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ABSTRACT: stratton field in south Texas produces from multiple dispersed and concentrated sandstone pays in the
Oligocene Frio Formation. The middle Frio Formation is the most important gas reservoir in the Frio Reservoir gas play in
the Texas Gulf Coast region. For better understanding of exploitation and exploration of this reservoir it is important to
determine its rock physics properties in order to relate them to seismic observations such as amplitude and travel time. In
this paper, the middle Frio clean sandstone reservoir rock density, bulk modulus, and velocity at Stratton field have been
calculated. The empirical constants “free parameters™ a, b, ¢ were statistically estimated from the observed sonic velocity
(Vpsonic) @nd porosity (¢ ).The values of these best fit parameters are used to calculate the modulus of the dry porous rock
frame (mgy) which in turn is used to calculate the saturated plane-wave modulus (ms,) and the velocity of the saturated
porous rock frame (Vpsy). The changes in the middle Frio rock parameters are predicted by the changes in the reflection
coefficient (Ry) calculated at the top of the middle Frio reservoirs. The introduction of gas significantly decreases the rock
velocity and density resulting in a negative reflection coefficient “amplitude dim spot effect™.

INTRODUCTION

Fields along the Vicksburg fault zone gas play FR- deposits) bounded by non-reservoir floodplain mudstones

Play (Frio Reservoir gas Play) in south Texas such as
Stratton field produce from multiple dispersed and
concentrated sandstone pays in the Oligocene Frio
Formation. In Stratton field (Fig. 1), a mature gas field, the
Frio Formation is divided informally into lower, middle,
and upper Frio (Fig. 2). Production comes mainly from the
fluvial sandstone reservoirs of the middle Frio. Exploration
efforts in the deeper middle Frio Formation gas reservoirs
have typically been based on subsurface geology along
with stratigraphic interpretation of seismic data (Kerr and
Jirik 1990; Levey et al., 1993; and Hardage et al., 1994).

The middle Frio Formation, the object of this study,
is the most important gas reservoir in the FR-Play in south
Texas, Gulf Coast region. It consists of fluvial reservoirs
represented by channel-fill and splay sandstones (reservoir

and siltstones. For better understanding of exploitation and
exploration of this reservoir it is important to determine its
rock physics properties in order to relate them to seismic
observations such as amplitude and travel time. To my
knowledge, rock-physics properties of the sandstone
reservoirs of the middle Frio Formation in Stratton field
and in the FR-Play in south Texas have not been applied to
exploration and exploitation.

Success of seismic data as a prospecting tool for
fluvial deposits depends on using local information
obtained from existing fields to carry out refined seismic
modeling and interpretation. Seismic modeling of the
middle Frio fluvial deposits at Stratton field in south Texas
is twofold: building a rock physics predictive model, then
using it to determine how rock property changes in the
middle Frio would affect seismic response.
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Figure 2: Type log from the Union Production Company Driscoll No. 7A well showing the Frio
reservoir groups and nomenclature at Stratton (left) and Agua Dulce (right) fields
(modified from Kerr, 1990).
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Table 1. Average interval properties for middle Frio Formation (deeper F-series)

19

Parameter Value Units Source of Information

Measured rock density (p) 2.65 g/lcc  |Core analysis by Bureau of
Economic Geology UTA

Observed rock density (p) 2.195 g/cc  |Density logs

Measured rock porosity (¢) 0.21 % Core analysis by Bureau of
Economic Geology UTA

Observed rock porosity (¢) 0.1-0.35 % Neutron porosity logs

Observed P-wave velocity (Vp) 3717 m/s  |Sonic logs

Reservoir pressure (P) 7.5 MPa |Levey et al., (1993)DOE Project
Report #DE—FG21-88MC25031)

Reservoir temperature (T) 83 °C  |Log header of well Wardner-184

Gas saturation (Sg) 0.55 % Levey et al., (1993)DOE Project
Report #DE—FG21-88MC25031)

Gas specific gravity (G) 0.65 Kosters et al., 1993 Atlas of Gas
Fields, Texas and Levey et al.,
(1989)DOE Project Report #DE-
FG21-88MC25031)

Formation water salinity (S) 17000 ppm |Levey et al., (1993) DOE Project
Report #DE-FG21-88MC25031)

Frame stiffness constants (a, b,c) |(8.8, .16, 22.4) Determined from both observed
sonic velocity and neutron porosity

Quartz density (pmin) 2.65 g/lcc |Liner, C. L., 1999, Elements of 3-D
Seismology. PennWell Scientific
Publications. P-362.

Quartz bulk modulus (Kmin) 37900 MPa |Liner, C. L., 1999, Elements of 3-D
Seismology. PennWell Scientific
Publications. P- 362.

Quartz shear modulus (umin) 44300 MPa |Liner, C. L., 1999, Elements of 3-D

Seismology. PennWell Scientific
Publications. P-362.
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The middle Frio Formation is a major hydrocarbon
producer in the Gulf Coast of the United States. Previous
studies (Levey, et al.1993) indicated that untapped and
incompletely drained reserves were encountered in the
middle Frio reservoirs. Such results show good reason to
search for and develop gas resources in the deeper middle
Frio interval (F-series) in the study area. Therefore,
detailed rock-physics properties of the sandstone reservoirs
of the middle Frio Formation in Stratton field and in the
FR-Play in south Texas is necessary to be calculated and
be applied to exploration and exploitation for developing
this mature reservoir.

Given the mature nature of the area, typical
exploration targets are lower-potential stratigraphic traps in
shallower productive intervals and higher-potential
stratigraphic and fault-controlled compartments in the
deeper middle Frio Formation.

Because of that, the Stratton field could be a good
area for more development to find more bypassed
compartments using an integrated interpretation and for
time-lapse 3-D seismic (4-D) study. For 4-D seismic, it is
important to evaluate the rock physics properties of the
deeper interval of the middle Frio Formation in the study
area.

Several theories have been developed that describe
rock properties and their effects on seismic wave
propagation in porous media (e.g. Gassmann, 1951;
O’Connell and Budiansky, 1974; and Mavko, et al., 1998).
In this work, reservoir rock density, bulk modulus, and
velocity of the deeper middle Frio clean sandstone
reservoirs at Stratton field area have been calculated. These
properties depend on several important parameters and can
be applied to bright-spot/dim-spot evaluation and log
interpretation.

Reservoir pressure at seismic acquisition time is 1082
psi (7.5 MPa) (Levey et al., 1993) and temperature as
measured in the Wardner 184 well is 181°F (83 °C).
Average gas saturation of 0.55 was chosen as
representative based on information from Wardner lease
area in the Stratton field, (Levey et al., 1993). Table 1
shows the sources of these and other parameters used to
calculate reservoir rock properties of the middle Frio
Formation at Stratton field. The relationships used in these
calculations are drawn primarily from Batzle and Wang
(1992) and Liner (1999).

ROCK PROPERTY EVALUATION
Better understanding of the rock properties of the

middle Frio Formation can be achieved by estimating
reservoir rock physics properties such as density and

velocity. Figure 3 is a flow chart showing the procedure
followed in rock property evaluation.

[ Calculate rock density p, ]

A\ 4

[ Calculate rock modulus and velocity ]

l

Estimate the empirical values of the
parameters (a, b, ¢) from the observed
VpSonic and ¢

A 4

[ Calculate the reflection coefficient, R ]

v

[ Plot RqVversus gas saturation (Sq) ]

Figure 3: Flowchart of the procedure followed in
rock property evaluation.

Rock density

The density (g, ) of the porous, fluid saturated

(gas and brine) middle Frio sandstone reservoir rocks can
be calculated from the following equation

Psat = Pmin (1_¢) +¢pf 1)

where P, is the density of quartz (g/cc), p; is the fluid

mixture density (g/cc), and ¢ is the fractional porosity

(core-derived porosity of 21%). This equation yields a
density of 2.170 g/cc for the deeper middle Frio sandstones
assuming gas saturation and water saturation as 55% and
45%, respectively. In comparison, the observed bulk
density of the middle Frio sandstone reservoirs estimated
from the density logs of Wardner 224 and Wardner 226
wells of Stratton field is 2.195 g/cc.
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Rock modulus and velocity

The next step is to calculate rock modulus and
velocity. For velocity calculations, three kinds of moduli
are involved. These are bulk modulus (x), plane-wave
modulus (m) and shear modulus (). The relation between
bulk moduli of the mineral component, dry rock frame,
and saturated rock frame is called the Gassmann theory
(Liner, 1999). Gassmann’s relations use the difference
between the dry rock bulk modulus and mineral modulus
to ascertain the compressibility of the pore space. Rock
shear modulus is assumed to be unaffected by fluids.

The mineral P-wave modulus m, is given by

4
Muin = kmin +§1umin (2)

where K, and gz, are the sandstone (quartz) bulk and
shear moduli (MPa), respectively (Table 1).

The modulus of the dry porous rock frame (mgry)
characterizes the stiffness of the rock. This modulus can be
estimated from the following nonlinear relationship

Myy = Myyp /(L+a¢ +bp? +Cp°) ©)
where a, b and ¢ are empirical constants of the rock.
A smaller value of “a” means the rock is soft or poorly
consolidated, and a larger value means it is hard and well
cemented. One-way to estimate the value of the frame
stiffness constant “a” is from laboratory measurements on
dry cores. In the absence of P-wave velocities on cores the
empirical constants “free parameters” a, b, ¢ can be
statistically estimated from the observed sonic velocity
(Vpsonic) and porosity (¢ ). Sonic values can be converted

to rock P-wave speed in ft/s using the following equation

1,000,000
Sonictime (us/ ft)

(4)

p

The observed sonic velocity (Vpsonic) plotted against
the porosity (¢) of the selected deeper middle Frio clean
sand intervals (Fig. 4). The values of the free parameters a,
b, and c are statistically estimated as a = 8.84, b = 0.16,
and ¢ = 22.4. The values of these best fit parameters used
to calculate the modulus of the dry porous rock frame
(Mgry) Which in turn used to calculate the saturated plane-
wave modulus (mg) and the velocity of the saturated
porous rock frame (Vpsg). In order to evaluate how good

the fit is, the residual values are plotted against the fitted
Vp values (Fig. 5). Fit residuals are the differences
between the observed responses and the predicted
responses. The predicted responses are the fitted Vp values
obtained by evaluating the best fit function at the observed
values of the independent ¢ variable. The plot (Fig. 5)
indicates high correlation which implies good fit between
the observed sonic velocity (Vpsonic) and porosity (¢ ).

The velocity of the saturated porous rock frame
(Vpsat) is given by the following relationship

Vp., =+1000me,/ ey 5)

where mgy is the saturated rock plane-wave modulus in
MPa, which is determined from the following equation

m mdry Kf
min
Min — mdry ¢(mmin - Kf)
My = m K Q)
1+ dry f
Myin — rndry ¢(mmin - Kf)

where kf is the fluid mixture modulus (MPa).

REFLECTION COEFFICIENT

Armed with the rock model for the deeper middle
Frio sandstone reservoirs, it is important to predict how
changes in reservoir parameters will influence seismic
observables such as amplitude. This is done by calculating
the reflection coefficient (R,) at the top of the middle Frio
reservoirs. The normal incidence reflection coefficient for
an interface is a function of P-wave velocity and density
on either side of the interface.

To calculate the reflection coefficient, the P-wave
velocity and density of the cap rock (middle Frio
floodplain mudstones) should be known, and then the
reflection coefficient can be calculated from

R. — PNy = pVy

(7)
PN, + pVy

where p;, V, are the density and velocity of the cap rock,

and p, = Py, Vo =V, are the calculated density and
velocity of the reservoir rock.
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Figure 4: Observed velocity-porosity plot used to estimate the free parameters (a, b and c)

of the deeper middle Frio clean sandstone reservoirs.
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Figure 5: Plot showing a good fit between the residuals and fitted Vp.
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Figure 6: Plot of reflection coefficient (R,) as a function of porosity. Changes in porosity result in
significant change in the R,. For example, increasing porosity from 15% to 25% reduces reflection
coefficient from 0.28 to 0.16, a 43% drop in amplitude.
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Figure 7: Effect of gas saturation on the reflection coefficient (Ry) for the given set of rock parameters.
Fractional porosity is fixed at 21%. (A) Increasing gas saturation causes an abrupt decrease in the
saturated-rock bulk modulus. (B) Increasing gas saturation causes drastic reduction in rock velocity
until 0.16 Sg and then starts to increase again. (C) Increasing gas saturation also causes a significant
decrease in density. (D) The combined effect of decreasing rock bulk modulus, velocity, and density
causes a decrease in Ry i.e., amplitude dim spot effect.
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depths (From Domenico, 1974). Notice that the
response of the Vp due to the gas as a second pore
fluid at 6000 ft depth is similar to that of the
deeper middle Frio gas sands (Fig. 7.B).

The above relation is also a measure of R, at fluid
interfaces within the rock. Usually Ry is maximum at
liquid-gas interfaces or at interfaces between liquids and
liquid gas mixtures of high gas content. Figure 6 is a plot
showing the effect of porosity changes on the reflection
coefficient for the middle Frio sandstone reservoirs.

FLUID SUBSTITUTION

Calibration of the basic seismic response to real
reservoir rock parameters is critical to the interpretation of
the variations observed in seismic data. One of the most

important problems in rock physics analysis of logs, cores,
and seismic data is the prediction of seismic velocities in
rocks saturated with one fluid from rocks saturated with a
second fluid—or is the prediction of saturated rock
velocities from dry rock velocities, and vice versa (Mavko
et al., 1998).

Changes in a rock can be predicted by changes in the
reflection coefficient. The introduction of gas significantly
decreases the rock velocity and density resulting in a
negative reflection coefficient (Fig. 7). Mavko et al. (1998)
noted that by introducing fluids into the dry rock, the dry
rock velocity drops by a certain amount.

The middle Frio gas-sand velocity abruptly decreases
as the gas saturation increases from zero (100 % brine) to a
gas saturation of approximately 0.16 (84 % brine) and then
increases to the velocity of fully gas-saturated sand
reservoir (Fig.7-B). This velocity behavior is similar to that
of the gas-sand as a function of water saturation obtained
for the Tertiary shale and sand sequences of the Gulf Coast
basin (Fig. 8) (after Domenico, 1974).

CONCLUSION

Reservoir rock properties such as density, bulk
modulus and velocity are important to study. They aid in
petroleum exploitation and exploration by establishing a
correlation between the seismic attributes and rock
properties. In this work, the rock physics properties of the
F-series reservoir rocks of the middle Frio Formation of
Stratton field were evaluated and related to the normal
incidence reflection coefficient. Also the effect of
introducing fluids such as gas to water wet sandstone on

the rock P-wave velocity, density, and reflection
coefficient has been estimated.
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ABSTRACT: During the last 15 years, the Gulf of Agaba has been considered one of the most seismically active
regions in the Middle East. The 1100 km long strike-slip Gulf of Agaba-Dead Sea transform fault is a major active
tectonic feature linking the Taurus-Zagros area of southern Turkey- western Iran with the Red Sea rift. A catalogue of
1415 earthquakes (MD > 2.8) covering a time span from 1985 to 1995 were compiled by Al-Arifi (1996), Al-Shaabi
(1998). It is mainly based on data from King Saud University, Seismic Studies Centre (SSC), Kingdom of Saudi Arabia.
It covers an area extent from 28°N to 30°N and from 30°E to 36°E. The catalogue has been used to study local
migration of aftershocks during the 1993 and the 1995 sequences. It is also used to calculate the stress distributions of
(61 and ¢3). The mean direction of the minimum stress 63 was found 222°. While the mean direction of the maximum
stress ol was 137°. These values are in good agreement with the geologically inferred principal stress directions for
the region, which indicate north-northwest-trending, maximum compressive stress (o1) and northeast-trending, near-
horizontal minimum compressive stress (63). The aftershocks migrate northwards about 60 km for the 1993 sequence
and about 70 km for the 1995 sequence. The aftershocks migrate also to shallow focal depths, where focal depth of the
1993 main-shock is 15 km, to 2 km for the last strong aftershock (MD=5.2), which occurred in the late stage of the
sequence. The 1993 main-shock caused re-distribution of stresses to the parallel faults segments where the 1993 largest

aftershock occurred that triggered these fault segments to be area of stress nucleation and generated the 1995 main-
shock.

INTRODUCTION

The 1100 km long strike-slip Gulf of Agaba-Dead
Sea transform fault is a major active tectonic feature
linking the Taurus-Zagros area of southern Turkey-
western Iran with the Red Sea rift. Its left-lateral strike-
slip motion is suggested to be a result of the relative
oblique left hand movement between Arabia and Africa
plates to open up the Red Sea (Quennell 1958, 1959;
Freund et al., 1970).

In the southern Dead Sea transform fault which
represents the Gulf of Agaba, indicated that, the
movement started in the late Miocene which is
associated with a strike-slip stress pattern (40° direction
of extension associated with a 130° compression). This
movement produced the left lateral motion between the

Arabian plate and Sinai Peninsula and since the end of
the Miocene the faulting is the result of an E-W
extension, which indicates a rotation of the regional
stress pattern in the vicinity of the transform fault.
Using the focal mechanism solution for 53 recent
earthquakes in the Gulf of Agaba, Al-Arifi (1996) found
that, the main direction of the maximum compressive
stress (ol) in 137° and the main direction of the
minimum stress (o3) in 222°.

The structure of the Gulf is dominated by en-
echelon normal faults, which delimit three elongated
basins (Ben-Avraham et al., 1979, Reiss and Hottinger
1984). The northern basin has a simple bathymetry and
structure, dominated by the flat- bottomed Eilat deep
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(<900 m). The central basin consists of two deeps:
Aragonese deep (<1850m), and Arnona deep (<1550m).
The southern basin includes the Dakar (<1400m) and
Tiran (<I300m) deeps (Figure 1).

In this paper, two main objectives are considered.
The first objective is to outline the local migration of
aftershocks in vertical and horizontal directions for the
most recent sequences (i.e. the 1993 and the 1995
sequences). The second objective is to presents some
observations of stress migration that caused large
earthquake in the Gulf.

RECENT SEISMICITY

The Gulf of Agaba has been considered one of the
most seismically active regions of the Middle East
during the last 15 years. A catalogue of 1415
earthquakes (duration magnitude MD > 2.8) for 1985-
1995 has been compiled by Al-Arifi 1996 and Al-
Shaabi 1998. It is based mainly on data from Seismic
Studies Centre (SSC), King Saud University, Saudi
Avrabia. It covers an area from 28°- 30° N and 30°-36°
E. Historical seismicity (1068-1964) shows that the
region suffered at least 18 moderate to large
earthquakes. Instrumental seismicity (1965-1984)
includes 284 events, 244 of which were the 1983
sequence centered on the Eilat deep in the northern
Gulf. Recent seismicity (1985-1995) shows that, the
Gulf of Agaba seismicity has been episodic (Figure 2).
In July 1993 an earthquake sequence began with
foreshocks, followed by a mainshock (MD=6.0) on
August 3, 1993, and then 403 aftershocks (MD>2.8) in
four months with magnitude of 5.6 for largest
aftershock (Figure 3a). On November 22" 1995, the
region experienced a widely-felt earthquake located at
28.81° N, 34.75° E with a focal depth of 12 km. The
mainshock (MD=6.2) was followed by 733 aftershocks
(MD=>2.8) in 40 days with magnitude of 5.3 for largest
aftershock (Figure 3b).

The 1983 sequence concentrates in the north part
of the Gulf of Agaba (28.8°- 29.4° N and 34.3- 35.1° E).
Most of this sequence is offshore and coincides with the
Eilat deep. Although, the determination of depth was
difficult because of lack of stations. El-Isa et al., (1984)
observed the surface waves clearly in the records of the
Jordan University seismic station which suggest very
shallow depth for the 1983 sequence. Their observation
is supported by the recent SSC recorded earthquakes
which are located in the same area that suffered from
the 1983 sequence. These earthquakes are located at a
shallow depth not exceeding 10 km (Al-Shaabi 1998).
The 1993 sequence was concentrated in the Dakar and
Tiran deeps in the southern part of the Gulf with focal
depths did not exceed 26 km. The 1995 sequence
distributed in two clusters, the northern cluster of which
was again concentrated in the Eilat deep, whereas the
southern cluster was in the Aragonese and Arnona deeps
in the central Gulf. The depth of the 1995 sequence is
generally less than the 1993 sequence. This may be
because of the location of aftershock zone, where the
1993 aftershock zone concentrated in the southern part

of the Gulf whereas the 1995 aftershock zone spread
along the Gulf and the density of aftershock was greater
in the northern part than the southern part. This may
indicate that the earthquakes which occur in the
northern part are shallower than the ones in the southern
part of the Gulf and relate to the brittle-ductile transition
zone (Al- Shaabi 1998). This observation is supported
by the 1995 aftershocks where the events in the northern
cluster are shallower than the ones in the southern
cluster. In addition, the surface waves appear clearly
when the earthquakes are located in the north of the
Gulf of Agaba (Al-Shaabi 1998). However, they
disappear from the records when they are located in the
south.

LOCAL MIGRATION OF AFTERSHOCKS

In order to study the local migration of aftershocks
both vertically with depth and horizontally along a NE-
SW direction it is required to delineate the tectonic
setting of the area of interest. That corresponds to the
general state of extensional tectonic stress in the Gulf of
Agaba and the Dead Sea Transform, according to small
scale structures study (Reches, 1987), and focal
mechanisms study (Al-Arifi, 1996). We shall use the
term ‘local migration’ to denote the movement of a
strong aftershock tends to move horizontally during the
sequence. We shall also use the term ‘jumping’ to
denote the movement a strong aftershock in the vertical
direction. The term strong aftershock in this paper
means the aftershocks which are felt at least in three
towns of the study area. Because all strong aftershocks
occurred at a shallow depth not exceeding 20 km all
aftershocks with magnitude of 4.9 and over were felt at
least in three towns.

The 1993 mainshock occurred at the extreme
south end of aftershock zone at 28.45°N and 34.87°E
(Figure 3a). The aftershocks moved in a general
northward direction.

Figure 4a shows the local migration of the strong
aftershocks of the 1993 sequence. On the same day
which the mainshock occurred, the activity concentrated
in the north between 28.70-28.8S° N and 34.75-34.9° E,
where two strong aftershocks with magnitude of 5.6 and
4.9 occurred. 80 days after the mainshock the activity
moved northwards again where another strong
aftershock occurred at 29.0° N and 34.83° E. On the
3/11/1993 the activity leaped to the south-west (still
north of the mainshock) with another strong shock that
occurred at 28.62° N and 346, the activity moved
northwards where the last strong aftershock occurred on
4/12/1993 at 28.86° N and 34.41° E.

In addition, figure 4b shows that the focal depth of
the 1993 started with more than 10 km for foreshocks
with no foreshocks having a depth less than 10 km. The
mainshock had the depth of 15 km and then the depth
reduced with time from 11-12 km for the first two
strong aftershocks until the last strong aftershock was at
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Figure (1): Index map showing the location of the study area in addition to
(a) Bathymetric chart of the Gulf of Agaba (Bathymetric map after Hall and

Ben-Avraham, 1978), (b) location map of the SSG deismic stations.
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Figure (2): A histogram showing the frequency of occurrence (number of
events/day) in the Gulf of Agaba from 1985 to 1995.
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compressive stresses respectively, according to
small scale structures study (Reches 1987), and
focal mechanism study (Al-Arifi 1996).

a depth of 2 km. The 1995 sequence is similar, the focal
depths of the aftershocks reduces with time. This
‘jumping’ feature may be explained by the fact that the
earthquakes migrate northwards into area where all
seismicity is shallower than in the south of the Gulf. As
regards the local migration of the 1995 sequence, it was
difficult to determine a specific direction for strong
aftershock, but the aftershocks moved in general
northwards.
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Figure (4): (a) Shows the local migration of
strong aftershocks of the 1993 sequence in the
Gulf of Agaba. (b) Shows Profiles for jumping of
strong aftershocks of the 1993 Gulf of Agaba
sequence. The arrows indicate the direction of
the local migration and jumping.

SYSTEMATIC MIGRATION OF MODERATE
EARTHQUAKES

The focal mechanism solution for the main-shocks
and the largest aftershocks for both sequences of the
1993 and 1995 (Figure 5) include the following:

1. The 1993 mainshock indicates normal and strike-slip
fault dipping 34° to the northwest and striking
N 21°E.

2. The 1993 largest aftershock which occurred 3 hours
and 50 minutes after the main shock indicates left-
lateral strike-slip fault dipping 64° to the north and
striking E 4° S.
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Figure (5): Shows the focal mechanism solution for the main-shocks and the largest
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3. The 1995 mainshock indicates left-lateral strike-slip
fault dipping 43° to the north and striking N 09° E.

4. The 1995 largest aftershock that occurred after 35
hours from the mainshock indicates normal and
strike-slip fault dipping 31° to the northwest and
striking 198°.

Observations of these focal mechanism solutions
and locations of the main-shocks and the largest
aftershocks of both Gulf of Agaba sequences (i.e the
1993 and the 1995 sequence) indicate the following:

33°E 35°E

34°E

36°E

1. For both sequences, the seismic sources of the main-
shocks and its largest aftershocks where completely
different (Figure 5).

2. The seismic source of the 1993 largest aftershock and
the 1995 mainshock where located on the same fault
zone (Figure 5).

3. There is a systematic migration of seismic sources of
the earthquakes from south to north (Figures 4 and
5). This systematic northward migration is
influenced by the main direction of the maximum
tectonic stress in the Gulf of Agaba which takes
direction of 137° as found by Al-Arifi (1996).

37°E 38°E

31°N

31°N

30°N

29°N
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Figure (7) : The mean direction of the minimum stress 3 was found 222°, while the mean direction
of the maximum stress 1 was 137° (this study).
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TECTONIC STRESS

First motion focal mechanisms were obtained for
fifty-four earthquakes for the period 1985 to 1993,
including the 1995 main-shock focal mechanism. The
data were specially scrutinised for reverse instrument
polarities. The earthquakes were clustered along and
near by the Gulf of Agaba. The alignment of the
lineaments and the epicentres strongly suggest a
considerable degree of correlation for the events that
their focal mechanisms were obtained. 21% shows left-
lateral strike slip fault mechanisms. 73% shows a
component of a strike-slip fault movement (49% normal
with some component of a strike-slip fault), while the
remainder show pure normal and reverse fault
mechanisms (4% normal).

Most of these solutions indicate that the NE
striking Dead Sea-Gulf of Agaba transform is still
undergoing movement and this agrees with most recent
motion on the surface faults of the Dead Sea-Gulf of
Agaba fault system.

The state of stress in the Gulf of Agaba and the
Dead Sea Transform (Northwest of the study area)
appears to be characterized by Northeast-Southwest
extension, as indicated by the focal mechanisms (Al-
Amri, 1990), which is shown in Figure 6, and by a fault
orientation analysis (Reches, 1987). The tectonic stress
field is characterized by Northeast-Southwest
extensional stress, as indicated by focal mechanisms
with T-axes generally aligned Northeast-Southwest.

Al-Amri  (1990) found that the maximum
compressive stress (ol) orientation in the range of N
15° W to N 47° W and the minimum compressive stress
(c3) orientation in the range between N 42° E to
N 90° E.

The mean direction of the minimum stress 3 was
found 222°, while the mean direction of the maximum
stress ol was 137° (Figure 7). All these seismic
measurements are in good agreement with the
geologically inferred principal stress directions for the
region by Reches (1987). He indicates that the Dead Sea
Transform is discontinuous and includes more than 10
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pull-apart basins and a few push-up swells. His model in
figure 6b is based on the following characteristics:

a) Left lateral displacement of about 105 km has
occurred along the Dead Sea Transform since the
Middle Miocene;

b) The deformation along the Dead Sea Transform and
the minor extension normal to it;

¢) The stress field that exists along the transform can be
represented by stress determined from small scale
structures by Eyal and Reches (1983).

All these studies and this work indicate north-
northwest-trending, maximum compressive stress (c1)
and northeast-trending, near-horizontal ~minimum
compressive stress (¢3).

DISCUSSION

It has been observed in many cases that the
mainshock epicenters were very often located at one end
of the aftershock zone (Matsuzawa, 1979). In the Gulf
of Agaba this happens with the 1993 and 1995
sequences, where the mainshock of the 1993 was
located at the south end of the aftershock zone and
below the bottom depth of the aftershock zone. This is
also applied to the 1995 sequence where the mainshock
is located near the south end of the aftershock zone at a
depth representing the bottom of the aftershock zone.
For both sequences most aftershocks concentrate
between the mainshock and the largest aftershock
(Figure 3a and 3b).

The characteristics of aftershocks give clues about
the nature of the relatively long term processes that
redistribute  stress following the more or less
instantaneous stress change associated with the
mainshock (Wesson, 1987). It seems likely that these
same processes are responsible for the concentration of
stress in the hypocentral region of the largest 1993
aftershocks prior to and resulting in the nucleation of
the 1995 mainshock. This systematic northward
migration leads one to suggest an initial model for the
earthquake migration in the Gulf of Agaba (Figure 8),
although the real migration is likely to be more
complicated. However, shortly, in this model the
epicenter of the largest aftershock represents the area of
stresses nucleation and location of next large mainshock
(Figure 8).

CONCLUSION

A possible mechanism of earthquakes in the Gulf
of Agaba fault system is proposed that seismic energies
are accumulated gradually till reaching a failure point.
At that time a large stress drop during a mainshock (the
1993 mainshock), which caused redistribute of stresses
to the location of the largest aftershock which trigger
the area to be an area of stress nucleation that generate
another large mainshock (the 1995 earthquake). Again
the area of the largest aftershock of last mainshock
could receive next large mainshock. Because a future
large earthquake could easily nucleate in the Gulf of

Agaba, more effort is needed to fully understand the
stress migration and seismic behavior a long this critical
section of the southern Dead Sea faults system.
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