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In this review, we focused our study on the optical bistability of an optomechanical 
cavity and derived a mathematical equation that predicts the system behavior. We 
began with the study of optical bistability for conventional optomechanical systems, 
then we studied a hybrid optomechanical cavity, by embedding with N 2-level atoms to 
the conventional optomechanical cavity. Finally, we studied n optomechanical system 
embedded with N 2-level inhomogeneous broadened atoms. For each system, we 
start with calculating the Heisenberg-Langevin equations that describe the dynamics 
of the system, then solving the equation in the steady state condition using Fourier 
series decomposition up to the first harmonics [1,2]. Lastly, we derived an equation 
that predicts the behavior of the system either bistable, transistor, or monostable for 
each system from the value of the system parameters. Investigating the relations 
between all the physical dynamical variables in the optomechanical system against 
the incident field intensity, we conclude that all the system variable relation with the 
incident field intensity is dependent on the fundamental optical cavity output field 
component against the incident field intensity. Finally, we studied the effects of 
integrating an atomic media into the optomechanical system and the tunability it could 
provide to the optomechanical system. The atomic medium tends to squeeze the 
domain of the bistability within the system relative to the conventional optomechanical 
system.     

 

1. Introduction  

1.1 Brief introduction to optomechanical system 

Optomechanics studies the systems where a non-
linear coupling between the optical field and mechanical 
vibration modes occurs as a result of the radiation 
pressure[3]. The conventional optomechanical system is 
composed of a Fabry-Perot cavity with one of the parallel 
mirrors that is allowed to oscillate freely, as it is connected 
to the wall by a spring. The radiation pressure exerted by 
the cavity field on the freely oscillating mirror creates or 
attenuates the mechanical mode of vibration, this shapes 
the non-linear coupling between the optical field within the 
cavity and the mechanical mode and leads to numerous 
fascinating quantum phenomena, such as the detection of 
gravity waves[4, 5], cooling via radiation pressure [6,7], 
sensing small mechanical displacements and forces [3]. 
Many optomechanical behaviors were opened for the 
researchers to study, e.g. bistability and multistability [8-
10], optomechanical induced transparency (OMIT) [5,11-
14], optical amplification [13-15], and slow light [16]. 
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A hybrid optomechanical system is a conventional 
optomechanical system combined with an atomic medium. 
This atomic medium could vary from a single 2-level atom 
embedded in the cavity or coupled to the movable mirror 
[9,11-14,15-18], a photonic crystal [19], a quantum dot 
(QD) [10,20-25], or an ensemble of atoms [4,7,9,14,16,17]. 
Another form of a hybrid optical cavity is composed of two 
or more conventional optical cavities coupled [9,20,24,26]. 
Hybrid optomechanical cavities are used to either introduce 
new behavior, tune the system's current behavior, or a 
combination of both.  

1.2 Literature review 

The Fabry-Perot optical cavity is an old concept that 
many physicists used since 1899, on the other hand, 
Kepler introduced the radiation pressure concept in the 
17th century as an interpretation of the observation of the 
dust tails of comets that point away from the sun during a 
comet transit [27], he postulated that light has a momentum 
which gives rise to the ability of radiation to apply forces. In 
1909, Einstein derived statistics of the radiation pressure 
force fluctuations acting on a moveable mirror [28], 
including the frictional effects of the radiation force, due to 
this analysis Einstein was allowed to reveal the dual wave-
particle nature of blackbody radiation. Despite the old 
concepts the combination of the radiation pressure within 
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the optical cavity was introduced experimentally in 1983, 
where the optical bistability as a result of radiation pressure 
was first demonstrated in the first optomechanical cavity 
experiment[29].  

The fundamental effects of quantum fluctuations in 
radiation pressure were labeled by Braginsky, revealing the 
imposed limits on the accuracy of measuring the position of 
a free test mass (such as a mirror) [30,31]. An analysis 
held by Caves shows in detail the role of this 
ponderomotive quantum noise in interferometers [32]. This 
work found the standard quantum limit for continuous 
position measurements, essential for gravitational wave 
detectors such as LIGO and VIRGO. 

In the 1990s, many optomechanical quantum cavity 
systems start to be explored theoretically. An example of 
these is light squeezing [33,34] and quantum mechanical 
nondestructive detection (QND) of light intensity [35,36]. 

Experimentally, the cooling based on radiation 
pressure was demonstrated for the first time in [37] for the 
vibrational modes of a macroscopic end mirror. This 
reaches lower temperatures later in the studies [38,39]. At 
the same time, there was a trend towards miniaturization of 
mechanical elements: for example, the thermal behavior of 
a mm mirror was monitored in a cryogenic optical cavity 
[40]. However, fabricating high-quality optical Fabry-Pérot 
resonators below this scale proved to be a major 
challenge. Nevertheless, it has been possible to observe 
the photomechanical effects of delayed radiation forces in 
microassemblies where the force is of photothermal origin, 
effectively replacing the cavity lifetime with a thermal time 
constant. Examples include the optical spring effect [1], 
feedback damping [41], spontaneous oscillations [42,43], 
and the demonstration of cavity cooling by dynamic 
feedback of delayed photothermal optical forces [44,45]. 

In 2005, the optical microtoroid resonators were 
discovered to have high optical finesse, while containing 
mechanical modes and hence can exhibit optomechanical 
effects, in particular the self-oscillation induced radiation 
pressure[1,46,47] (i.e., what Braginsky designated 
"parametric instability"). Since then, several systems have 
reported the rapid development of the optomechanical 
cavity and optomechanical coupling. These include 
membranes of Fabry-Perot resonators [48] and nanorods 
[49], photonic crystals [50], whispering gallery microdisks 
[51,52] and microspheres [53-55], and evanescently 
coupled nanobeams [56]. Furthermore, cavity 
optomechanics has been demonstrated for the mechanical 
excitation of cold atomic clouds [57,58].  

Optical bistability is a phenomenon where the optical 
cavity undergoes a transition from a lower state to a higher 
state or vice versa, forming discontinuous changes or a 
hysteresis relation between the input-output field's relation. 
This phenomenon was predicted in 1969 by SZokE and his 
colleagues[59-62]. A few years later, McCall [63] studied 
optical bistability numerically in a Fabry-Perot cavity, 
suggesting the GIBBS, MoCA LL, and VENKA TESAN 
experiments in Na and Ruby, where the first bistable 
responses were observed at well times [64,65]. These 

experiments showed that this system is the basis for a 
whole range of device applications, such as optical 
memories, optical transistors, clippers, and limiters. These 
important results stimulated a very active theoretical study 
that diverged in two directions. The first direction was 
mainly interested in the device aspects of this 
phenomenon, in particular investigating the feasibility of 
electro-optical systems for generating bistability and related 
phenomena. An overview of this approach can be found in 
[66]. The second direction [67-69] examines optical 
bistability as a fundamental chapter in the interaction 
between polyatomic systems and radiation. More precisely, 
he considers optical bistable systems as a passive 
counterpart of lasers. Optical bistability is contributing to 
many recent applications in quantum computing systems 
such as memory [70,71], optical communication [72], and 
optical switching[70].  

1.3 Organization of the review 

In this review we introduced the optical bistability OB 
for a simple optical cavity system model for all the 
fundamental and first harmonic component parameters, 
presenting the dependency of all the components on the 
fundamental cavity field component. Then a mathematical 
condition for optical bistability has been deduced and the 
different behavior condition values in sub-section 2.1. In 
section 2.2 we study a hybrid optomechanical system 
embedded with N 2-level atoms, studying the optical 
bistability for input-output relation (i.e. fundamental 
component of cavity field against the incident controlled 
field), reduce the mathematical condition for optical 
bistability and discuss the effect of the atomic medium 
cavity field coupling constant. In section 2.3 we introduced 
atomic medium broadening and its effect on the optical 
bistability. In conclusion, we summarized the effect of 
adding an atomic medium on tuning the optical bistability. 

2. Formulation and results 

2.1 Optical bistability for basic optical cavity system 

At first, a simple optomechanical model is considered, 

consisting of a Fabry-Perot cavity where one of the parallel 

mirrors is allowed to oscillate freely, as shown in Fig.(1). 

This optomechanical system is driven by two external 

fields, a control field of frequency  and other a probe field 

of frequency , with real amplitudes  & 

, respectively,  and  are the laser 

powers of the control and probe driving fields, respectively, 

and  is the cavity decay rate. The coupling in this system 

is between the cavity field and the mechanical oscillator via 

the radiation pressure. This optomechanical system total 

Hamiltonian has the form, [73], 

 

 

(1) 
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Fig. 1: Schematic diagram for the Simple optomechanical model: M1 and M2 are fixed and movable mirrors, respectively. 
The strong (control) and probe fields enter the cavity at mirror M1.  are the optical cavity and mechanical decay rates, 

respectively 

where the first term in Eqn.2 represents the cavity field free energy, and   is the annihilation(creation) operator of the 

cavity field of a frequency . The second term represents the mechanical mode of vibration-free energy and is expressed 

in form annihilation(creation)   operator of the mechanical modes of vibration of frequency . The third term 

expresses interaction energy resulting from the cavity field mechanical mode coupling due to the radiation pressure. The 

last two terms are the driving control and probe fields. 

In the rotating frame of reference with frequency (where faster oscillation terms are dropped), the total Hamiltonian, 

Eqn.1, is given as, 

 
 (2) 

 

Where  is the detuning frequency  of the cavity field from the frequency  of the driving control field, and 

 is the detuning frequency  of the driving probe field from the frequency  of the driving control field. 

The Heisenberg-Langevin equations of this simple system are, 

 

 
(3) 

 

 
(4) 

 

The nonlinear system of non-autonomous Maxwell-Bloch Eqn.3&4, can be treated via Fourier series decomposition up to 

the first harmonics in the frequency detuning (  ), e.g. see Ref. [40,48] 

 
 (5) 

 
 

(6) 

 

In which  and   represent the fundamental component of the cavity field and mechanical modes which is not affected 

by the probe field . The first harmonic components   and   are generated in the presence of the detuned weak field 

. We will use the mean value of the parameter in the  steady state condition for both the fundamental and first 

harmonics, of Eqn.3&4, and by using the Fourier decomposition as in Eqn.5&6, and comparing the coefficients up to first 

harmonics  the analytical expressions for the fundamental  and in-and out-phase first 

harmonic components  are givens as following, e.g. see Ref. [74]. 
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(a) Fundamental components (  and  )  

 
 

 

(7) 

 

 

(8) 

 

Where   and  

 

(b) First harmonic components (  and   ) 

 

 

(9) 

 

 

(10) 

 

 

(11) 

 

Where , 

 , 

 , 

  

 and . 

  
Fig. 2: (a) The average cavity photon number  (in case of  ) against the incident field    for , , 

,  and . (b) The average mechanical modes  (in case of  ) against the incident field    

for the same parameters as Fig.2(a). 
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Fig. 2 (a) presents the input-output relation of the cavity 
output field fundamental component  against the 

normalized incident field intensity input , this non-

linear relation between the input and the output is an 
optical bistable relation. In this relation the cavity output 
field fundamental component  increases linearly with the 

incident field intensity in the stable branch 1 till it reaches 
the transition point (JP_1) then it jumps to the upper stable 
branch 2, if the incident field intensity decreases at this 
stable branch 2 the cavity output field fundamental 
component  will follow the curve till it reaches the 

transition point (JP_2) then at this point the relation makes 
a jump down to the stable branch 1. The actual bath the 
system will follow is an anti-clockwise hysteresis loop-
shaped relation which is in good agreement with the 
Experimental results. Fig.2(a,b) shows the similarity of 
switching behavior in both the input-output relation and the 
mechanical mode vs. input relation. The bistability appears 
in the fundamental component of mechanical mode  is 

dependent on the behavior of the fundamental component 
of cavity field , as  seen from Fig.3(a,b) and also can be 

deduced from Eqn.8 the linear dependence of    on . 

Similarly, a dependency will appear for the first harmonic 
component of both the optical cavity field  and 

mechanical mode of vibration , as can be deduced from 

Eqn.(9-11). 

As we concluded before all the bistability transition 
points (i.e. the point at which the system jumps from the 
lower stable branch to the higher stable or the reverse) 
have the same incident field intensity position for all 
components of the optical cavity field and mechanical 
mode of vibration. All the mechanical modes of vibration 
components  and the higher harmonics 

of the optical cavity field  depend on the fundamental 

optical cavity field component   as we can see in Eqn. (8-

11). According to the previous deduction, deriving a 
mathematical equation that describes the condition needed 
for each optical bistable behavior to occur for the 
fundamental component of the optical cavity field and other 
system variables. Starting from Eqn.7 and by building a 
functional relation of  function in , we get, 

 

 
(12) 

 

Eqn.12 presents the intensity of the incident field    

as a cubic function relation on the fundamental optical 

cavity field of amplitude . The transition points present in 

Fig.2 according to Eqn.12 are considered here as the local 

maximum and local minimum point of the function , 

as seen in Fig.3. Calculating this critical point of the 

function from finding the roots of this   will give us 

to roots, Which will be as follows, 

 

 

(13
) 

 

Calculating the roots in Eqn.13 leads to determining 

with high precision the optical bistable behavior of our 

system for certain system parameters. We have three 

cases for the equation each case describes different 

behavior; the first case describes the transistor behavior of 

the optical cavity, which happens  

  then we get two 

identical real roots, the next case which is the case of 

optical bistable behavior as seen in Fig.(2), which happens 

when      we will get two 

distinct real roots,  finally the monostable case which 

happens when we get two complex roots where 

. As seen from the roots 

in Eqn.13 the relative position of the two roots is controlled 

by   coupling constant,   mechanical oscillation, 

frequency,  the mechanical decay rate, and finally the 

atomic cavity detuning , while the distance between the 

two roots in the case of bistability is controlled by all the 

cavity parameters. 

 

 

Fig. 3: The incident field    (in case of  ) against 

the average cavity photon number   for the same 

parameters as Fig.2, this graph demonstrates the method 
of calculating the transition point of the optical bistability in 
a conventional optomechanical system. 
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2.2 An ensemble of N 2-level atoms assisted optomechanical system 

 

 

Fig. 4: Schematic diagram for the hybrid optomechanical model: M1 and M2 are fixed and movable mirrors, respectively. 
The strong (control) and probe fields enter the cavity at mirror M1.  are the optical cavity and mechanical decay rates, 

respectively. An ensemble of  2-level atoms with frequency , coupled to the optical cavity mode. 

Here, we will use a hybrid optomechanical model by just entrapping an ensemble of   2-level atoms trapped in the 

optical cavity. Similar to ref. [75] the atomic medium is coupled to the cavity field via Jaymes-Cumming coupling. Using a 
similar system as that referred to in ref. [75], this will lead us to total Hamiltonian in the rotating frame of reference with 
frequency , given as, 

 

(14) 

Where  is the detuning frequency  of the atomic medium excitation from the frequency  of the driving 

control field. To use the Holstein-Primakoff representation [76] our ensemble must be composed of a large number of 

atoms, this representation will transform the collective atomic operator into annihilation and creation operators  , 

respectively. These operators have the form,  &  , and satisfy the standard Bosonic 

commutation relations, .  

The Heisenberg-Langevin equations of this hybrid system are, 

 

 
(15) 

 

 
(16) 

 

 

(17) 

 

where . 

In the previous sub-section, we concluded that all the mechanical modes of the vibration component and the optical 

cavity field first harmonic component bistability transition points are dependent on the fundamental optical cavity field 

component. Similarly, all the components of the mechanical mode of vibration, the atomic medium, and the first harmonic 

of the optical cavity field will be dependent on the fundamental cavity field, see component equation in ref. [75].As we focus 

on the fundamental cavity field component as it is our main part in studying the system bistability behavior, we will write 

down the fundamental component of the optical cavity field equation for our hybrid system as follows, 

 

 
(18) 
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where  and , rewriting Eqn.18 in the functional form as we did in the previous sub-section 

, to calculate the critical point in this case that gives us two roots which will help us to determine the optical behavior 

of the system, as follow 

 
 

(19) 

 

 

(20) 

 

Fig. 5: The average cavity photon number  (in case of  ) against the incident field    for , , , 

, ,   and different value of the cavity field atomic medium coupling constant 

. 

Eqn. (20), shows that the atomic medium especially the coupling constant  appears in both the relative position of the 

roots and the distance of the roots. It is seen that the behavior of the system can tuned by varying the atomic medium 

optical field coupling constant, which is demonstrated in Fig.5. This result is in itself physically acceptable as the atomic 

medium plays the role of effective amplifier of the cavity field due to the excitation de-excitation processes it performs 

within the cavity. Fig.5 confirms the effect of coupling constant  on the optical behavior, as for the relation of the input-

output fields the bistability switching range turns from a wider range at ,  to a less wide bistability range at , 

and reaches to transistor behavior at . 

2.3 An ensemble of N 2-level inhomogeneous broadened atoms assisted optomechanical system  

 

Finally, a further modification to the hybrid optomechanical model is considered by entrapping an inhomogeneous 

broadening ensemble of  2-level atoms within the optical cavity, as seen in Fig.6 [75]. Using the same system used in ref. 

[75]. The total Hamiltonian is given as,  

 

(21) 

The cavity field equation is given as 

 

 
(22) 

where  and , as  is the spectral distribution function of the 

inhomogeneously broadening. These distribution function will be used as either Gaussian  Lorentzian  

lineshapes [77]. 
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(23) 

 
 

 
(24) 

As for  and are the Gaussian and Lorentzian line width parameters, respectively. 

Calculating the transition points as in sub-sections (2.1 & 2.2) 

 

 

(25) 

 

 

 

Fig. 6: Schematic diagram for the hybrid optomechanical model: M1 and M2 are fixed and movable mirrors, respectively. 
The strong (control) and probe fields enter the cavity at mirror M1.  are the optical cavity and mechanical decay rates, 

respectively. Ensemble of  2-level inhomogeneously broadened atoms with central frequency , coupled to the optical 

cavity mode. (b) & (c) The inhomogeneous lineshape is taken as Gaussian and Lorentzian lineshapes of arbitrary width  

and  , respectively, to the cavity decay rate . 

As seen in Fig.7 (a,b) despite using the same 

parameters that give transistor behavior in the previous 

sub-section, the inhomogeneous broadening has altered 

transistor behavior and changed it into bistable behavior by 

increasing inhomogeneous distribution line widths. The 

alteration in the behavior happens due to the de-

amplification that the inhomogeneous atomic medium 

performed within the system as a result of its broadened 

spectral line, so it absorbs cavity photon with detuning  

then it remits the photon with different detuning , this 

detuning  have different internal decay rate from the 

initial detuning  which alter the radiation pressure rate 

and hence the total behavior of the system.  
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Fig. 7 (a) The average cavity photon number  (in case of 

 ) against the incident field    for , , 

, , ,   and ., 

and different value of Gaussian broadening parameter 
. (b) The average cavity photon number  (in 

case of  ) against the incident field    for 

parameters as Fig.7(a) but for different value of Lorentzian 
broadening parameter . 

3. Discussion and Conclusion 

We began our investigation with a simple 

optomechanical system, where only the cavity field and the 

atomic medium interact via radiation pressure. We found 

that the system parameters can affect the state of the 

behavior of the system as seen from Eqn. (13). As the 

system evolves by adding    2-level atoms trapped within 

the optical cavity, the system gets more tunable 

parameters to determine the behavior of the section as 

presented mathematically in Eqn. (20). The atomic medium 

plays the role of amplification the effective cavity field from 

its absorption re-radiation process, this can alter the 

system and change its behavior from bistable behavior into 

transistor behavior as presented in Fig.5. Finally by 

introducing inhomogeneous broadening to the spectral line 

of the   2-level atoms, a new tunable parameter the 

distribution line widths  was added to control the system 

behavior. Fig.7 shows the ability of the distribution line 

widths to reintroduce the bistability behavior into transistor 

behavior as the case in Fig.5, also Gaussian distribution 

presents different types of modification of behavior as for 

Gaussian line width  modify the non-broadened 

system which behaves as transistor into monostable 

behavior. 

Deducing from all we get in the previous section, 

introducing a 2-level ensemble of atoms modifies the 

system behavior and adds tunability for optical bistability 

behavior through the absorption emission process of the 

atomic medium. A possibility is open for having an optical 

switching depending on physical parameters such as 

temperature, as a result of the Doppler broadening shift, 

which is an inhomogeneous broadening obeying Gaussian 

distribution shape. Further investigation into controllable 

atomic medium as quantum dot and double quantum dot 

will develop more room for switch optoelectrical interface 

due to the sensitive tuning of the optical bistability by 

adding atomic medium and the electrical ability to modify 

the double quantum dot tunneling parameter as ref. 

[78,79].  
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