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 ممتد مركبات العزم لزلازل خلیج السویس

ــیج الســویس والتــى تــم تســجیلها تــم اســتخدام طریقــة التحلیــل المركــب لمیكانیكیــة البــؤرة لخمــس مجموعــا :الخلاصــة ت مــن الــزلازل التــى حــدثت فــى منطقــة خل
وذلــك لدراســة العلاقــة بــین نــوع حركــة میكانیكیــة البــؤرة والخصــائص التركیبیــة  ،م ١٩٩٥م وحتــى  ١٩٩٤لتســجیل الــزلازل فــى الفتــرة مــن  ةبواســطة شــبكة الغردقــ

 موعة وقد خلصنا إلى النتائج التالیة:لمنطقة خلیج السویس وحساب مركبات ممتد العزم الزلزالى لكل مج
ى التحلیــل المركــب لمیكانیكیــة البــؤرة للمجموعــة الأولــى أن حركــة الصــدع الســائدة هــى الحركــة العكســیة یصــاحبه محــور ضــغط فــى إتجــاه جنــوب شــرق إلــأظهــر 

هــا مــن نــوع الحركــة العمودیــة مــع محــور شــد فــى إتجــاه شــمال غــرب، بینمــا المجموعــة الثانیــة والتــى تقــع شــرق المجموعــة الأولــى فــإن حركــة الصــدع الملاحــظ فی
 لهاتین المجموعتین تتطابق مع محور الشد الناتج عن إنفراج البحر الأحمر. ةأظهر التحلیل أن الحركة بالنسبكما  شمال شرق إلى جنوب غرب.

 .ة (صدع مائل)ة صدع عكسیة مع وجود مركبة لحركة إفقیبحرك انالثالثة والرابعة فتتمیز  تینلتحلیل المركب لمیكانیكیة البؤرة للمجموعوبالنسبة ل
تتمیــز بحركــة عمودیــة مــع شــد فــى إتجــاه شــمال غــرب إلــى جنــوب شــرق، وهــى حركــة متطابقــة مــع محــور الشــد الممتــد إلــى خلــیج الســویس فالمجموعــة الخامســة 

 نتیجة لإنفراج البحر الأحمر.

 وقد أكدت قیم المركبات النتائج المذكورة. صدوعوعة من معاملات التم حساب مركبات ممتد العزم الزلزالى لكل مجمهذا وقد 
ABSTRACT: Composite focal mechanism solutions are examined for five groups of earthquakes which took place 
in the Gulf of Suez and recorded by Hurghada seismic network during the period from 1994 to 1995 to investigate the 
trade off the type of the focal mechanism solution and the evidence of the tectonics for the area. 
The composite solution in the first group area is dominated by reverse fault  with pressure axis S-E  to N-W, while a 
normal fault solution  in the second group area east of the first group with tension axis of  NE- SW is observed.The 
solution is consistent with tension axis due to the opening Red sea 
The third and the fourth groups are characterized by reverse fault with  strike slip component (diagonal fault ). The fifth 
group is characterized by a normal fault with tension axis of NW- SE, which is consistent with tension axis extended in 
the Gulf of Suez due to the opening of the Red Sea. The Moment Tensor components are calculated from the fault plane 
parameters (strike (φ), dip (δ) and rake (λ)) for each group. 

INTRODUCTION: 
 

The extent of oceanic crust underlying the Red Sea 
has been the subject of a long debate. Some believe that 
the northern Red Sea is almost entirely underlain by 
oceanic crust. The evidence  for this view is based on 
plate  kinemaetics (Mckenzie et al. 1970), gravity as well 
as magnetic data ( Girdler and Styles 1974 and 1976, 
Rosser 1975, Styles and Hall 1980) and seismic data 
(Knott et al. 1966, Phillips and Ross 1970 ). Others 
believe that the oceanic crust is of limited extent or non- 
existent in the northern  Red Sea ( Hutchinson and 
Engels 1972, Lowell and Genik 1972, Ross and Shlee 
1973 and Cochron 1983). 

The Gulf of Suez is an extensional rift comprises a 
northwest- trending marine basin, flanked by gravel 
plains that are broken by several tilted blocks such as 
Esh El Mellaha and Gebel Zeit to the west and Gebel 
Araba to the east . The amount of extension is estimated 
at 25 to 50 % of its original width (Angelier 1985, Perry 
and Shamel 1985). Most of the tectonism and structural 
relief associated with the rift occurred after the early 
Miocene invasion, within the past 18 to 20 million years 
(Garfunkel and Bartov 1977). The rift is a tectonically 
active structure that is considered to be a subplate 
boundary that  formed as a relict of the opening of the 

Red Sea. The seismic activity which follows the 
structure trend of the Gulf of Suez may continue more 
northerly towards the center of seismic activity of Abu 
Hammad ( Maamoun at. al 1980). 

Dagget et al. (1986) related the high rate of 
seismicity at the southern end of the Gulf of Suez to 
crustal movements among the Arabian and African 
plates and Sinai subplate as a result of the opening of the 
Red Sea extension in the Gulf of Suez and the left- 
lateral strike-slip motion in the Gulf of Aqaba 

Source parameters of earthquakes permit us to get 
information about fault when it does not appear on the 
surface of the ground. The focal mechanism of an 
earthquake provides the state of stress in the source 
region and reveals important clue for physical 
understanding of the earthquake phenomenon. In 
addition, spatially well distributed accurate focal 
mechanisms are the key to discuss the regional and local 
tectonics of the seismic active area. 

The history of focal mechanism study may be  
traced  back  to the late 1910, when Professor Shida of  
Kyoto  University,  Japan discovered  a  systematic  
distribution  of  the  two  senses  of polarity 
(compressions  or  dilatations)  in  azimuth  about  the 



Shater and El- Amin 
 

110 

epicenter of an earthquake. Focal mechanism based on 
first-motion polarities of P-waves are still most widely 
used. In many cases they provide  the  only method 
available to obtain the focal mechanism. 

Distribution of the initial P-wave pulses from an 
earthquake are simplified by the use of a focal sphere 
that  surround  the earthquake focus. Initial P-wave pulse 
from seismic stations are projected on points on the 
surface of the focal sphere by ray tracing back to the 
source. Their positions on the focal sphere are giving by 
the take off angle at the source measured from the 
vertical and azimuth measured from the north. 

The composite focal mechanism can be made by 
superimposing data from a number of earthquakes 
projected onto a common focal sphere. This method is 
used when the number of stations is not enough to cover 
the focal sphere with data from a single earthquake and 
unique solution cannot be obtained for individual event. 
It tells us about two possible planes of faulting. The 
geological trends and the linear aspects of the earthquake 
aftershock distributions help to the more proper plane of 
faulting .It is useful also in helping to determine stress 
orientation and relating the earthquakes activity to 
geological structure which may be observed at the 
surface. Many authors (Scholz et al, 1969; Sbar et al, 
1970; Langer et al., 1974; Armbruster et al , 1978;  
Herrmann  and  Canas, 1978) found that for  a  limited  
segment  of  an  active  seismic feature  the  focal  
mechanisms  of  microearthquakes  are  nearly identical. 
They also found that the plane of faulting inferred from 
the aftershocks distribution nearly coincides with the 
nodal plane obtained from focal mechanism studies. 

DATA 
Hurghada seismic network consistes of eight 

remote stations distributed around the both sides of the 
Gulf of Suez. Four stations  are in the Southern Sinai 
Province and the other four are located in western side of 
the Gulf of Suez. Data acquisition and analysis center is 
located at Hurghada city (Hurghada Seismological 
Center, HSC, Ibrahim et. al (1995), Figure 1 and table 
1). The data used in this study are the first arrival times 
of P-wave and their corresponding  directions of motion 
from earthquakes occurring beneath the stations during 
the period of 1994 - 1995. The P-wave velocity structure 
model used in this study is the same as used  in the 
routine work for earthquake location (table 2). 

METHOD 
The earthquake epicenters are divided into five 

groups whose P-wave first motion data are consistent to 
each other and whose epicenters are located close to 
each other so that the composite technique for each 
group could be applied. The set of  observations of the P-
wave first motion polarities are plotted on the lower 
hemisphere projection using computer program (PMAN, 

Suetsugu, D. 1995). This program was modified by A. 
Shater for this study. The two nodal planes that separate 
regions of different  polarity are drawn manually using 
the Schmidt net. The plane of faulting has  been  chosen  
from the two orthogonal nodal planes by considering the 
orientation of the seismic pattern. 

An alternative way to describe earthquake source is 
the moment tensor representation which is more suitable 
for objectively determining an earthquake source model 
by computer than the fault angle representation, because 
the moment tensor is linearly related to ground 
displacement recorded by seismometer. 

The  fault  parameters (strike (φ) ,dip(δ) and rake 
(λ) obtained from the composite focal mechanism are  
used  to calculate the Moment Tensor components in 
each group as described  by Seth Stein (1987) and 
Suetsugu (1995): 

 
where :- 
M  = moment tensor 
M0  = seismic moment 
Mxx = - M0 (sin δ cosλ  sin 2φS + sin 2δ sin λ sin 2φS) 
Mxy  = Myx = M0 (sin δ cos λ  cos 2φS + sin 2δ sin λ 

sin 2φS) 
Mxz =  Mzx= - M0 (cos δ cosλ  cos φ  S + cos 2δ sin λ sin 

2φS ) 

Myy = M0   (sin δ cosλ  sin 2φ  S - sin 2δ sin λ cos 2φS) 
Myz = Mzy = - M0  (cos δ cosλ  sin  φ  S - cos 2δ sin λ cos 

2φS ) 
Mzz = M0 sin 2δ sinλ 
RESULT AND DISCUSSION 
Composite Focal Mechanism of the first group: 

The earthquakes of this group are located around 
latitude 27.4 o and longitude 34.0 o. The mechanism of 
this zone is characterized by almost dip slip fault 
(reverse fault). This solution agrees with the result 
obtained from the stress distribution of the second group. 

From figure (2) the focal mechanism results can be  
summarized  as follows: 
(*) One of the nodal planes, strikes 64 o, and its dip is 

68o. The rake angle of this plane is 99 o. The other 
nodal plane strikes 221 o with dip angle of 24 o, its 
rake angle is 69 o. 

(*) The azimuth of the compression stress P is  147 o 
making  an angle of 22 o with the horizontal line, 
while the azimuth of  the dilatation stress T is 350 o 
making an angle of  66 o  with  the horizontal line. 
The strikes of these two nodal planes coincide  with  
the seismicity distribution of this active zone. 
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The moment tensor components are: 
Mxx=    - 0.4429575   Mxy =   0.3638029   Mxz =     

0.6569126 
Myx=  0.3638029    Myy= - 0.2508280   Myz=  - 

0.2566732 
Mzx = 0.6569126   Mzy =  - 0.2566732  Mzz =    0.5937855 
Composite Focal Mechanism of the second group: 

The earthquakes of this group are located around 
latitude 27.5 o and longitude 34.3 o. The mechanism of 
this zone is characterized by almost dip slip fault 
(normal fault). This solution is consistent with NE- SW 
tension axis due to the opening of the Red Sea. 

From figure (3) the focal mechanism results can be 
summarized as follows: 
(*) One of the nodal planes, strikes 308 o, and its dip is 

43 o. The rake angle of this plane is -87 o. The other 
nodal plane strikes 124o with dip angle of 47 o, its 
rake angle is 93 o. 

(*) The azimuth of the compression stress P is 354o 
making  an angle of 216 o with the horizontal line, 
while the azimuth of  the dilatation stress T is 350 o 
making an angle of   02 o  with  the horizontal line. 

The moment tensor components are: 
Mxx=    0.6532322  Mxy =    0.4746679   Mxz =    - 
0.0784587 
Myx=   0.4746679  Myy=  0.3429648    Myz=   - 
0.0127256 
Mzx = -  0.784587 Mzy =  - 0.0127256  Mzz =  - 0.9951969  
Composite Focal Mechanism of the third group: 

The earthquakes of this group are located around 
latitude 27.6 o and longitude 33.9 o. The mechanism of 
this zone is characterized by reverse fault with minor 
strike slip component (diagonal fault ). 

From figure (4) the focal mechanism results can be  
summarized  as follows: 
(*) One of the nodal planes, strikes 016o, and its dip is 

81o. The rake angle of this plane is  066 o. The other  
nodal plane strikes 267 o with dip angle of 26 o, its 
rake angle is 160 o. 

(*) The azimuth of the compression stress P  is 125  o 
making an angle of 32 o with the horizontal line, 
while the azimuth of  the dilatation stress T is 260 o 
making an angle of  48 o  with  the horizontal line. 

The moment tensor components are: 
Mxx=   - 0.234320    Mxy =     0.4154839    Mxz =   
0.1783201 
Myx=  0.4154839  Myy= - 0..479691     Myz=   - 
0.8527144 
Mzx =  0.1783201  Mzy = - 0.8527144    Mzz =   0.2823011 
Composite Focal Mechanism of the fourth group: 

The earthquakes of this group are located around 
latitude 27.7 o and longitude 33.8 o. The mechanism of 
this zone is characterized by reverse fault with  strike 
slip  component (diagonal fault). 

From figure (5) the focal mechanism results can be  
summarized  as follows: 
(*) One of the nodal planes, strikes 154 o, and its dip is 

75 o. The rake angle of this plane is  25 o. The other  
nodal plane strikes 58 o with dip angle of 66  o, its 
rake angle is 164 o. 

(*) The azimuth of the compression stress P  is  285 o 
making  an angle of 06 o with the horizontal line, 
while the azimuth of  the dilatation stress T is 18 o 
making an angle of  28 o  with  the horizontal line. 

The moment tensor components are: 
Mxx=   0.6419647   Mxy =     0.4770122    Mxz =  
0.3635998 
Myx=  0.4770122   Myy=  - 0.8468032  Myz=   0.2338332 
Mzx =  0.3635998   Mzy =  0.2338332  Mzz =  0.2048385 
Composite Focal Mechanism of the fifth group: 

The earthquakes of this group are located around 
latitude 28.2 o and longitude 33.7 o. The mechanism of 
this zone is characterized by dip slip fault (normal fault). 

From figure (6) the focal mechanism results can be  
summarized  as follows: 
(*) One of the nodal planes, strikes 353 o, and its dip is 

58 o. The rake angle of this plane is  -116 o. The other  
nodal plane strikes 216 o with dip angle of 40  o, its 
rake angle is -55 o. 

(*) The azimuth of the compression stress P  is  214 o 
making  an angle of 66 o with the horizontal line, 
while the azimuth of  the dilatation stress T is 102 o 
making an angle of  10 o  with  the horizontal line. 

The moment tensor components are: 
Mxx=  - 0.7793251   Mxy =   - 0.2696812   Mxz = 
0.2718609 
Myx=  - 0.2696812   Myy=   0.8786398   Myz=  0.3733421 
Mzx=   0.2718609   Mzy =   0.3733421   Mzz =    0.8067073 

Figure 7 shows the composite fault plane solution 
of  the all groups with stress directions. The second 
group  is the normal fault which are consistent with NE- 
SW tension axis due to the opening of the Red sea, The 
fifth group is characterized by a normal fault with 
tension axis of  NW- SE, which is consistent with 
tension axis extended in the Gulf of Suez due to the 
opening of the Red Sea. The other groups are 
characterized by reverse faults which are consistent with 
the stress distribution of the second and fifth groups. 

CONCLUSION 
Composite focal mechanism solutions are 

examined for  the earthquakes which took place in the 
Gulf of Suez during the period from 1994 to 1995 
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recorded by Hurghada seismic network  to investigate 
the trade off the type of the focal  mechanism  solution 
and the evidence of plate tectonics for the area . 

We have divided the earthquakes into five groups  
whose P-wave first motion data are consistent to each 
other and whose epicenters are located close to each 
other. The moment tensor components are calculated  
from the fault plane parameters. 
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Figure (2) The first group 
earthquake mechanism 

( reverse fault) 

Figure (3) The second group 
earthquake mechanism 

(normal fault) 

Figure (4) The third group 
earthquake mechanism 

(reverse fault with strik slip 
component ) 

Figure (5) The fourth group 
earthquake mechanism  

(reverse fault with strik slip 
component ) 
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Figure (6): The fifth group 
earthquake mechanism   

(normal fault) 

Figure (7) Earthquake focal mechanisms in Gulf 
of Suez with stresses directions 
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         The analysis of fault plane solution of these five 
earthquake groups indicated that the second and fifth 
groups are characterized by dip slip faults (normal faults) 
with NE-SW tension axis which illustrates a 
considerable consistency with the tension axis of the 
opening of the Red Sea. Meanwhile, the analysis of 
composite focal mechanism of the other groups reveals 
that these groups are distinguished by reverse faults with 
strike slip component which are consistent with the 
stress distribution of the second and fifth groups.   
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