buses, the novelty of 

this study is the minimizing of the overall 

network's power losses. 

The paper is organized as follows. In Sect.2, the 

necessary calculations for the determination of the 

power losses in the distribution lines are 

presented, followed by the optimization model, 

where the objective function focuses on obtaining 

the minimum value of the power losses, followed 

by its constraints. Section 3 presents and describes 

the optimization algorithm that will solve the 
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problem of FEVCS placement. Section 4 presents 

the case studies, followed by an analysis of the 

results obtained. Finally, in Sect.5, the 

conclusions are drawn. 

 

2. Problem formulation 

 

 2.1. Backward/forward sweep (BFS) algorithm  

The BFS algorithm is one of the most common 

methods used for load flow analysis used for 

electrical distribution system because of its 

simplicity, fast, and robust convergence and low 

memory requirement for processing with very 

good accuracy. The BFS algorithm involves 

mainly an iterative three basic steps based on 

Kirchhoff’s current law (KCL) and Kirchhoff’s 

voltage law (KVL). The three steps are named as 

the nodal current calculation, the backward sweep 

and the forward sweep and they are repeated until 

the convergence is achieved. The BFS utilises as a 

simple and flexible radial distribution system 

numbering scheme in order to numbering each 

branch in the feeder, lateral and sub-lateral. The 

BFS algorithm can be applied to find the load 

flow results using the following steps: 

Step 1: Initialisation 

Insert the follows: 

•  The distribution system line and load data. 

•  The base power and base voltage. 

• Calculate the base impedance. 

•  Calculate the per unit values of line and load 

data. 

•  Take the voltage for all buses flat voltage (1 

p.u.). 

•  Set convergence tolerance Є = 0.0001 and 

ΔVmax = 0. 

Step 2: Radial distribution system numbering scheme 

The numbering scheme aims to give a number to each 

section in the distribution system, where a section is part 

of a feeder, lateral or sub-lateral that connects two buses 

in the distribution system. The total number of sections 

(    
     ) of a distribution system can be calculated as: 

    
           

          (1) 

where,     
      is the total number of buses. Each section 

will carry a number which is one less than its receiving 

end bus number, for example, the number of section that 

connects the sending end p and the receiving end q in 

Fig. 1 can be calculated as: 

                    (2) 

where,           is the section number between buses p 

and q, Nbus/q is the number of bus q. 

Now, the radial distribution system numbering scheme 

should be applied on the distribution system to give a 

number to each section in the system. 

Step 3: Nodal current calculation  

At iteration k, the nodal current injection at node i due to 

loads can be calculated as: 

  
   

 (
  

 
 
     )

 

    (3)  

where,   
   

 is the current injection at node i, Si is the 

specified power injection at node i,   
     

 is the voltage 

at node i at iteration k − 1. 

Step 4: Backward sweep 

At iteration k, start from the branches at the end nodes 

and moving towards the branches connected to the 

substation. Hence, all branch currents can be calculated 

by applying the KCL and then the powers through these 

branches can be determined as: 

  
   

     
   

 ∑ (
  

  
   )

 

 
   (4)  

  
   

 (  
         

 )     
       (5)  

where,   
   

 is the current flow in branch at iteration k, 

  
   

is the current injected due to shunt elements at bus j 

,M is the number of branches connected to bus j,    is 

the complex power at the sending end of branch m,   
 is 

the voltage at bus j,   
   

 is the power flow in branch  

Land    is the impedance of branch L. 

Step5: Forward sweep  
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At this iteration (k), the nodal voltages are updated in a 

forward sweep starting from the branches in the first 

section toward those in the last by applying the KVL .For 

a branch connected sending end p and receiving end q, 

the voltage at receiving end at iteration k can be 

calculated as: 

  
   

    
   

        
   

                        (6) 

Where,   
   

and   
   

are the voltages at sending and 

receiving ends, respectively. 

Step6:at the end of iteration (k) the voltage mismatches 

at all buses on the distribution network have been 

computed ,the voltage mismatches for all nodes are 

calculated from the following equation 7, the voltage 

mismatch at bus i on iteration k can be calculated as: 

   
   

 

 ||  
   

|  |  
     

||                                                      (7)  

 

After calculating the voltage mismatches ,check the 

convergence of the voltage as: 

        

 If    
   

      ,then make         
   

. 

 If        , go to step 8, otherwise increment 

the iteration number, and go to step3. 

Step7:Check  for stopping criterion 

  The program will be terminated when the maximum 

iteration is reached or the convergence from the voltage 

mismatches is verified. 

 Step8:Power loss calculation 

 After computing the bus voltages and branch currents 

using the BFS algorithm, the total active in the 

distribution network have been calculated from equations 

(8).  

The steps of the BFS algorithm can be illustrated by the 

flowchart shown in Fig2. 

 

 

Fig.1 Representation of two nodes in a distribution 

system. 

 

 

Fig.2. Flow chart of BFS load flow 

2.2 Objective Function 

 The objective function to determine the minimum total 

power loss resulting from the placement of charging 

stations in a distribution network is given by Eq. (8)[14]: 

         ∑   
   

 

   
       (8) 

In Eq. (8), Ii stands for the current passing through 

distribution branch number i, n for the total number of 

branches in the distribution network, and Ri for the 

resistance of branch i.  
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  The voltage deviation index is chosen as the second 

objective function, written as f2. The voltage deviation 

index, abbreviated VDI, is expressed mathematically in 

Eq. 9 [14]. 

       ∑ |      |
  

   
       (9) 

Vk is the voltage at the kth bus. n is the number of buses 

on the networks (IEEE 33-bus test system).  

  The combination of two objective functions yields 

the overall objective function (OOF) is developed to 

minimize power losses, average voltage deviation. 

Mathematical. The OOF is presented in Eq. (3). 

                          (10) 

According to Eq. (10), each weighed coefficient (wn) is 

accorded equal emphasis in the optimization problem.  

2.1.2 System Constraints      

Equations (11) – (14) illustrate the constraints for the 

optimization problem. The electric output active power 

from the grid is the sum of the load active power and the 

electric active power losses in the distribution network, as 

shown in Eq. (4). This configuration represents the 

original base scenario. 

           ∑          (11) 

Here the Grid power (Pgrid)). Pd is the owner demand 

supplied to the loads.  

  The prerequisite for power generation, power losses 

and load demand on the networks are expressed in 

Equations 12and 13. The basic idea of power balance is 

captured by both equations, which ensure that the total 

amount of active power produced and consumed (active 

power in Equation 12) and the total amount of reactive 

power produced and consumed (reactive power in 

Equation 13) in each system are equal. 

      ∑                          (12) 

      ∑ 
 
                        (13) 

 

The variables in Equations 12 and 13are defined as 

follows: QL and PL represent the reactive and real power 

losses in the network, respectively. The variables Pd and 

Qd represent the demands for real and reactive power, 

correspondingly. 

All the buses should have voltage limits of up to 

5% to operate within the IEC 60038 margins. The bus 

voltage is therefore expressed in Equation 8 and applies 

to both IEEE 33 bus distribution network.  

               i =1,2,…..n    (14) 

Vi represents the magnitude of voltage at the ith bus., n is 

the number of system buses.  

3:-Particle Swarm Optimisation Algorithm 

The PSO algorithm was created by Kennedy and 

Eberhart in 1995 [15]. The particle location and velocity 

are denoted by the notations xi
k
 and vi

k
, respectively. To 

get the optimum answer, the current best solution is 

solved using the prior best solution (pbestid). Equations 

15 and 16 are utilized iteratively to improve upon the 

local best in order to get the global best (gbest) . Prior to 

a search, the coordinates of a single particle are stated as 

follows: 

   
       

     
                                

             (15) 
The population is represented by Np while the members 

of the population are Ng. The velocity of the particle is 

expressed as: 

   
         

            (           
 )  

              (          
 )          (16) 

The inertia weight used in updating the particle for each 

iteration is calculated using the Equation 17. 

       
         

       
                     (17) 

4. Analysis of Case Studies Results 

In this section, two case studies are considered to analyse 

the impact of FEVCS on a distribution grid. The key 

aspects to be considered in each case are the FEVCS 

locations and the associated voltage profile on the 

distribution network. In the first case study is the base 

case that represent the behaviour of the distribution 

network without charging stations, while the second case 

study is the analysis of the impact of placing FEVCS on 

the distribution grid . For this analysis, the IEEE 33-bus 

network, as shown in Fig.3, is used. The load flow 

calculations were performed using backward forward 

sweep method . The total active power of the base case 

distribution network is 3715 kW, and the total reactive 

power is 2300 kVar, with base power values of 100 

MVA and a base voltage of 12.66 kV. Without FEVCSs, 

the distribution network has an active power loss of 

210.9876 kW. The load values associated with this 

network, as well as the resistance and reactance values of 

the lines, can be found in [16]. 
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4.1Scenario 1:Base case distribution network Without 

FEVCS  

In this scenario, the network without FEVCS was 

considered to understand its behaviour and to facilitate 

the interpretation of the obtained results in this research. 

Figure 4 shows the voltage profile, in per unit (p.u.), of 

the network without FEVCS, clearly showing the 

minimum voltage is located at bus 18, and The minimum 

voltage value is displayed in Table1, along with the 

accepted voltage limit, which is a fixed value that the 

minimum voltage should not reduced than it in order to 

comply with the regulatory limits imposed by the NP EN 

50160 standard [4]. As the minimum voltage value 

approaches the limit, it can be concluded that the voltage 

drops in the distribution lines are significant, indicating 

that this network is highly constrained and problematic. 

With the placement of FEVCS that represent large load 

on the distribution network, due to the high power 

involved, there will be significant voltage drops, leading 

to increased losses in the network and a decrease in the 

minimum voltage value. Determining the optimum 

locations for these stations is therefore critical to 

minimizing voltage drops and ensuring that network 

values remain within regulatory limits. 

 

 

Fig.3. IEEE 33-bus network 

Table 1. Characteristics of the IEEE 33-bus 

network: base case. 

Minimum voltage 

(p.u.) 

Accepted minimum 

voltage limit (p.u.) 

 0.9038 0.90 

 
 

Fig.4. Voltage profile of the IEEE 33-bus network: base 

case. 

4.2 Scenario 2: Placement of FEVCS Using Particle 

Swarm  

In this scenario, it was considered that each FEVCS has a 

power of 100 kW, and using the PSO, the optimal 

locations of the charging stations are determined. In 

order to obtain these locations, the PSO was executed 

five times to find the best possible solutions. As the 

particle swarm algorithm is not an exact algorithm, it 

provides a solution that is expected to be close to 

optimal, so it was decided to run the algorithm 4 times, 

for each scenario, and then select the best solution 

according to the objectives set. Tables 2,3 and 4 show the 

results obtained considering different numbers of FEVCS 

to be installed. For each of the four runs, the bus location 

where the FEVCS is to be installed, the minimum 

voltage at the furthest bus, bus18, and the total power 

losses obtained are shown. In general, it can be observed 

that as the number of FEVCS increases, the losses tend to 

increase and the minimum voltage tends  .This is due to 

the increase in voltage drops in the distribution lines, as 

the introduction of FEVCS also introduces more power 

associated with these stations, resulting in an increase  in 

total power losses and a decrease in voltage .Regarding 

the placement of FEVCS ,it is observed that they are 

located near the substation as expected. These results 

show that in networks with a radial structure, in order for 

the voltage drop values to remain within regulatory 

limits, the closer the charging stations are to the power 

injection point in the network, the better the system’s 

performance will be. Figures5,6and7show the grid 

voltage profile considering the installation of4,5, and 

6FEVCS, respectively. 

Table2.Placementof 4 FEVCS 
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Run  Location  Minimum 

voltage 

(p.u.)  

Losses 

(kW) 

1 2,3,20,22 0.9032 215.5484 

2 2,20,23,25 0.9032 216.1584 

3 2,3,5,21 0.9023 219.8361 

4 3,22,23,24 0.9029 218.8381 

 

Fig.5.Voltage profile of the 4 runs with 4 

FEVCS. 

Table3.Placementof 5 FEVCS 

Run  Location  Minimum 

voltage 

(p.u.)  

Losses 

(kW) 

1 2,3,21,24,25 0.9032 215.6706 

2 2,3,5,20,25 0.9023 219.8361 

3 3,19,21,22,24  0.9032 215.7774 

4 2,3,22,23,25 0.9032 215.8000 

 

Fig.6.Voltage profile of the 5 runs with 5 FEVCS. 

Table4.Placement of 6 FEVCS 

Run  Location  Minimum 

voltage 

(p.u.)  

Losses 

(kW) 

1 2,3,21,23,25,28 0.9032 215.6706 

2 4,5,20,21,22,23 0.9021 221.8709 

3 2,5,19,24,25,26 0.9027 217.4909 

4 2,3,5,8,20,22 0.9023 219.8361 

 

Fig.7.Voltage profile of the 4 runs with 6 FEVCS. 

In Table5, the best results obtained are presented. As 

explained before, with the increase in the number of 

FEVCS, the installed power associated with these 

stations also increases, leading to a significant 

increase in voltage drops at the bus bars where the 

FEVCS are located. By analysing Fig.8, it is evident 

that different voltage profiles are generated based on 

the different locations considered for the charging 

stations. However, none of the solutions exceed the 

limit value. It can also be seen in Figs.9, 10 and 

11that for the best runs in Table5, the FEVCS are 

located close to the substation. Based on the 

obtained results, it can be concluded that the 

placement of 6 FEVCS differs significantly from the 

cases with 4 and 5 stations. 

Table 5. Best solution for each case of FEVCS 

number 

No. of Location Minimum Losses 
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FEVC

S 

voltage(p.u.) (kW) 

- - 0.9038 210.9876 

4 2,3,20,22 0.9032 215.5484 

5 2,3,21,24,

25 

0.9032 215.6706 

6 2,3,21,23,

25,28 

0.9032 215.6706 

 

Fig.8. Best voltage profile for the 4 studied 

scenarios 

5. Conclusion  

In this article, the used methodology was developed 

to support the decision-making process in finding 

optimal locations for FEVCS. The chosen 

methodology was based on Particle Swarm 

Algorithms, which were implemented to find the 

optimal location of the fast electrical vehicle 

charging stations and to reduce their impacts on the 

distribution network. One of the conclusions 

deduced from these studies is that as the number of 

charging stations increases, so the load added to 

network increased and consequently there is a 

corresponding increase in voltage drops on the 

distribution branches, that make the minimum 

voltage reduced than that of the base case and also 

lead to higher active power losses than that of the 

base case. From the analysis the base case has a 

minimum voltage of 0.9038 pu and the active power 

losses of 210.9876 kW, while loading the network 

with four FEVCS that represent an increased loading 

of 10.76% leads to make minimum voltage reduced 

by 0.066% and the losses increased by 2.16% 

(0.9032 pu), but with five FEVCS connected to 

network that equal to 13.46% increased loading 

which gave minimum voltage 0.9032pu  and the 

losses increased by 2.22% and the last analysis is 

made for six FEVCS connected to network which 

represent increased loading by 16.15% from the base 

case total load that make minimum voltage to be 

0.9032 pu and the losses increased by 2.22% 

.Another conclusion from the study is that the 

specific locations where the charging stations are 

connected also have a significant impact on the 

results, both in terms of losses and the voltage 

profile of the network. It is therefore essential for 

distribution network operators to determine the 

optimal configuration to ensure the proper 

functioning of the network. 

 Future work could consider the injection of 

renewable energy sources  into the network to 

mitigate the voltage drops and power losses caused 

by the charging stations, improving the overall 

performance of the distribution network.  
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