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Abstract  

In the domain of audio signal processing, the accurate and efficient diarization of conversational speech is still a 

challenging task, particularly in environments with significant speaker overlap and diverse acoustic scenarios. This paper 

introduces a comprehensive speaker diarization pipeline that improves performance and efficiency in processing 

conversational speech. Our pipeline comprises several key components: Voice Activity Detection (VAD), Speaker 

Overlap Detection (SOD), Speaker Separation models, robust speaker embedding, clustering algorithms, and 

sophisticated post-processing techniques. Beginning with Voice Activity Detection (VAD), the pipeline efficiently 

discriminates between speech and non-speech segments, effectively reducing processing overhead. Following VAD, the 

Speaker Overlap Detection (SOD) component identifies segments featuring speaker overlap. Following this, a speaker 

separation model separates the overlapping speech into distinct streams. A pivotal enhancement in our pipeline is the 

integration of robust speaker embedding and clustering techniques, which capture and utilize speaker-specific 

characteristics to improve the grouping of speech segments. Finally, the post-processing stage refines these segments to 

ensure temporal consistency and improve the overall diarization accuracy. We evaluated our pipeline across multiple 

benchmark datasets, proving significant reductions up to 10% in Diarization Error Rate (DER) compared to existing 

methods.  
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1. Introduction  

Speaker diarization is about figuring out who is 

speaking and when in a conversation [1]. With more 

and more conversations being recorded, like in call 

centers or during meetings, there's a big need for 

systems that can do this well. However, the inherent 

challenges posed by conversational speech, including 

overlapping speech, varying acoustic conditions, and 

speaker characteristics, make speaker diarization a non-

trivial task. Consequently, researchers have 

continuously sought innovative methodologies to 

address these challenges and enhance the performance 

of speaker diarization systems [2], [3]. 

Over the years, many methodologies have been 

proposed to tackle the complexities of speaker 

diarization. Early approaches primarily relied on 

traditional clustering algorithms such as Gaussian 

Mixture Models (GMMs) and Hidden Markov Models 

(HMMs) to model speech features and infer speaker 

identities. While these methods achieved moderate 

success, they often struggled with scalability and 

robustness, especially in real-world scenarios with 

diverse speaking styles and environmental conditions 

[4]. In recent years, advancements in machine learning 

and signal processing have revolutionized the field of 

speaker diarization, leading to the development of novel 

techniques that leverage deep neural networks (DNNs), 

convolutional neural networks (CNNs), and recurrent 

neural networks (RNNs). These deep learning-based 

approaches have demonstrated remarkable performance 

improvements in speaker diarization systems [2]. 

In this paper, we propose an efficient speaker 

diarization pipeline tailored to address the mentioned 

challenges while maintaining high accuracy and 

scalability. Our approach combines state-of-the-art deep 

learning techniques with efficient data processing 

strategies to achieve real-time performance and 

memory efficiency. 

We evaluate our proposed pipeline on two different 

datasets and compare its performance against existing 

methods, showing its efficiency in conversational 

speech scenarios. 

2. Speaker Diarization Pipeline 

A typical speaker diarization pipeline involves 

several stages such as speech detection to identify 

speech from silence or noise, speech segmentation to 

break the speech into manageable chunks, speaker 

feature extraction to analyze each segment for speaker-

related features like the Mel-frequency cepstral 

coefficients (MFCCs) or neural network embeddings, 

clustering to group segments by the speaker using 

algorithms like K-means or GMM, and re-segmentation 

and adjustment for fine-tuning the segment boundaries 

to enhance overall accuracy. 

We'll outline our approach to constructing 

such an efficient pipeline in the upcoming sections. 

Before delving into details, however, we'll introduce 

our custom dataset and the chosen evaluation metric. 

This metric will enable us to assess and benchmark the 

effectiveness of our proposed system against existing 

solutions. 

Datasets: To effectively investigate, compare, 

and fine-tune existing and proposed diarization 

pipelines, it is crucial to have access to a 

comprehensive dataset. This dataset should encompass 

a wide range of variables, including multiple speakers, 

speaker variability, diverse background noises, varying 

channel qualities, and differing rates of speaker turn-

taking. Such a dataset will enable robust testing and 

optimization of diarization algorithms across multiple 

challenging scenarios. 
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In this study, we utilized two datasets. The 

first is the publicly available AMI [5] (Augmented 

Multi-party Interaction) dataset, a widely recognized 

resource in machine learning and natural language 

processing, particularly suited for analyzing meeting 

scenarios. This dataset comprises 100 hours of meeting 

recordings taken in both structured and natural 

environments. It includes recordings from real and 

scripted meetings designed around specific scenarios, 

encompassing audio, video, and textual data. 

Additionally, we developed a private dataset 

consisting of 100 audio files that vary across calls, 

meetings, and recorded discussions in different settings. 

Most of the samples in this dataset feature dual-speaker 

recordings, with configurations including male/male, 

female/female, and male/female pairings. These audio 

samples mimic real-world communication scenarios 

found in typical calls and meetings, providing a rich 

resource for fine-tuning diarization systems to handle 

common communication setups effectively. 

Evaluation Metric: 

The most common evaluation metric for 

speaker diarization is the diarization error rate (DER), it 

can be calculated with this form: 

    
                            

                
 

Where, 

• Reference Length: is the total length of the 

reference (ground truth). 

• False Alarm is the length of segments 

considered speech in hypothesis but not in reference. 

• Missed: is the Length of segments that are 

considered as speech in reference, but not in 

hypothesis. 

• Confusion: is the length of segments that are 

assigned to different speakers in hypothesis and 

reference. 

For our experiments, we utilized Pyannote.metrics [6] 

to calculate the Diarization Error Rate (DER). 

 

3. Proposed Methodology: 

There are a couple of popular open-source 

toolkits that present diarization pipelines for speaker 

diarization, namely pyannote.audio [7], and NeMo [8]. 

Both frameworks share a similar overall pipeline 

structure and pretrained models. But it’s still very hard 

for both frameworks to generalize a speaker diarization 

due to many challenges so we propose the following 

pipeline. 

As Fig (1), shows the pipeline takes audio files 

as input, applies a sophisticated series of processes, and 

outputs who spoke and when in RTTM formatted files. 

In the following sections, we’ll go through each process 

individually. 

 

Speech detection 

The first step in our pipeline is to identify 

speech intervals within the audio file by removing non-

speech segments. This is important because inaccurate 

filtering of non-speech events, like ringtones, call tones, 

and music, can introduce ambiguity that makes it harder 

to later categorize the speakers. We use voice activity 

detection (VAD) models to accomplish this task. 

Several pre-trained models have been explored, 

including Pyannote VAD [7], [9], MarbelNet [10], and 

SpeechBrain CRDNN [11]. Our experiments show that 

Pyannote VAD is particularly effective at filtering out 

non-speech segments, especially ringtones and call 

tones. 

 

Segmentation  

After speech detection is completed by the 

preceding step, the audio stream is segmented into 

smaller pieces, making it more manageable for feature 

extraction from each segment. At this stage, employing 

a VAD model is also beneficial, but unlike the previous 

step, it is advisable to use a more aggressive VAD that 

tends to segment the audio into shorter duration 

segments. We evaluated two potential models for this 

purpose: the WebRTC VAD [12], developed by Google 

for its WebRTC project, and Silero-VAD [13], an open-

source initiative aimed at creating optimized and 

production-ready models using C++ and ONNX-

runtime libraries. Based on its superior performance in 

terms of both accuracy and processing speed, Silero-

VAD was selected as the preferred model. 

 

Speaker Overlap-Detection 

In everyday interactions such as casual 

conversations, calls, or meetings, it is common for 

individuals to speak simultaneously, resulting in 

overlapping speech. On the other hand, the speaker 

embedding process is designed to capture the unique 

acoustic characteristics of a single speaker, running 

under the assumption that each speech segment 

produced by the previous step contains speech from 

only one speaker. This assumption can lead to potential 

confusion during the clustering phase, as segments 

containing multiple speakers may yield poor-quality 

embeddings. 

 

 
Fig (1) Proposed diarization pipeline 
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To address this challenge, we propose the 

implementation of a speaker overlap-detection model 

(SOD) to identify segments where speech overlaps, to 

later separate speakers in these segments, or to exclude 

these segments entirely when constructing embedding 

vectors. For this purpose, our pipeline has incorporated 

a pretrained pyannote.audio SOD [7], [9] model, which 

is specifically designed to handle such tasks. 

 

Speaker Separation  

In this step, segments identified as having 

overlapping speech by the preceding SOD model are 

processed through a speaker separation model to 

disentangle the overlapping voices. Recent 

advancements have seen end-to-end neural speech 

separation models, such as dual-path RNN (DPRNN) 

[14], Sepformer [15], and ConvTasNet [16], proving 

robust performance. However, a common drawback of 

these models is the potential for high latency when 

processing lengthy audio clips. Fortunately, in our 

pipeline, only the segments identified with overlapping 

speech are processed, mitigating this issue. Among 

these, the ConvTasNet model offers the best balance 

between effective separation and reduced latency. 

Practical observations have shown that many 

segments flagged as overlapped speech in casual 

conversations are just one-word interruptions by 

another speaker. In scenarios where diarization is 

coupled with speech-to-text models for transcribing 

conversations, it may sometimes be preferable to 

disregard these overlapped segments altogether. So, in 

our pipeline, we opt to ignore segments with 

overlapping speech if they are shorter than 0.5 seconds. 

 

Speaker Feature Extraction and Embedding 

This step is critical in the entire process, as it 

focuses on representing each speech segment in a 

manner that helps the clear differentiation between 

segments from different speakers. Over the last decade, 

many techniques for speaker embedding have been 

developed, starting from i-vector and extending through 

various d-vector approaches [3]. However, ECAPA-

TDNN-based speaker embedding models have recently 

appeared highly successful in this area [17], [18]. 

ECAPA-TDNN utilizes a Time Delay Neural 

Network (TDNN)-based architecture, enhanced with 

several key innovations. It incorporates a channel- and 

context-dependent attention mechanism within the 

pooling layer, uses 1-dimensional Squeeze-Excitation 

(SE) blocks, integrates 1-dimensional Res2Net blocks, 

and employs multi-layer feature aggregation. Moreover, 

the model leverages AAM-softmax loss for effective 

classification of speaker identities, enhancing its 

performance in distinguishing speakers [17], [18]. 

In the proposed pipeline, segments that appear 

from the segmentation process - after either separating 

or excluding segments with overlapping speech - are 

processed to extract embeddings using the ECAPA-

TDNN model. This involves moving a window of 1.5 

seconds across the audio with a shift of 0.75 seconds, 

resulting in the extraction of 192 speaker embedding 

vectors for each window. 

We have implemented a recipe from 

SpeechBrain [11] for the ECAPA-TDNN and fine-

tuned it on the AMI dataset [5]. Subsequently, it was 

benchmarked against our custom dataset of 100 

samples to evaluate its performance. 

To further validate and confirm the efficacy of 

the generated embedding vectors in speaker 

categorization, we conducted a comparison between 

vectors produced for all samples in our custom dataset. 

We use an implementation of a d-vector sourced from 

this repository
1
 [19] and our ECAPA-TDNN model. 

These vectors are subsequently transformed into a two-

dimensional array using the UMAP [20] technique for 

visualization purposes. The resulting figures (Figure 2, 

and Figure 3) clearly demonstrate the distinguishability 

of the ECAPA-TDNN-based vectors for each speaker. 

 

Clustering  

Following the generation of embedded vectors 

in the preceding step, the vectors are subjected to a 

clustering process, which involves grouping them based 

on the known number of speakers (referred to as the 

oracle) or, alternatively, when the number of speakers is 

unknown. While several straightforward clustering 

techniques such as K-means or K-nearest neighbors 

(KNN) can be applied, Spectral clustering (SC) [21] has 

emerged as particularly effective in the domain of 

speaker diarization. Spectral clustering leverages the 

spectral properties of the affinity matrix to partition the 

data into clusters. For our implementation, we have 

adopted a recipe provided by SpeechBrain for Spectral 

clustering
2
, which provides robust and efficient 

clustering performance tailored to speaker diarization 

tasks. 

 

Post-processing 

In the concluding phase of the pipeline, a post-

processing step is implemented to refine the clustering 

results by considering several factors. Mainly, the 

confidence level of the clustering assignment is 

assessed, and the duration of the current segment 

relative to the durations of the segments preceding and 

following it is considered. This analysis aims to 

mitigate the impact of short interruptions from other 

speakers, which may introduce ambiguities in the 

clustering process. By assessing the contextual 

continuity of speaker turns and the relative lengths of 

speech segments, this post-processing step helps to 

enhance the accuracy and coherence of the final speaker 

diarization output as shown in the following Fig (4). 

                                                           
1
  https://github.com/hitachi-speech/EEND  

2
https://github.com/speechbrain/speechbrain/tree/de

velop/recipes/AMI/Diarization   

https://github.com/hitachi-speech/EEND
https://github.com/speechbrain/speechbrain/tree/develop/recipes/AMI/Diarization
https://github.com/speechbrain/speechbrain/tree/develop/recipes/AMI/Diarization
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(a) D-vector based vectors (b) ECAPA-TDNN-based vectors 

 

Fig (2) Visualization of UMP representation for extracted vector as a sample audio file 

 

 

 
 

(a) D-vector based vectors (b) ECAPA-TDNN-based vectors 

 

 

Fig (3) Visualization of UMP representation for extracted vector as another sample audio file. 

 

 

Fig (4) Post-processing DER analysis. 
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4. Resuts 

We thoroughly assessed and evaluated each 

model employed at every stage of the pipeline, as 

discussed in earlier sections. To judge the overall 

performance, we benchmarked the entire system - using 

both the AMI and our custom datasets - against 

Pyannote.audio pipeline (version 3.1). The comparison 

results are summarized in the following Table (1). 

 

As demonstrated by the final table, our 

proposed pipeline significantly surpasses the existing 

Pyannote.audio pipeline in performance for both the 

public and the private datasets as follows: 

 AMI dataset (Mix-Headset): 

o DER: The proposed pipeline achieved a 

DER (Diarization Error Rate) of 1.91%, 

significantly lower than the 18.9% achieved 

by Pyannote.audio. 

 100-samples Custom Dataset: 

o DER: The proposed pipeline achieved a 

DER of 16.0%, which is lower than the 

26.53% for Pyannote.audio. 

o Correct: The proposed pipeline also had 

higher correctness, at 91.67%, compared to 

Pyannote.audio's 83.28%. 

o False alarm: The proposed pipeline had a 

lower false alarm rate of 7.66%, compared 

to Pyannote.audio's 9.81%. 

o Missed: The missed rates were similar 

between both systems, with the proposed 

pipeline at 1.85% and Pyannote.audio at 

1.76%. 

o Confusion: The proposed pipeline had 

significantly lower confusion, at 6.47%, 

compared to Pyannote.audio's 14.95%. 

Overall, the proposed pipeline outperforms 

Pyannote.audio in all metrics across both datasets. This 

indicates better diarization accuracy, fewer false alarms, 

fewer missed segments, and less confusion, making it a 

more reliable solution. 

 

Table (1) Comparsion between the Pyannote.audio and the proposed pipeline 

System 

AMI-dataset  

(Mix-Headset) 
Our custom dataset 

DER Correct False alarm Missed Confusion DER 

Pyannote.audio [22] 18.9% 83.28% 9.81 1.76% 14.95% 26.53% 

Proposed Pipeline 1.91% 91.67% 7.66% 1.85% 6.47% 16.0% 

 

5. Conclusions 

In this paper, we presented an efficient and 

comprehensive speaker diarization pipeline tailored to 

address the complex challenges associated with 

conversational speech processing. Our proposed 

pipeline incorporates a variety of state-of-the-art 

methods, including Voice Activity Detection (VAD), 

Speaker Overlap Detection (SOD), Speaker Separation, 

robust speaker embedding techniques, and Spectral 

clustering, which collectively contribute to its superior 

performance. 

Through testing and benchmarking against the 

Pyannote.audio system, our pipeline demonstrated 

notable improvements across key metrics on both the 

AMI dataset and our custom dataset: 

 AMI Dataset: The pipeline achieved a 

Diarization Error Rate (DER) of 1.91%, 

significantly lower than the 18.9% achieved by 

Pyannote.audio. 

 Custom Dataset: The pipeline yielded a DER 

of 16.0%, outperforming the 26.53% recorded 

by Pyannote.audio. 

Furthermore, in comparison with the 

Pyannote.audio system, our pipeline exhibited superior 

performance in terms of accuracy, false alarms, missed 

segments, and confusion across both datasets, 

showcasing its robustness and generalizability to 

various real-world audio scenarios. 

 

6. Future Work 

While the proposed pipeline offers considerable 

advancements, future research may focus on: 

 Fine-tuning: Further refining the model by 

incorporating more varied datasets to enhance 

its adaptability and robustness across diverse 

environments. 

 Real-time Processing: Optimizing the pipeline 

for real-time diarization tasks, especially for 

live transcription services and interactive 

voice-based applications. 

 Integration: Exploring integration 

opportunities with other systems, such as 

speech-to-text or voice recognition. 

Overall, our pipeline provides a significant step 

forward in speaker diarization, particularly in the realm 

of conversational speech, offering a more accurate, 

efficient, and reliable solution to the challenges posed 

by diverse audio processing scenarios. 
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