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 تمییز السحنات البتروفیزیائیة للحجر الرملى الجیرى التابع لعصر المیوسین بوادى فیران، سیناء، مصر

جنوب غرب سیناء.  -تم إجراء تحلیل بتروفیزیائى كامل لعینات من الحجر الرملى الكلسى والتى تم جمعها من منطقة جبل هداهد بوادى فیران  ة:ـالخلاص
متر) وهو یعلو متكون نُخل فى توافق تام بینما تعلوه طبقات من  ٣٣٨,٨تنتمى لعصر المیوسین السفلى (متكون رودیس، والعینات الصخریة المدروسة 

ات طینیة الحصى والرمال التابعة للعصر الرباعى فى عدم توافق واضح. وصخور المیوسین موضع الدراسة تتكون غالباً من أحجار رملیة متداخلة مع طبق
ذه ملیة عند القاعدة. وقد تكونت الصخور المدروسة فى بیئات نهریة وبیئات خلیطة من النهریة والهوائیة. أما بالنسبة للصفات التخزینیة لهوبعض الأحجار الر 

 الصخور فقد تدنت فى بعض النطاقات بسبب التلاحم خاصة بالكالسیت ونادراً ما یكون بالسیلیكا وأكاسید الحدید.

ریة المدروسة لقیاسات بتروفیزیائیة كاملة مثل قیاس الكثافة الكلیة والمسامیة والنفاذیة وتقدیر كمیة المحتوى المائي غیر القابل ولقد تم إخضاع العینات الصخ
المقاومة ألف جزء في الملیون ) كما تم كذلك قیاس  ١٢٠و ٦٠و ٦للاسترجاع، والالتوائیة الكهربیة، المقاومة الكهربیة الظاهریة عند ثلاثة تشبعات ملحیة ( 

ي والأوسط من تكون الكهربیة الحقیقیة. ولقد اتاح التحلیل البیتروفیزیائي تمییز ثلاث سحنات بتروفیزیائیة، السحنتان السفلیة والوسطى منها (الجزء السفل
الجزء العلوي من تكون رودیس) تتمیز رودیس) تتمیزان بخصائص تخزینیة جیده نتیجة تمیزها بقیم عالیة من المسامیة والنفاذیة، بینما السحنة الثالثة (

 بخصائص تخزینیة ضعیفة.

ABSTRACT: Systematic petrophysical studies were carried out on some calcareous sandstone samples selected 
from Gebel Hadahid area, Wadi Feiran, south west Sinai,. The studied rock samples are belonging to the Lower 
Miocene (Rudeis Formation, 338.8 m) which conformably overlies the Nukhul Formation and unconformably underlies 
Quaternary gravels and sands. The Lower Miocene rocks of the studied area are composed mainly of sandstones 
intercalated with shale beds and few sandy limestone intercalations at the base. The studied samples were deposited in 
a fluviatile and mixed aeolian-fluviatile environment. The storage capacity of the studied rocks was diminished by 
cementation, mostly by calcite cementation, and rarely by hematite or silica cement. 

The collected samples were subjected to comprehensive systematic petrophysical investigations including measuring of 
the bulk density, the porosity, permeability, irreducible water saturation, electric tortuosity of channels, apparent 
electric resistivity of samples saturated with NaCl solution of three successive concentrations (6, 60, and 120 kppm), 
and the true electric resistivity. The petrophysical analysis enabled distinguishing three petrophysical facies. The lower 
and middle facies (lower and middle parts of Rudeis Formation) have good storage capacity properties due to their 
high porosity and permeability values, whereas the third facies (topmost parts of Rudeis Formation) has fair storage 
capacity properties. 

INTRODUCTION 

The Miocene sediments in the Gulf of Suez region 
represent one of the main hydrocarbon reservoir rocks in 
Egypt. The majority of oil fields in the Gulf of Suez are 
producing from the Lower Miocene reservoir rocks, 
whereas the Middle Miocene evaporites represent 
excellent cap rocks. These Miocene rocks are widely 
distributed all over the northern part of Egypt, either on 
the surface or in the subsurface. The Miocene sediments 
in the Gulf of Suez had been studied by many authors 
including Stainforth (1949), Heybroeak (1965), Sadek 
(1968), El Kerdany (1976), El Heiny (1982), Rateb 
(1988), Hamza (1988), Arafa (1992), Abu El Enain and 
Gharib (1997), and others. 

The present study aims to throw some light on the 
storage capacity properties of the Lower Miocene Rudeis 
clastics at Gebel Hadahid to establish its reliability as 

reservoir or aquifer rocks in its subsurface equivalent 
extensions.  

Studying of surface exposures equivalent to the 
target subsurface reservoir rocks is a fast and cheap 
exploratory tool and helps to investigate the 
petrophysical properties and their vertical and horizontal 
variation with large number of samples and also offer the 
capability of resampling for further studies, which is not 
available in the subsurface studies. 

Gebel Hadahid area is located in the western part 
of central Sinai, between latitudes 28Ο35′ & 28Ο45′ N 
and longitudes 33Ο20′ & 33Ο25′ E. It is bounded from 
the North and North West by Wadi Feiran (Fig. 1). 
Therefore, a set of representative fresh samples were 
collected from the calcareous sandstone beds of Rudeis 
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Formation at Gebel Hadahid, and prepared in the 
geophysical lab. in the National Research Centre, Giza, 
to clarify their petrophysical properties. 

 

 
Fig. 1: Location map of Gebel Hadahid area, 

Wadi Feiran, South West Sinai, Egypt. 
 

METHODS AND TECHNIQUES 
The collected rock samples were drilled and 

prepared for the petrophysical measurements as plugs of 
2.5 cm diameter and 2.5 cm length. Further, the core 
samples were cleaned from soluble salt contents, and 
dried in an electric oven up to 90ΟC as a maximum 
temperature. The applied methods and techniques were 
carried out in the Department of Geophysics, National 
Research Centre. 

The insoluble residue analysis and decantation 
method, introduced by McQueen (1931) and Ireland 
(1958), using dilute HCl is applied to the rest of the core 
samples to determine carbonate, mud and sand fraction 
percentages. These components define to some extent 
the rock type and explain its petrophysical behaviour. 

Several methods have been used by different 
authors for porosity determination. In laboratory 
measurements, it is necessary to determine only two of 
three volumes namely: the bulk volume, interconnected 
pore volume and grain volume. The saturation method 
introduced by Koithara et al. (1968) is used in the 
present work for measuring both the porosity and the 
bulk density of the studied core samples. The method is 

based on determination of the pore volume and the bulk 
volume. Gas permeability measurements (K, md) were 
carried out using Ruska gas permeameter (Amyx et al., 
1960) in the Exploration Department of the Egyptian 
Petroleum Research Institute (EPRI). 

The pore channel diameter (D) of the studied samples 
was calculated for each sample using the equation offered 
by Rzhevsky & Novik (1971) as follows: 

D = (32 K / ∅)0.5 

where;   K  = Permeability, in µm2; and 

∅ = Porosity, %. 

The irreducible water saturation (Swirr) was 
measured using the high speed centrifuge method, 
Janetzki-T32A apparatus outlined by Koithara et al. 
(1968), where the samples were saturated with distilled 
water (ρf  = 1.0) and further desaturated for a time period 
of fifteen minutes and were weighed, and then the process 
was repeated as a cycle till reaching a constant weight, 
Wds (Ragab et al., 1999), then the following equation was 
applied to the measured weights: 

Swirr = [(Wds - Wd) / (Ws - Wd)] 

where,   Wds : the weight of the desaturated sample, 

Wd : the weight of the dry sample, and 

Ws : the weight of the saturated sample. 

After that, the electrical resistivity measurements 
were carried out on the core samples by using A-C 
Bridge (model TF-2700) at three successive cycles of 
brine saturations (6, 60, and 120 kppm) with NaCl 
solutions (Rw = 0.93 ohm.m, 0.21 ohm.m, and 0.11 
ohm.m, respectively) to investigate the effect of the 
conductive solids. The true electric resistivity (Rt) of the 
core samples is measured at the last stage of desaturation 
while the irreducible water saturation Swirr of the brine 
solution was 6 kppm. (Parkhomenko, 1967; Gür, 1976; 
El Sayed and Zeidan, 1983; Ragab et al., 2000). The 
formation resistivity factor was calculated for each rock 
sample at each concentration, as: 

F = Rο / Rw          (Amyx et al., 1960) 

Values of the electric tortuosity factor (T) of the 
studied rocks were calculated for the first formation 
resistivity factor using the following equation (Gür, 
1976; Ragab et al., 2000): 

T = (F x ∅)0.5              (Gür, 1976) 

Lithostratigraphy and Petrography 
The Rudeis Formation in the studied area 

represents a clastic section which overlies the Nukhul 
Formation and underlies unconformably the Quaternary 
gravels and sands. 

According to Abu ElEnain and Gharib (1997), the 
majority of the Rudeis sandstones are medium-grained, 
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few sandstone intercalations are fine to coarse grained. 
The relationship between the grain size parameters 
indicates river and/or mixed river and dune sediments 
with some exceptional beach sediments. The studied 
Rudeis section attains 338.8 m at Gebel Hadahid and 
consists mainly of yellowish to brown sandstones, well 
bedded, cross-bedded, hard to moderately hard, highly 
calcareous, argillaceous in parts, slightly pebbly (Plate 1, 
Figs. A & B) and ferruginous at the upper parts (Plate 1, 
Fig. C). 

The base of the Rudeis Formation is characterized 
by 22.8 m of grey to yellow, moderately hard sandy 
clayey fossiliferous limestone. Figure (2) shows a 
composite lithostratigraphic column of the surface 
Lower Miocene Rudeis Formation in Gebel Hadahid 
area. 

 
Fig. 2: A composite lithostratigraphic column of 
the surface Lower Miocene Rudeis Formation, 
Gebel Hadahid, Wadi Feiran, South West Sinai  

(After Abu El Enain and Gharib, 1997). 
From the petrographic study, the investigated 

samples could be divided into quartz arenite (88 %) and 
quartz wacke (12 %) facies. The quartz arenite facies are 
subdivided into: lithic quartz arenite, siliceous quartz 
arenite, ferruginous quartz arenite, and calcareous quartz 
arenite, whereas the wacke facies is represented by the 
quartz wacke (Abu ElEnain and Gharib, 1997). The 
calcareous quartz arenite facies represents most of the 

studied rock samples of the Rudeis Formation in 
Hadahid area. 

Moreover, many physical and chemical diagenetic 
processes diminished the porosity of the Rudeis rock 
samples. The physical processes are represented mainly 
by compaction and pressure solution, whereas the 
chemical processes are represented mainly by 
cementation (mostly by calcite (Plate 1, Figs. A & B), 
rarely by silica and iron oxides), replacement, and 
neomorphism. On the other side, corrosion, and 
dissolution of the quartz grains (Plate 1, Fig. D) enhance 
the porosity values. 

RESULTS AND DISCUSSION 
The studied calcareous sandstone samples of 

Rudeis Formation (Lower Miocene age) are divided into 
3 petrophysical facies forming all the most parts of 
Rudeis Formation according to their density, storage 
capacity properties and the electric behaviour (Table 1). 

Facies (1): 
The first facies of the Rudeis calcareous sandstone 

which represents the lower part (150.2 m) of the 
formation, is composed mainly of sand grains (average 
59.70 %), carbonate (average 32.50 %) and low clay 
content (average 7.8 %). It is characterized by porosity 
values (∅) lie between 10.06 % (σb = 2.44 g/cm3) and 
12.13 % (σb = 1.91 g/cm3) with an average 11.13 % 
(medium ∅). The permeability values range from 2.47 
md to 16.38 md with an average 9.38 md (permeable). 
The values of bulk density (σb) lying between 1.91 and 
2.44 g/cm3 with an average of 2.24 g/cm3. The apparent 
electric resistivity measurements (Rο) range from 167.65 
ohm.m (σb =1.98 g/cm3, ∅ = 12.03 %, T = 4.66) to 
994.4 ohm.m (σb = 2.44 g/cm3, ∅ = 10.06 %, T = 10.37) 
with an average of 480.1 ohm.m. On the other side, the 
true electric resistivity results (Rt) lie between 1534.3 
and 2761.6 ohm.m with an average of 2151.7 ohm.m, 
whereas the electric tortuosity values vary from 4.66 to 
10.4 averaging 7.18. The pore channel diameter varies 
from 0.92 µm up to 2.07 µm with an average of 1.54 µm. 

The porosity is inversely proportional to the bulk 
density (r = -0.738, Fig. 3a) and to the electric tortuosity 
of channels (r = -0.907, Fig. 3b), while the permeability 
is mainly affected by the porosity (r = 0.966, Fig. 4a) and 
also by the electric tortuosity of channels (r = -0.800, 
Fig. 4b).  

σb           = –0.16 ∅ + 3.98   (r = –0.74) 
T             =  –2.14 ∅ – 31.1     (r = –0.95) 
Log K     =   8.15 Log ∅ – 7.6  (r =   0.97) 

Log K     = –0.12 T + 1.7  (r = –0.80) 

The porosity values are not affected by the 
variation in the mineralogic composition of the studied 
rocks (r ≤ 0.30), whereas the coefficients of variation of 
the main mineralogic components are 0.110 for both the 
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Fig. A: Photmomicrograph showing pebbly lithic quartz arenite embedded in well developed 
sparry calcite cement, C.N., X 100, sample no. 15, Fig. B: Photmomicrograph of calcareous quartz 
arenite showing tight cementation with sparry calcite cement, C.N., X 100, sample no. 12, Fig. C:  
Photomicrgraph showing ferruginated quartz arenite with phosphatic grain, PPL, X 50, Sample 
no. 4, Fig. D: Photmomicrograph showing pebbly sandstones showing the corrosion and partial 

dissolution of the pebbly quartz grain by the cement, C.N., X 50, sample no. 20. 

sand and carbonate fractions. Values of the formation 
resistivity factor at the different concentrations depend 
mainly on the porosity (r ≥ -0.91, Figs. 5a, b, c & d), 
whereas the apparent electric resistivity values are 
dependent mainly on the true electric resistivity (r = 
0.788, Fig. 5d) and on the electric tortuosity of channels     
(r = –0.996, Fig. 6a).  

Plate 1 

 
(A) 

 
(C) 

 

 

 

 

 
 
 

From the formation resistivity factors data at the 
three concentrations, there is no lime-mud effects for 
samples of Facies 1, where the value of F0.93 < F0.21  
< F0.11 (Table 1). The pore channel diameter is 
reasonably inversely proportional to the electric 
tortuosity (r = –0.830, Fig. 7a), whereas it is    directly 
proportional to the permeability values         (r = 0.999, 
Fig. 7b). 

T =  –3.77 D   – 13.04   (r = –0.83) 

Log K  =   1.08 Ln D + 0.47 (r =   0.99) 

Log F0.93  =  –7.6 Log ∅  + 10.6 (r = –0.92) 

Log F0.21 =  –7.8 Log ∅ + 11.5  (r = –0.92) 

Log F0.11 =  –7.99 Log ∅  + 11.9 (r = –0.91) 

Log Rt    =   0.24 Log Rο –  2.7  (r =   0.79) 

T             =   7.2 Log R1– 11.5  (r =   0.99) 

 

 
(B) 

 
(D) 

 

 

 

 

 
 
 

Facies (2): 
The second facies of the calcareous sandstone rock 

samples (middle part of the Rudeis Formation, 65.4 m) is 
composed mainly of sand grains (average 68.1 %), 
carbonate (average 26.9 %) and negligible mud fraction 
(average 4.9 %). It is characterized by very good 
porosity lies between 15.1 % (σb = 2.62 g/cm3) and 
24.91 % (σb = 2.12 g/cm3) with an average 19.9 %. 

Results of the permeability measurements range 
from 40.6 md (∅ = 16.0 % & T = 16.7) to 557.3 md (∅ 
= 24.9 % & T = 19.0) with an average of 192 md. The 
σb values lie between 2.12 & 2.62 g/cm3 with an average 
2.39. 
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The Rο measurements range from 1353 (σb = 2.12 
g/cm3, ∅ = 24.91 %, T = 19.0) and 1725 ohm.m (σb = 
2.62 g/cm3, T = 16.7), while values of the Rt 
measurements lie between 2700 ohm.m (Swirr = 25.83 %) 
and 3780 ohm.m (Swirr = 18.4 %). The electric tortuosity 
values vary from 16.7 to 19.0 with an average of 18.1. 
The pore channel diameter varies from 2.8 µm up to 8.4 
µm with average 4.9 µm. 

1.80

2.00

2.20

2.40

2.60

2.80

5.0 10.0 15.0 20.0 25.0
Porosity  (%)

Bu
lk

 d
en

si
ty

 (
g 

/ c
m

3)

Facies 1, r = -0.738
Facies 2, r = -0.800
Facies 3, r = -0.787

      
(a) 

2.0

6.0

10.0

14.0

18.0

5.0 9.0 13.0 17.0 21.0 25.0 29.0
Porosity  (%)

E
le

ct
ric

 T
or

to
us

ity

Facies 1, r = -0.948
Facies 2, r =  0.907
Facies 3, r = -0.630

 
(b) 

Fig. 3: The relationship between the porosity 
and both of: a) bulk density; and b) electric 

tortuosity of channels (T) of Rudeis Formatio 

σb =-  0.03 ∅ + 3.05             (r = –0.80) 

T =   0.27 ∅ + 12.8              (r =   0.91) 

Carb. (%) =   44.1 ∅ + 83.9 (r = –0.80) 

The bulk density is a main contributor of the 
porosity (r = -0.80, Fig. 3a), whereas the electric 
tortuosity of channels is directly proportional to the 
porosity (r = 0.91, Fig. 3b). The porosity values are also 
controlled by the mineralogic composition (r = 0.435), 
where it is inversely related to the carbonate cement 
content (r = –0.798, Fig. 6b) and directly related to the 
sand content (r = 0.62). 
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(b) 

Fig. 4: The relationship between the permeability 
and: a) the porosity; and b) the electric 

tortuosity of channels (T) of Rudeis Formation. 
 

The permeability is mainly affected by the porosity 
(r = 0.94, Fig. 4a) and is related to the electric tortuosity 
of channels in a direct proportional relationship  
(r = 0.93, Fig. 4b). The formation resistivity factor 
values at the different concentrations depend on the 
porosity (r > -0.91, Figs. 5a, b & c). 
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Fig. 5: The dependence of the formation resistivity factor on the porosity values at concentrations: 
a) 6000 ppm, b) 60000, and c) 120000 of the studied Rudeis samples, whereas d) the dependence of 

the apparent electric resistivity values of the first facies on the true electric resistivity. 

Log K =   4.72 Log ∅ – 3.98 (r =   0.94) 

Log K =   0.36 T – 4.46 (r =   0.93) 

Log F0.93 = -0.41 Log ∅ + 3.8  (r = –0.92) 

Log F0.21 = -0.410 Log ∅ + 4.39 (r = –0.91) 

Log F0.11 = -0.411 Log ∅ + 4.67 (r = –0.91) 
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According to the values of the formation resistivity 
factor at the three concentrations, there are no lime-mud 
effects in samples of Facies 2 (Table 1). The electric 
tortuosity of channels is inversely related to the apparent 
electric resistivity (r = -0.79, Fig. 6a), and directly 
related to the pore channel diameter (r = 0. 804, Fig. 7a), 
whereas the pore channel diameter is directly related to 
the permeability values of the rock samples (r = 0. 998, 
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Fig. 7b), i.e., in the same time the electric tortuosity 
increases with increasing the pore channel diameter and 
therefore, the permeability and porosity increase. 

T = -22.2 Log R1 – 89.1 (r =   0.79) 

T =   0.45 D  – 15.85 (r =   0.80) 

Log K =   0.97 Ln D + 0.5 (r =   0.99) 

Facies (3): 
The third facies of the studied calcareous 

sandstones represents the uppermost parts of Rudeis 
Formation (100.4 m). It is composed mainly of sand 
grains (average 55.56 %), carbonate (average 38.42 %) 
and low mud fraction (average 9.36 %). It has low ∅ 
ranging from 6.09 % ( σb = 2.54 g/cm3) 
up to 9.40 % ( σb = 1.95 g/cm3) with an 
average of 7.69 %. The bulk density values lie between 
1.95 (∅ = 9.4 %) and 2.54 g/cm3 (∅ = 6.1 %) with an 
average of 2.32 g/cm3. The permeability values range 
from 0.22 md (T = 4.30) to 2.23 md (T = 3.35) with an 
average of 0.80 md. The Rο measurement values lie 
between 117 ohm.m (σb = 1.95 g/cm3, ∅ = 9.4 %, T = 
3.44) and 333.8 ohm.m (σb = 2.32 g/cm3, ∅ = 6.91 %, T 
= 4.98), while the Rt values lie between 535 ohm.m 
(Swirr = 27.0 %) and 3510 ohm.m (Swirr =  41.9 %). The 
electric tortuosity values range from 3.35 to 5.00, 
averaging 4.30. The pore channel diameter varies from 
0.34 µm up to 0.91 µm with an average 0.52 µm. 

The bulk density is mainly contributed by the 
porosity values (r = –0.79, Fig. 3a), whereas the porosity 
is a main contributor of the electric tortuosity factor (r = 
–0.63, Fig. 3b).  

The porosity values have not been affected by the 
mineralogic composition of the studied rocks (r < 0.497), 
where the Coefficient of Variation equals 0.25 for the sand 
content, and 0.08 for the carbonate fraction. 

σb           = - 0.135 ∅ + 3.367    (r = -0.79) 

T             = - 0.40   ∅ + 7.40      (r = -0.63) 

The permeability is mainly affected by the porosity 
(r = 0.84, Fig. 4a) and by the electric tortuosity of 
channels (r = –0.797, Fig. 4b). The formation resistivity 
factor measurement values at the different concentrations 
depend mainly on the porosity values (r ≥ -0.68, Figs. 5a, 
b & c). The lime-mud effect is observed at the second 
and third saturations, where the values of F0.21 > F0.11 at 
samples no. 15, 18 and 19.  

Log K     =    4.90 Log ∅ – 4.6   (r =   0.84) 

Log K     =  - 0.41 T – 1.5               (r = -0.80) 

Log F0.93 =  - 2.47 Log ∅ + 4.6  (r = -0.80) 

 (Coefficient of Variation = Standard deviation/ mean) 
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Fig. 6: The relationship between: 

a) The apparent electric resistivity and the 
electric tortuosity of channels of the different 
facies; and 

b)  The porosity and the carbonate content of the 
second facies (middle parts of Rudeis 
Formation). 
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Fig. 7: The relationship between the pore channel diameter and: a) the electric tortuosity of 
channels; and b) the permeability of the different facies of Rudeis Formation. 
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Log F0.21 = -2.57 Log ∅ + 5.06   (r = –0.85) 

Log F0.11 = -3.25 Log ∅ + 5.69   (r = –0.68) 

Therefore, the weak anomaly in the electric 
behaviour of Facies 3 (the correlation coefficient of the 
F-∅ relationship is between -0.847 ≥ r ≥ -0.68) could be 
attributed to the lime mud effect in some samples. The 
apparent electric resistivity values are dependent mainly 
on the electric tortuosity of channels (r = 0.96, Fig. 6a). 

T             =    3.49 Log R1 – 3.87 (r =   0.96) 

The pore channel diameter is reasonably inversely 
proportional to the electric tortuosity (r = –0.816, Fig. 
7a), whereas it is directly proportional to the 
permeability values (r = 0.994, Fig. 7b). The following 
equations could be applied to the petrophysical 
parameter relations of the third facies (the uppermost 
parts of Rudeis Formation): 

T             = -2.75 D   – 5.72     (r = –0.82) 

Log K     =   1.00 Ln D + 0.48 (r =   0.99) 

GENERAL DISCUSSION AND 
RESERVOIR ZONATION 

From the previous discussion, it is established that 
the petrophysical properties and behaviour is a reliable 
tool that could be used for discriminating the good 
storage facies for a given rock sequence. In our study, 
the petrophysical properties and behaviour were used to 
discriminate the Rudeis Formation in Wadi Feiran, into 
the three mentioned petrophysical facies. 
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Both the lower and middle parts of the Rudeis (the 
first and second facies of the studied section) have good 
storage capacity due to their high porosity and 
permeability, while the uppermost parts (the third facies) 
has low storage capacity due to their poor porosity and 
permeability (Table 1). The poor storage capacity of the 
third facies could be attributed to the well cementation 
by calcite cement. 

In general, the porosity has an inverse relationship 
with the bulk density (Fig. 3a) and the electric tortuosity 
of channels (Fig. 3b), while the permeability is mainly 
affected directly by the porosity (Fig. 4a) and inversely 
by the electric tortuosity values (Fig. 4b). 

σb = -0.033 ∅ + 3.052 (r = –0.80) 

T = -2.14 ∅ – 31.06  (r = –0.95) 

Log K =   8.15 Log ∅ – 7.64 (r =   0.97) 

Log K =   0.36 T – 4.46 (r =   0.93) 

For the rock samples of Facies number 2, there is 
some anomaly in the relation between the electric 
tortuosity of channels and both the porosity and 
permeability (Figs. 3b, 4b), which could be explained 
theoretically by the fact that the electric tortuosity is a 
product vector of both the porosity and the formation 
resistivity factor. Therefore, the electric tortuosity factor 
of the rock samples of facies 2 is contributed mainly 
from increasing the porosity, whereas of samples of 
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facies 1 & 3 are contributed mainly from the formation 
resistivity factor. Moreover, with increasing the porosity 
values, the permeability increases, therefore values of 
the electric tortuosity factor of samples from facies 2 
should reasonably increase. The porosity values are not 
affected by the variation in the mineralogic composition 
except for the porosity of facies no. 2 which depends 
mainly on the carbonate and sand contents (Fig. 6a), i.e. 
with increasing the cement content of samples from 
facies 2, the porosity decrease. Both the apparent electric 
resistivity and the formation resistivity factor values are 
dependent on the porosity values (Figs. 5a, b & c) and 
the electric tortuosity of channels (Fig. 6a). The apparent 
electric resistivity is dependent on the true electric 
resistivity in the middle parts only (second facies) (Fig. 
5d). Taking into consideration the fact that the porosity 
of the second facies (15.07 % ≤ ∅ ≤ 24.91 %) is a main 
contributor of the apparent electric resistivity, and that 
the porosity is mainly dependent on the variation of the 
mineralogic composition of the second facies, therefore, 
the dependence of the apparent electric resistivity on the 
true electric resistivity is a logic result, and vice versa in 
the other facies. 

Log F0.93  = -7.62 Log ∅ + 10.61     (r = -0.92) 

Log F0.21  = -7.82 Log ∅ + 11.45  (r = -0.92) 

Log F0.11  = -7.99 Log ∅ + 11.91 (r = -0.91) 

T =    3.49 Log R1– 3.87 (r =   0.96) 

In general, there is an inverse relationship between 
values of the pore channel diameter and the electric 
tortuosity factor, whereas there is a reasonably direct 
proportionality between the pore channel diameter and 
the measured values of permeability. 

T               = -2.75 D   – 5.72   (r = -0.82) 

Log K      =   1.00 Ln D + 0.48           (r =   0.99) 

The presence of some anomalies in the 
petrophysical behaviour of the second facies (T versus 
∅, T versus K, and T versus R1) could be attributed to 
the high electric tortuosity, which increases by 
increasing the porosity of this facies (Fig. 3b, Table 1). 
Moreover, another anomaly of the electric tortuosity of 
samples of facies 2 was recorded for the relation with the 
pore channel diameter, which suggests a special case. 
Practically, this anomaly for samples of facies 2 could be 
attributed to increasing both the electric tortuosity (Fig. 
7a) and the permeability (Figs. 4b, 7b) with increasing 
the pore channel diameter at the same time (Fig. 8). 

Moreover, according to the similarity of the 
mineralogic composition and components of the studied 
facies and according to the highest correlation 

coefficient, a set of equations of correlation coefficients 
more than 0.80 were offered relating the different 
measured petrophysical parameters to each other, these 
equations could be applied to the studied calcareous 
sandstones of the surface Lower Miocene Rudeis 
Formation in Gebel Hadahid, Wadi Feiran. 
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Fig. 8: A sketch showing an explanation of 
the special case recorded for facies 2, where 
the electric tortuosity factor increases with 
increase of the pore channel diameter, and 

therefore both the porosity and permeability 
on the other hand increase. 

From the present work, the multiplier (a) and the 
cementation exponent (m) of the different studied facies 
increase with increasing the salinity of the solution. El 
Sayed et al. (1999), on the other hand, studied the effect 
of the overburden pressure on the estimated a & m of the 
Rudies Formation in Gebel Hadahid area and concluded 
that both a & m increase with increasing the overburden 
pressure.  

Under some conditions such as similarity of the 
mineralogic composition, the paleoenvironment and the 
diagenetic history, and taking the geopressure into 
considerations, the offered equations could be applied to 
the subsurface Rudies Formation in the subsurface 
seeking for different hydrocarbon fluids.  

Figure (9) shows a log-chart illustrating the vertical 
variation of the different petrophysical parameters 
measured in this study and shows the principles on 
which the reservoir zonation was carried out. From the 
chart, it is concluded that both facies 1 & 2 (the lower 
part of Rudeis Formation in Gebel Hadahid) are accepted 
as excellent horizons having good storage properties, 
whereas the third facies (top most parts of the Rudies 
Formation) is not accepted due to its low grade storage 
properties. 
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Fig. 9: Log chart showing the vertical variation of the different measured 
petrophysical parameters of the Lower Miocene Rudies Formation, Gebel Hadahid,  

Wadi Feiran, Sinai. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSIONS 
From the previous results and discussions, the 

following conclusions can be drawn: 

1) Discriminating the studied rocks according to their 
measured petrophysical parameters leads to excellent 
correlation coefficients in the different x-y plots. 

2) The calcareous sandstone rock samples of the 
Rudeis Formation in the studied section of Gebel 
Hadahid, Wadi Feiran, South West Sinai, could be 
differentiated into three petrophysical facies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3) The lower and middle parts of Rudeis Formation 
(first and second facies of the studied section) have 
good storage capacity due to their high porosity and 
permeability, while the third facies has low storage 
capacity due to their poor porosity, low permeability 
values and due to the well and tight cementation. 

4) Under the condition of similarity of the 
paleoenvironment of deposition and the diagenetic 
history, and taking into consideration the gradient of 
the geopressure, the lower and middle parts of 
Rudeis Formation in its subsurface extensions have 
good shows and reliability to contain economic 
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fluids in the presence of fluid supply and capturing 
conditions.  

5) The multiplier (a) and the cementation exponent (m) 
of the different studied facies increase with 
increasing the solution salinity, and   

6) The behaviour of the electric tortuosity factor of 
facies 2 with both the porosity and permeability is 
considered as a special case that could be attributed 
to increasing the values of pore channel diameter 
simultaneously with increasing values of the electric 
tortuosity factor of the studied rock samples. 
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