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ABSTRACT 
 There is increasing interest in assessing the feasibility of using Electroencephalography (EEG) signals in biometric purposes. Using 

deep learning techniques has achieved great performance in classification-based systems in general. However using them in EEG–

based human recognition systems still limited, this was the main motivation which encouraged the authors to investigate using of these 

techniques in EEG-based human recognition system. In this paper, the authors suggested a framework that uses the three Hjorth 

parameters to enhance the Long-Short Term Memory (LSTM) performance for Electroencephalography (EEG)-based human 

recognition systems. The proposed framework also investigates the ability to optimize two critical factors of EEG-based biometrics, 

which are the number of channels and the time needed for acquiring data. The proposed approach has been tested on a public data set, 

which is the public Texas data repository to verify the improvement of recognition and its reliability through the data recording 

duration of the eight minutes. The study evaluates two optimizers, namely, Stochastic Gradient Descent optimizer and Conjugate 

Gradient Descent. The results show a significant improvement in the LSTM performance using the proposed framework, by applying 

the fusion of features with the Hjorth parameters and using Conjugate Gradient Descent optimizer (CGD). 
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1. INTRODUCTION 
The advantages of EEG as a biometric over the traditional ones have recently motivated many researchers to use EEG biometric. 

These advantages [1][2] such as it is produced only by livings (unlike face and finger prints), it is impossible to be copied, highly 

affected with stress and mood (that makes it hard to enforce subjects to produce the right data), in addition to being suitable for both 

static and continuous authentication system.  

EEG-based identification process can be divided into three main stages, the EEG data acquiring, features extraction, and classification. 

For EEG data acquiring: different data recording scenarios have been studied in the literature, responding to an audio stimulus [3], 

responding to a visual stimulus [4], performing tasks [5], relaxing with eyes-closed and relaxing with eyes-opened [6]. And the 

advantage of the relaxing scenario used in this paper is that it is more applicable and lower cost. For features extraction: Selecting the 

optimal features for EEG-based biometrics is an essential step. Many features have been used in the literature such as, Autoregressive 

model features [7][8][9], statistical features [10], and spatiotemporal features [11] while using the Hjorth parameters as features in the 

EEG-based human recognition is rare. For classification: Many traditional classifications have been used in the previous work such as, 

K-Nearest Neighbor [12][13], Artificial Neural Networks [14], and Support Vector Machine [15] and the research direction are to the 

utilizing of the deep learning techniques. EEG-based biometrics is considered one of the most complex human recognition systems [4] 

and still faces many limitations; two of them studied in this approach are the time of recording data and the number of channels.  

 Recently, with the significant advances in deep learning techniques, many researchers directed to use them in their studies. Although 

the significant results that achieved using deep learning techniques in classification problems, they need a large amount of memory and 

computational resources. This study aims to investigate the ability to use deep learning techniques such as the Long-Short Term 

Memory LSTM and present a framework that improves its performance using simple computations. The three-Hjorth parameters 

achieved that objective; they are easy computed and improved the LSTM deep learning technique.  
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Although using deep learning techniques for EEG-based systems has achieved great results in different purposes such as Pathology 

detection [4] seizure detection [5], but utilizing them in EEG biometrics purposes is still a great challenge. Many studies have tried to 

improve the results acquired by using deep learning techniques in EEG-biometrics purposes. Some of these researches are studied in 

this section. 

Member et al. [6] improved the performance of deep learning by making integration between the Conventional Neural Networks 

(CNN) and the Recurrent Neural Networks. Utilizing stimuli and segmenting the 32-channels of EEG records into 10-seconds length. 

Supawich Puengdang and Teerapath Sattabongkot [4] used data collected from 20 subjects using seven data channels. They presented 

an approach that applied a fusion of two kinds of features. Namely, steady-state visually evoked potential and event-related potential 

features and used the LSTM network for classification purposes. They used the False Acceptance Rate (FAR) and False Rejection 

Rate (FRR) parameters to evaluate their approach. Where, Mao et al. [16] highlighted the promise of real-life EEG based-biometric 

recognition deep learning methods. They used data from a driving BCI experiment (using a video stimulus). Participants performed a 

lane-keeping driving task in a virtual reality platform; the duration of each session was 60 minutes.  Their proposed approach 

depended on the CNN techniques using 64-channel data of one-second epoch’s length. Schons et al. [17] used a CNN model on data 

collected during the subject’s relaxation. The epochs were segmented to 12 seconds long and 64 channels. They utilized the data 

augmentation to overcome the lack of data to train the deep CNN. In their approach, Spampinato et al. [18] used data of 6 subjects 

recorded using visual stimuli using a 128-channel cap. They used the RNN to learn the discriminative brain activity manifold then 

transfer the acquired features to the CNN for classification. Arnau-González et al. [19] tested their proposed system on EEG-data 

recorded using a low-cost device with 16-channel from 23 subjects while watching film clips. The data are segmented to 6-seconds 

long epochs. The system utilizes the power spectral density features to feed the CNN for classification. El-fiqi et al. [20] used Steady-

State Visual Evoked Potentials acquired using visual stimuli of two data sets of four and ten subjects, and they applied the CNN for 

classification. 

Recently, Gupta et al. [21] depended on the eye-blinking to extract features of EEG signals. They used Support Vector Machine for 

classification.  They tested the approach on twenty subjects. The TPR for the one blink one-class case was 60%, while TPR in the 

cases for 3 and 5 blinks is roughly 73% and rises to about 80% for seven blinks. Comparing these results to the number of participants 

in their experiments, the results need more improvement to be used in real systems. Chen and Yin [22] presented an access control 

system based on the 32-channel EEG data for authenticating access control to the car. On the test, the users were asked to look at a 

computer screen and perform some tasks to simulate the car driving operation. The accuracy of their approach reached 87.3% tested on 

ten subjects. Comparing to our study, they used 32-channels while our study utilizes only one-channel as 32-channels are very difficult 

and more expensive in both computations and price. In their study [23], Sabeti et al. used 24-EEG channels system to record data of 

twenty subjects in two different scenarios resting scenario and the Evoked Related Potential (ERP). Then they extracted the 

conventional features, and then these features are fed to three different classifiers K-Nearest Neighbor, Support Vector Machine, and 

Random Forest. In the conclusion of their experiments, they declared that the EEG features extracted during ERP scenario are more 

distinctive than those extracted during resting. As they declared thee using of ERP scenario gives more data and better results than rest, 

but rest is less expensive and more easier to be applicable in real systems. Pani et al.[24] enrolled fifteen volunteers in their study to 

record data using 61 channels EEG system. They executed four different scenarios the eyes-closed with a simple mathematical task, 

eyes closed with a complex mathematical task, resting with eyes-closed, and resting with eyes-opened. They extracted three different 

features vectors PSD, PLV, and EC. Their experiments were valuable especially in the scenarios they utilized, but number of 61 

channel make the system complex in computations and so need powerful processors and more time. 

 

Comparing to the previous studies, our work presents a comprehensive approach for improving the performance of LSTM and 

utilizing only data of single-EEG channel recorded in one-second in both eyes-closed and eyes-opened resting scenarios.  In addition 

to, using LSTM which is often better in handling temporal information [6] as a result of the forget gate that can control which 

information to save and update or discard. And the choice of the dataset to test the proposed approach has 8 minutes of recording to 

evaluate its stability. 

 

Although the more time of recording EEG data and the more number of channels collecting data from, the better results can be 

achieved, this approach is hard to be applicable. Also, selecting the resting scenario to test the framework on more applicable systems. 

The proposed framework has achieved three main contributions: 

(i) Depending on EEG data acquired from only one channel.  

(ii) Segmenting the data acquired according to time intervals of only one-second epochs.  

(iii)   Improving the performance of the LSTM technique in classifying EEG data for authentication   purposes by using the fusion 

among EEG data and the three Hjorth parameters is a new technique. 

 

The rest of this study is organized as follows; Section 2 illustrates the proposed framework for person identification using a single 

EEG channel for the duration of an only one-second epoch. Section 3 shows the details of the conducted experiments and declares the 

obtained results in two scenarios, which are the resting closed-eyes and resting opened-eyes. Section 4 introduces the conclusion and 

future work. 
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2. PROPOSED FRAMEWORK 
In this section, the authors illustrate the proposed framework for EEG-based human recognition in the three stages, preprocessing, 

features extracting, and classification.  Figure (1) shows the proposed framework. 

2.1 Preprocessing 
In this approach, we depended on using all the power of EEG signal, which are Delta, Theta, Alpha, Beta, and Gamma. The reason is 

to acquire all the information linked to the psychological states and the cognitive brain functions of subjects. Then, extract the data of 

only one channel (Iz) and which are sampled at 256 Hz then segment it to only one-second-long epochs.   

 

2.2 Feature extraction 
Hjorth parameters have been confirmed as efficient features in many EEG-based systems for different purposes [25][26][27][28]. 

While using them for EEG-biometric purposes are rare. In this approach, we utilized a fusion between them and all the samples 

acquired from the 256 sampling rate of the signal. 

The three parameters of the Hjorth are computed according to the next equations [29][30]: 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝜎𝑥
2                    (1) 
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      (3) 

Where Activity represents the means of the amplitude variance, Mobility is the relative average slope, and Complexity is the ratio 

between the mobility of the first derivative and the mobility.   

 Then, these features are optimized using Conjugate Gradient Descent (CGD) [31]. These methods have attracted attention in solving 

optimization problems [32] because of its simplicity and need limited memory. These properties encouraged researchers to utilize them 

in large dimensions and unconstrained problems widely. The obtained features are then fed to the LSTM network for classification. 

 

2.3 Classification  
As Recurrent Neural Networks (RNN) are trained depending on Back Propagation through Time technique, it is difficult to them to 

learn long sequences that is known as vanishing gradient problem. A widely used type of RNN is LSTM technique, which replaces the 

RNN cell by a gated cell to control which information has to be remembered and which are not in the long sequences [33], hence it is 

more appropriate for EEG data. LSTM consists of memory cells and memory blocks; memory block consists of input, forget, and 

output gate [34].  The input gate controls the flow of the inputs to the cell and selects which new information is to be saved and 

updated. The output gate controls which output of the cell is used and which will be sent to another LSTM blocks. The forget gate 

consists of a one-layered neural network that evaluates information and discard the redundant from the cell and decides the extent to 

which the information remains in the cell. The activation of forget gate is denoted by 𝐹𝑡which is calculated according to (4). 

𝐹𝑡 =  𝜎 ( 𝑊 [ 𝑋𝑡, 𝐻𝑡−1, 𝐶𝑡−1] + 𝑏𝑓)                    (4) 

Where σ   represents the sigmoid function to a weights sum, W is the weight vector for each input,  𝑋𝑡 denotes the sequence of input, 

𝐻𝑡−1 denotes the output of the previous block, 𝐶𝑡−1 is the block memory of the previous LSTM, and  𝑏𝑓 represents the bias vector of the 

forget gate. 

If the value of the activation output vector is near zero, then the foregoing memory will be forgotten. The activation of the input gate is 

labeled by 𝐼𝑡, which can be calculated according to (5). 

𝐼𝑡 = 𝜎( 𝑊[ 𝑋𝑡, 𝐻𝑡−1, 𝐶𝑡−1] + 𝑏𝑖)                       (5) 

The output of the LSTM is calculated according to (6) and (7). 

𝑂𝑡 = 𝜎 ( 𝑊[𝑋𝑡, 𝐻𝑡−1, 𝐶𝑡−1] + 𝑏0)                      (6) 

𝐻𝑡 = tanh(𝐶𝑡) . 𝑂𝑡                                               (7) 
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Fig 1: The proposed framework 

 

3. EXPERIMENTAL RESULTS 
In this study, all the experiments were run on a GPU-accelerated machine with Nvidia GeForce MX150 and ACPI x64-based pc, 

Using the Waikato Environment for Knowledge Analysis 3.8.3 tool (WEKA 3.8.3) [35]. The EEG signals were preprocessed using the 

Matlab EEGlab-toolbox [36].  

For examining the accuracy and the stability of the proposed approach, authors selected the public Texas data repository [37] to do the 

experiments on it. The data in this repository are acquired from 22 subjects, four minutes recording of subjects’ eyes-closed and, four 

minutes while subjects’ eyes-opened. In such that minutes 1, 3, 5, and 7 are recorded with subjects’ eyes-closed and minutes 2, 4, 6, 

and 8 are recorded with subjects’ eyes-opened. Concerning subject 6, only recorded two minutes with eyes-closed that enforced the 

authors to exclude him/her from the experiments. Dataset has been segmented to two partitions 11 subjects as genuine and 10 subjects 

as imposters, examining each subject of the imposters in a separate experiment. The experiment is repeated 10 times each time an 

imposter is checked to check the accuracy of the approach to recognize that imposter. Data of the Iz channel is extracted. Then 

partition signals into 1-sec epochs long, and exclude the first and last epoch of each minute; the result is 1218 instances for each 

minute and 4872 instances for the 21 subjects for each scenario.  After that, authors have extracted Hjorth parameters of each epoch 

and applied the features fusion technique to acquire the features that will be fed to the LSTM. To validate the performance of the 

proposed approach, we conducted two experiments: In experiment 1, the eyes-closed scenario has been verified. And in experiment 2, 

the eyes-opened scenario has been verified. 



MJCIS  Vol.17  No.1 Jun 2021   

 

17 

 

3.1 Experiment 1 
In this experiment, we applied the proposed framework to the eyes closed scenario. Examples of the acquired epochs for subjects 20 

and 21 are shown in figures 2a and 2b. 

 

To investigate the influence of using the Hjorth parameters on the LSTM, we Use the True Positive Rate (TPR) evaluator calculated 

according to equation (8). 

𝑇𝑃𝑅 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄     (8) 

Where TP is True Positive and FN is False Negative. 

the results achieved using the proposed framework are compared to (i) using the LSTM technique on EEG data without the Hjorth 

parameters and using CGD (ii) using Hjorth parameters and applying SGD optimizer and (iii) Applying SGD without Hjorth 

parameters. Table 1 presents the results achieved. Figures 3, 4, 5, and 6 show a comparison of the results achieved for the four minutes 

of eyes-closed scenario. As illustrated, a significant improvement in the performance of LSTM has been achieved using the proposed 

framework. 

The results proof that the Hjorth parameters improve the performance of LSTM this is because they support the classifier with unique 

features that enhance its performance. 

 

 

Min2 stoch. Conj. stoch.+HjP Conj.+HjP 

sub13 68.77 75.1 91.56 91.98 

sub14 75.1 75.1 75.9 89 

sub15 66.7 66.7 91.1 94.9 

sub16 70.88 74.68 88.6 91.56 

sub17 70.46 70.46 84.8 85.2 

sub18 64.98 64.98 91.1 91.98 

sub19 64.98 75.1 91.56 91.98 

sub20 60.5 60.5 71.35 73.1 

sub21 60.5 60.5 71.77 75.99 

sub22 60.5 60.5 70.1 73.88 

Min6 stoch. Conj. stoch.+HjP Conj.+HjP 

sub13 65.82 75.95 86.08 86.92 

sub14 59.07 68.35 87.76 88.19 

sub15 61.6 67.51 87.34 87.76 

sub16 59.07 69.2 81.86 83.12 

sub17 75.95 75.95 88.6 89.45 

sub18 65.82 69.2 78.48 82.28 

sub19 75.95 75.95 84.39 87.76 

sub20 52.06 52.07 69.67 70.08 

sub21 52.07 52.07 65.87 69.67 

sub22 52.07 52.07 65.87 66 

 

Min4 stoch. Conj. stoch.+HjP Conj.+HjP 

sub13 72.8 78.8 93.55 94.01 

sub14 66.24 75.9 89.87 90.3 

sub15 62.87 72.15 89 89.45 

sub16 72.57 75.95 88.6 89.87 

sub17 66.24 74.26 88.61 91.14 

sub18 65.82 74.26 91 91.56 

sub19 70.04 72.99 84.39 89.03 

sub20 54.18 60.5 72.62 74.73 

sub21 39.83 52.07 71.35 75.99 

sub22 52.49 60.5 72.6 75.15 

Min8 stoch. Conj. stoch.+HjP Conj.+HjP 

sub13 65.82 71.3 85.65 86.5 

sub14 59.07 65.4 81.86 82.7 

sub15 62.02 65.82 81.43 84.8 

sub16 59.07 66.67 78.9 83.12 

sub17 82.7 84.39 85.23 85.66 

sub18 65.8 69.6 77.2 78.1 

sub19 69.2 82.7 82.7 85.2 

sub20 57.55 60.5 72.2 72.6 

sub21 52.07 57.13 69.24 70.92 

sub22 52.07 57.55 69.24 71.35 

  

Fig 2: (a) Subject 20 signals during eyes-closed scenario (b) Subject 21 signals during eyes-closed scenario 

(a) (b) 

Table 1: results of the eyes closed scenario represented in minutes 2, 4, 6, and 8 
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Figure 3 min 2 

 

Figure 4 min 4 

 

Figure 5 min 6 
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Figure 6 min 8 

 

3.2 Experiment 2 
In this experiment, we applied the proposed framework to the Eyes-opened scenario. Examples of the acquired epochs for subjects 20 

and 21 are shown in figures 7a and 7b. 

  

 

 

To investigate the influence of using the Hjorth parameters on the LSTM, we used the True Positive Rate (TPR) evaluator calculated 

according to equation (8). The results achieved using the proposed framework are compared to (i) using the LSTM technique on EEG 

data without the Hjorth parameters and using CGD optimizer (ii) using Hjorth parameters and applying SGD optimizer and (iii)  

Applying SGD without Hjorth parameters. Table 2 presents the results achieved. Figures 8, 9, 10, and 11 show a comparison of the 

results achieved for the four minutes of eyes-opened scenario.  

The results show that the Hjorth parameters have not been affected by the eye blinking while LSTM is greatly affected; this explains 

the decrease in results when using LSTM without the Hjorth parameters in the open eyes scenario than the closed eyes scenario. And 

this proves that using Hjorth parameters on the raw EEG data is effective. 
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Fig 7: (a) Subject 20 signals during eyes-opened scenario (b) Subject 21 signals during eyes-opened scenario 
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                    Figure 8 min 1 

0

10

20

30

40

50

60

70

80

90

100

conj

conj+Hj

stoch

stoch+HJ

Min1 

stoc
h. 

Conj
. stoch.+HjP 

Conj.+Hj

P 

sub1

3 
6.78 6.78 84.32 88.14 

sub1
4 

14.4 14.4 84.3 87.3 

sub1

5 
14.4 14.4 74.6 78.8 

sub1
6 

14.4 14.4 84.3 88.14 

sub1

7 
13.1 14.4 79.66 80.5 

sub1
8 

7.6 7.6 86.4 86.9 

sub1

9 
14.4 14.4 85.6 85.6 

sub2
0 

14.4 14.4 69.8 70.7 

sub2

1 
14.4 14.4 69 70.7 

sub2
2 

14.4 14.4 69.4 70.25 
 

Min3 

stoch
. 

Conj
. 

stoch.+Hj
P 

Conj.+Hj

P 

sub13 8.05 8.05 88.98 90.68 

sub14 10.2 10.2 78.8 79.2 

sub15 10.2 10.2 82.4 83.9 

sub16 10.2 10.2 79.7 88.98 

sub17 10.2 10.2 88.14 89.4 

sub18 10.2 10.2 87.4 88.1 

sub19 20.3 20.3 83.5 87.3 

sub20 10.2 10.2 74.5 74.9 

sub21 13.5 13.5 74.9 74.9 

sub22 10.2 10.2 82.1 83.8 
 

Min5 

stoch
. 

Con
j. 

stoch.+Hj
P 

Conj.+Hj

P 

sub13 24.9 24.9 84.1 85.6 

sub14 24.9 24.9 77.6 82.3 

sub15 22.4 24.9 76.1 77.2 

sub16 24.9 24.9 75.5 83.5 

sub17 24.9 24.9 84.9 85.2 

sub18 24.9 24.9 84.8 85.7 

sub19 24.9 24.9 83.9 84.4 

sub20 24.9 24.9 63.7 64.6 

sub21 24.9 24.9 65 65.9 

sub22 24.9 24.9 64.2 65.4 
 

Min7 

stoch
. 

Conj
. 

stoch.+Hj
P 

Conj.+Hj

P 

sub13 22.9 22.9 78.4 87.3 

sub14 13.1 13.9 74.6 81.8 

sub15 16.9 16.1 79.5 80.1 

sub16 13.1 17.4 76.7 78.4 

sub17 17.4 16.1 81.8 87.3 

sub18 22.5 16.1 78.4 78.4 

sub19 17.4 16.9 79.7 80.5 

sub20 19.9 16.1 71.9 76.6 

sub21 13.1 22.5 72.3 73.6 

sub22 17.4 17.4 72.6 75.3 
 

Table 2: Results of the eyes opened scenarios represented in minutes 1, 3, 5, and 7 
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                  Figure 9 min 3 

 

                Figure 10 min 5 

 

                Figure 11 min 7 
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4. CONCLUSION AND FUTURE WORK 
Although the EEG many-channel based biometrics could achieve better results than single-channel ones because of acquiring much 

data, the less the number of channels, the more applicable, less cost, and more friendly the system is. The same is the time factor; the 

longer the session of acquiring data, the better results could be acquired, but the less comfortable for the users. The achieved results 

demonstrate the ability to reduce the number of channels of EEG to only one channel and the duration to only one second. Using the 

Hjorth-parameters can support the EEG-based recognition systems with unique features that can improve the performance; uniquely if 

they are integrated with the CGD optimizer and deploying the LSTM network for classification purposes. The advantage of using 

these parameters is that they are easy to be calculated and not need much time or high processing capabilities. Another critical point is 

observed from the results of the eyes-opened scenario, which produces very low accuracy without using the Hjorth parameters. Using 

these parameters greatly improves the efficiency of the raw data (without using any filters to discard the eye blinking data). 

In the future, the proposed approach will be tested on bigger data sets, and more studies on the best EEG-channel results will be 

conducted. As well, doing more research on the LSTM technique and checking the efficiency of other optimizers to improve the 

results. Although continuous authentication is relatively new, it is receiving significant attention due to the rapid speed of digital 

development and the escalation of cybercrime. EEG-based human recognition is considered an ideal solution for continuous 

authentication, unlike other biometrics such as the face, finger iris, and even passwords. So, A lot of research needs to be carried out, 

on deploying EEG for continuous authentication purposes; particularly, after the significant development of wearable and smart 

devices. 
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