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1 Abstract   

A self-driving car, also known as an autonomous or automated vehicle, is designed to navigate complex environments 

autonomously. This study utilizes deep learning, enhancing vehicle autonomy and safety. Implementing Convolutional 

Neural Networks (CNNs) for visual perception and integrating sensor fusion techniques, the system gains a robust 

understanding of the environment, adapting dynamically to road conditions and unexpected obstacles. The system 

architecture is divided into four primary modules: car vision, sensor fusion, steering prediction, and ROS integration. 

The car vision module leverages CNNs for real-time lane detection, obstacle recognition, and traffic sign 

classification. Sensor fusion merges data from LIDAR, radar, and ultrasonic sensors, providing a 360-degree 

environmental view and precise object localization. The neural network-based steering prediction module 

continuously adjusts the vehicle’s steering based on live driving data. Lastly, ROS integration ensures seamless 

communication among subsystems, supporting real-time decision-making. Tested in simulated environments, this 

structured approach aims to push autonomous vehicles towards full autonomy across diverse road networks, 

significantly enhancing operational safety and efficiency. The implementation showcases the potential for advanced 

autonomous systems to navigate with increased independence, marking a step forward in the evolution of self-driving 

technology. 

 

Index Terms— Self-driving car, Deep learning, Convolutional neural networks, Computer 

vision, Sensor fusion 

 

I. INTRODUCTION 

Nowadays , cars are an essential part of our lives. Self-driving cars, also referred to as autonomous or 

driverless vehicles, have been a subject of extensive research and development by universities, research 

institutions, automotive companies, and other industries worldwide since the mid-1980s. Notable early 

research platforms for autonomous vehicles include Navlab’s mobile platform [1], the ARGO car by the 

University of Pavia and University of Parma [2], and UBM’s VaMoRs and VaMP vehicles [3]. 

 

To accelerate the advancement of self-driving car technology, the Defense Advanced Research Projects 

Agency (DARPA) organized three major competitions in the early 2000s. The first, the DARPA Grand 

Challenge held in the Mojave Desert in 2004, tasked autonomous vehicles with navigating a 142-mile 

course within a 10-hour limit. All entrants failed within the initial miles of the course [4]. The second 

DARPA Grand Challenge in 2005 featured a 132-mile route with various terrains, where Stanford 

University’s vehicle, Stanley, secured first place [5]. In 2007, the DARPA Urban Challenge required 

autonomous vehicles to navigate a simulated urban environment, where Carnegie Mellon University’s Boss 

claimed victory [6]. 

 

Following the DARPA challenges, several other self-driving car competitions and trials were organized, 

such as the European Land Robot Trial (ELROB) [9], the Intelligent Vehicle Future Challenge [10], and the 

Hyundai Autonomous Challenge [12]. Other significant events included the VisLab Intercontinental 

Autonomous Challenge [13], the Grand Cooperative Driving Challenge [14], and the Proud-Public Road 

Urban Driverless Car Test [15]. Leading institutions, including Stanford, Carnegie Mellon, MIT, Virginia 

 
 



Tech, FZI, and the University of Ulm, as well as prominent companies like Google, Uber, Baidu, Lyft, and 

Tesla, have since continued to advance research in this domain. 

 

Research in autonomous vehicles has also gained traction globally, with contributions from regions like 

China and Brazil. In Brazil, notable platforms include the CADU vehicle from Universidade Federal de 

Minas Gerais (UFMG) [16], the CARINA vehicle by Universidade de São Paulo [17], and the IARA vehicle 

from Universidade Federal do Espírito Santo (UFES), the first Brazilian autonomous car to navigate urban 

roads [18]. 

To evaluate autonomy levels, the Society of Automotive Engineers (SAE) established a classification from 

level 0 (no control) to level 5 (full autonomy without human intervention) [26]. This paper surveys research 

on autonomous vehicles with an emphasis on post-DARPA advancements featuring SAE level 3 or higher 

systems. 

 

Typically, an autonomous vehicle’s architecture consists of two main components: the perception and 

decision-making systems. The perception system includes subsystems for localization, obstacle detection, 

road mapping, and traffic signal recognition, while the decision-making system involves route planning, 

path planning, behavior selection, motion planning, and control [27]. 

 

Our study is centered around the development and integration of an advanced autonomous driving system 

using ROS (Robot Operating System)[51] as a core integration platform. The primary objectives of our 

research are outlined as follows: 

1. Enhanced Perception and Detection Algorithms: To develop sophisticated algorithms capable of 

accurately perceiving and interpreting the vehicle's environment using a combination of sensors 

including cameras, radar, and LIDAR. 

2. Robust Sensor Fusion Framework: To create a robust sensor fusion framework that integrates data 

from various sensors to achieve a comprehensive and accurate representation of the surrounding 

environment, enhancing the vehicle's decision-making capabilities. 

3. Real-time Decision-making and Control: To design and implement a real-time decision-making 

system that efficiently processes sensor data to control the vehicle safely under diverse traffic 

conditions. 

4. Optimized ROS Integration: To optimize ROS integration for managing the complexities of 

autonomous driving systems, ensuring seamless communication and operational efficiency across 

various system components. 

Our research methodology encompasses the following structured steps to achieve the above objectives: 

₋ System Design and Sensor Integration: We will begin by designing the system architecture and 

integrating various sensors such as cameras, radar, and LIDAR. This phase ensures that all sensory 

equipment is properly calibrated and synchronized for optimal data collection. 

₋ Algorithm Development for Perception and Sensor Fusion: Utilizing deep learning and other 

advanced machine learning techniques, we will develop and refine algorithms for perception tasks 

such as lane detection, obstacle detection, and traffic sign recognition. Parallelly, a sensor fusion 

algorithm will be developed to amalgamate data from disparate sources into a unified model, 

enhancing the accuracy of environmental assessments. 

₋ Control System Implementation: Implement control systems using techniques like PID controllers 

and Model Predictive Control (MPC) to execute real-time decision-making based on the processed 

data. This involves developing algorithms that calculate the vehicle's trajectory and adjust its 

steering, throttle, and braking commands to navigate safely. 

₋ ROS-Based Integration and Simulation: Using ROS, we will integrate the perception, sensor fusion, 

and control modules. This step involves setting up a ROS environment to manage data flow between 

the modules and deploying the system within a simulation environment like the Udacity ROS 

simulator. This allows us to test the system in varied driving scenarios and ensure it performs 

reliably under different conditions. 



₋ Validation and Real-world Testing: The final phase involves validating the autonomous driving 

system through rigorous testing both in simulation and in controlled real-world environments. 

Performance metrics such as system responsiveness, decision accuracy, and safety will be evaluated 

to refine the algorithms further. 

By focusing on these detailed objectives and a methodical approach, our research aims to push the 

boundaries of current autonomous driving technologies, resulting in a safer, more reliable, and efficient 

transportation solution. This proposed system is poised to enhance vehicular autonomy through innovative 

integration of cutting-edge technologies and robust system design. 

 

 

II. RELATED WORKS 

 
Tesla, founded in 2003, initially aimed to prove that electric cars could offer high performance without 

requiring compromises. Over time, Tesla expanded its vision to include scalable clean energy generation 

and storage solutions, aligning with its mission to transition the world toward a zero-emission future. Tesla’s 

self-driving technology leverages eight surround cameras that provide 360° coverage around the vehicle up 

to 250 meters, supplemented by twelve ultrasonic sensors that enable detection of both hard and soft objects 

at nearly double the distance of prior systems. Additionally, a forward-facing radar with enhanced 

processing capabilities contributes redundant data, allowing Tesla vehicles to operate effectively even in 

adverse conditions like rain, fog, and dust by detecting objects through these obstacles. In a demonstration 

of the integration of advanced hardware for autonomous driving, Tesla has employed a comprehensive 

sensor suite to ensure functionality under a variety of environmental conditions. The use of eight surround 

cameras and twelve ultrasonic sensors extends the range and accuracy of object detection around the vehicle 

[29]. Furthermore, the inclusion of a forward-facing radar with enhanced processing capabilities provides 

critical redundancy that enables vehicle operation in challenging weather conditions such as rain, fog, and 

dust [30] 

 

Waymo, originally a project under Google, has pushed the boundaries of autonomous vehicle technology 

through both real-world testing and simulations. In 2015, the company achieved a significant milestone by 

completing the first fully autonomous drive on public roads without human controls [31]. Waymo’s 

extensive use of simulation technology, which includes over a billion simulated miles annually, 

complements its over three million miles of real-world driving across various U.S. cities, underpinning its 

efforts to refine autonomous driving technologies [32]  

 

In the evolving landscape of autonomous driving technologies, Comma.ai's Panda represents a pivotal 

innovation in consumer-level vehicle telemetry. According to Hotz (2023)[33], Panda, a compact, versatile 

dongle, easily interfaces with a vehicle's OBDII port—standard in vehicles produced post-1996. This device 

not only facilitates comprehensive data collection but also offers USB and Wi-Fi connectivity, doubling as 

a mobile charger. The associated software, Chffr, serves as a cloud-connected dashcam that records driving 

data, providing users with valuable visual and sensor-based feedback on their driving habits, including 

acceleration patterns, fuel levels, and braking intensity[33].Further enhancing the utility of this data, the 

Cabana software interprets these inputs through a Controller Area Network (CAN) analysis, offering users 

an accessible, detailed dashboard of their vehicle's operational metrics[34]. This integration of hardware 

and software by Comma.ai not only underscores the potential of aftermarket tools to improve driving safety 

but also reflects a broader trend towards greater consumer empowerment in vehicle diagnostics and 

management. 

 

III. PROPOSED SYSTEM 



In the Proposed System section of our study, we outline the sophisticated methodologies employed for 

enhancing vehicle automation through the implementation of four principal components: Car 

Vision(perception and interpretation of car’s surrounding), Sensor Fusion(integrates multi-sensors for 

decision making), The Brain(steering angle and path planning), and ROS System Integration(Middle-ware, 

simulation and testing) ,as illustrated in Figure 1. 

 

 
 

Figure 1: The proposed system 

 

 

First : Car Vision Phase : This module solely utilizes the camera sensor among the three sensors integrated 

into the system. It is tasked with the perception and identification of the vehicle's surroundings through a 

front-mounted digital camera that streams data directly to the main computer. This subsystem is further 

divided into the following functionalities: 

1. Lane Detection: A sophisticated algorithm processes video frames to identify lane boundaries, 

involving multiple steps such as camera calibration using chessboard images to compute distortion 

correction coefficients, applying perspective transforms for a bird-eye view of the roadway, and 

executing color thresholding techniques for enhanced line detection. Lane boundaries are then 

refined using a second-order polynomial fit, from which the vehicle's trajectory and lane curvature 

are computed to ascertain the required steering angle [35], [36]. 

2. Obstacle Detection: The YOLOv2 [39],[40]neural network framework is deployed, utilizing a 

real-time object detection strategy that segments the captured frame into grids, predicting potential 

hazards through bounding boxes and confidence scores[36],[37],[38]. This approach allows the 

detection of various objects including vehicles, pedestrians, and unexpected obstacles and it was 

trained using dataset Global Climate Change Data [41]. 

3. Traffic Sign Recognition: Employing the German traffic signs dataset, we have implemented a 

recognition model using the Lenet5[42] architecture. This model undergoes rigorous training and 

dataset augmentation to ensure robust performance across diverse operating conditions, achieving 

high accuracy levels in identifying and classifying traffic signs[43][44][45]. 

4. Traffic Light Detection: Utilizing the SSD Inception v2 neural network pre-trained on the COCO 

[46] dataset[45], this system detects and interprets traffic light signals from video feeds, enabling 

the vehicle to make informed decisions based on traffic light states. The model's training on a 

specialized dataset from the Udacity simulator ensures high reliability in real-world applications . 

Each component within the Car Vision module operates cohesively, providing critical data to the Sensor 

Fusion system, which then synthesizes this information to inform the overall vehicle behavior, controlled 



via The Brain and integrated through the ROS system. This holistic approach not only enhances the 

autonomous capabilities of the vehicle but also ensures a higher margin of safety and reliability in 

navigation and decision-making processes. 

 

Second : Sensor Fusion phase :  

In this phase of our research, we focus on the critical role of sensors in autonomous vehicles, primarily 

for localization—essential for determining the vehicle's position and the position of other vehicles and 

objects nearby. This section emphasizes the use of various sensors including ultrasonic sonars, regular 

cameras, radars, and LIDAR. Our primary focus here will be on LIDAR, which is instrumental for its 

advanced capabilities in environment mapping and object detection [47]. 

LIDAR Technology: LIDAR technology grants autonomous vehicles enhanced perception abilities such 

as continuous 360-degree visibility and highly accurate depth information, with a precision of ±2cm. This 

is enabled by a roof-mounted LIDAR sensor, which emits millions of light beams per second to create a 

detailed three-dimensional map of the surroundings. This mapping can accurately gauge the distance of 

objects up to approximately 60 meters [48][49][50]. 

Simulation Approaches for LIDAR: 

1. Physics Engine - Raycast Method: 

o Batch Raycast: High-frequency laser sampling, up to 20,000 frames per second, is 

managed through batch processing of raycasts. This efficiently handles large data volumes 

by triggering raycasts across frames, storing the results in a depth map. This depth map 

displays a matrix corresponding to the positions of all detected obstacles and vehicles. 

o Challenges: While raycasting is straightforward to implement, it encounters limitations 

with high-frequency sampling and high-polygon meshes, and does not support simulation 

of non-rigid objects like plants or animated humans due to collider restrictions. 

2. Depth Texture and Sphere Projection: 

o Depth Texture Usage: In rendering, depth textures are used for z-testing to decide pixel 

occlusion, capturing essential depth information for the LIDAR simulation. 

o Sphere Projection Implementation: We modify the rendered images using a post-image 

processing shader to simulate the spinning motion of LIDAR, aligning images with the 

spherical coordinates dictated by the system’s constraints. Each column in the depth map 

aligns with a frame of LIDAR sampling, correlating pixel coordinates with specific angular 

positions relative to the sensor, as illustrated in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: "Images connected smoothly in regular shading mode" (refer to the results shown after 

applying the sphere projection without depth correction). 

 



o Depth Value Correction: To achieve smooth transitions between images, depth values are 

adjusted to correct for the inherent distortions of depth texture imaging, ensuring that 

images connect seamlessly in regular shading mode, as shown in Figure 3. This correction 

addresses the visual discontinuities caused by the non-linear distances from the camera to 

the projection plane. 

 

 

 
 

 

 

 

 

3. Supersampling: 

o Noise Reduction: Supersampling techniques are introduced to address noise issues and 

information loss during sphere projection. This is particularly effective in smoothing out 

wave-like patterns and improving the fidelity of the projected images, as demonstrated in 

Figure 4. 

 
 

 

 

 

Through these sophisticated simulations, LIDAR technology significantly enhances the localization 

capabilities of self-driving cars, providing detailed and reliable environmental perception. This research 

not only contributes to the understanding of sensor fusion in autonomous vehicles but also pushes the 

boundaries of what these technologies can achieve in practical applications. 

 

Third :The Brain Phase :  

In this phase, This system is responsible for processing the data collected and interpreted by the Car 

Vision and Sensor Fusion components to make driving decisions: 

1. Steering Angle Prediction,( Develops a predictive model based on video input to determine the 

appropriate steering angle for navigation.) we detail the development and refinement of a neural 

network-based system designed to predict steering angles from video input captured by a front-

mounted camera in an autonomous driving simulator. This component of our research focuses on 

Figure 3 : "Depth value connected smoothly after correction" (show the before and after 

effect of the depth correction). 

 

Figure 4 : " Noise are improved after supersampling" (illustrate the noise reduction 

achieved through supersampling). 

 



overcoming the limitations of traditional lane detection methods, which were not effective in real-

time applications or during emergency maneuvers, such as when a vehicle nearly exits a lane. 

2. Planning and Control:  in the realm of autonomous vehicle navigation, the planning and control 

segment represents a critical component of the "brain" of the operation. This section of our research 

is dedicated to the development and refinement of algorithms that ensure safe, efficient, and 

comfortable path planning through dynamic environments. The primary challenge here is the non-

static nature of the driving scene where both static objects (like trees and lamp posts) and dynamic 

objects (such as other vehicles, pedestrians, and cyclists) must be continuously accounted for. Our 

methodology utilizes advanced sensor fusion techniques to track these objects and predict their 

future trajectories. 

The first step involves behavioral prediction of maneuverable objects using multiple-model 

algorithms. This approach allows us to consider various potential movements for each dynamic 

object detected in the vehicle’s vicinity. By evaluating models such as turning, speeding up, or 

slowing down, and assigning probabilities based on observed behaviors, we can predict likely 

trajectories for these objects. With these predictions in hand, we can then make strategic decisions 

about the vehicle’s own trajectory. 

For path planning, we employ Frenet coordinates[52], which simplify the trajectory planning 

process by focusing on longitudinal and lateral movements relative to the road as shown in Figure 

5. This system enables the vehicle to calculate safe path changes and adjust speeds while 

considering the real-time dynamics of road conditions and surrounding traffic. To mitigate issues 

related to the coarse discretization in Frenet transformations, we implement spline interpolation to 

smooth the trajectory, thereby reducing potential jerks and ensuring a comfortable ride. 

In terms of control, our system continuously analyzes traffic conditions using sensor data to adjust 

the vehicle’s speed and lane position. This includes maintaining a safe following distance and 

preparing for lane changes when necessary. The decision-making process for lane changes is 

underpinned by heuristic evaluations of surrounding traffic patterns, where the vehicle assesses the 

feasibility of moving into adjacent lanes based on current and predicted traffic flows. If a lane 

change is deemed safe and more efficient, the system plans the maneuver, ensuring sufficient buffer 

space is maintained around the vehicle to prevent collisions. 

The trajectory for the vehicle is then constructed using a combination of the current vehicle state, 

predicted states of surrounding obstacles, and the planned path. This trajectory is finely tuned using 

spline interpolation between strategically placed waypoints that guide the vehicle along the desired 

path within the lane while adhering to speed limits and ensuring safety margins are respected as 

shown in Figure 6. 

 
 
Figure 5 Frenet coordinates of the road geometry. (a) Cartesian coordinates (b) Frenet coordinates. 
 



 

Fourth : Integration of ROS in Autonomous Vehicle Development 

The integration of the Robot Operating System (ROS) into autonomous vehicle development represents 

a paradigm shift in how robotic applications are designed, implemented, and scaled. ROS [51]provides 

an advanced middleware framework that facilitates the deployment and integration of complex software 

systems across diverse hardware environments. This is particularly beneficial in the field of autonomous 

vehicles, where the ability to manage and process data from an array of sensors and actuators in real-

time is critical. The system's architecture supports a peer-to-peer network of numerous processes spread 

across different hosts, enhancing the modularity and flexibility needed for the dynamic requirements of 

autonomous driving technologies. 

ROS is crucial for autonomous vehicle systems due to its robust set of tools and libraries that streamline 

the development and debugging of driving functionalities. For instance, ROS’s sophisticated 

visualization tools enable real-time monitoring and adjustment of vehicle sensors and operational 

algorithms. This capability is essential for the iterative testing and refinement of self-driving algorithms 

under both simulated and actual driving conditions. 

Moreover, ROS's design philosophy emphasizes large-scale integration, peer-to-peer communication, 

and multi-lingual support, which facilitates the incorporation of various proprietary and open-source 

software into a cohesive system. These features make ROS an indispensable tool in developing 

autonomous driving solutions that are not only effective but also versatile and scalable. 

Advantages and Challenges of ROS in Autonomous Driving 

The advantages of utilizing ROS include: 

• Code Reusability: The extensive repository of pre-existing code available within the ROS 

community accelerates development cycles and reduces time to deployment. 

• Visualization and Monitoring: Tools provided by ROS allow developers to visualize complex 

data streams and system operations, aiding in the quick identification and resolution of potential 

issues. 

• Ease of Project Initiation: The user-friendly nature of ROS and its extensive documentation and 

community support make it an ideal starting point for new autonomous vehicle projects. 

However, the use of ROS is not without challenges: 

• Single Point of Failure: The reliance on the roscore for managing system processes introduces a 

vulnerability; a failure in the roscore can lead to system-wide shutdowns. 

• Security Concerns: The open-source nature of ROS might pose security challenges, particularly 

in scenarios where robust security protocols are required. 

• System Overhead: The complexity of the ROS messaging system can lead to significant 

overheads, especially in larger systems with numerous interconnected processes. 

Proposed system Implementation Using ROS 

In this research, we utilize the ROS-based Udacity system integration [51]simulator to demonstrate the 

practical application of ROS in autonomous vehicle development. The simulator, equipped with a virtual 

highway and traffic signals, serves as an ideal platform to test and validate the integration of various 

system components. By navigating the vehicle autonomously through traffic lights and maintaining 

regulatory speeds, we assess the effectiveness of ROS in real-world driving scenarios. 

In conclusion, the integration of ROS within the autonomous vehicle development framework provides 

a robust foundation for building advanced, reliable, and scalable autonomous driving systems. Despite 

its challenges, ROS's benefits in terms of development flexibility, code reusability, and system 



scalability make it an invaluable tool in the ongoing evolution of autonomous vehicle technologies. This 

research demonstrates the potential of ROS to manage complex autonomous driving tasks effectively, 

underscoring its suitability for future advancements in this rapidly evolving field. 

This approach to developing a robust steering angle predictor demonstrates significant advancements 

over traditional methods, utilizing deep learning to enhance the real-time responsiveness and safety of 

autonomous driving systems. 

 

IV. EXPERIMENT METHODOLOGY 
Model Development and Selection: Initially, two pre-existing models were evaluated for this task: 

the Nvidia neural network [53]and the Comma.ai neural network[33]. Both models, however, led to 

overfitting due to the limited diversity in our initial dataset. Consequently, we adapted a scaled-down 

version of Nvidia's architecture as illustred in Figure 7  which proved more effective for our purposes, 

aligning better with the size and characteristics of our dataset [53]. 

 
 

 

 

Dataset Utilization: The dataset employed was sourced from Udacity's driving simulator[54], which 

includes not only standard driving data but also recovery scenarios where the vehicle is correcting 

from near-boundary positions on the road. This dataset is particularly rich as it comprises images from 

multiple camera perspectives (front-left, front-right, and front-center) and includes telemetry data such 

as speed, acceleration, and braking at precise time intervals. 

 

Simulation and Testing: We conducted our model training and testing using Udacity's first-term 

simulator, which features both a training track and a testing track. The training datasets were 

specifically captured from the training track, while model validation was performed on the test track to 

ensure robustness and generalizability. 

 

Data Preparation and Augmentation Steps: 

1. Loading the Dataset: Initial data ingestion involves loading multiple data types, preparing for 

preprocessing. 

2. Data Augmentation: To address the imbalance typically seen in driving datasets—predominantly 

straight-driving scenarios with minimal steering input—we implemented several augmentation 

techniques: 

o Horizontal Flip: Each batch of frames was augmented by flipping half of them 

horizontally, inversely adjusting the steering angle to effectively double the dataset size. 

o Vertical Shift: By randomly cropping the top and bottom parts of the images during 

preprocessing, we enhanced the model's ability to generalize from varied road positions. 

Figure 7 smaller version of Nvidia’s own neural network 
 



o Random Shadow: Adding random vertical 'shadows' to the frames helped the model 

learn to handle real-world lighting variations, such as shadows cast by overhead objects 

on the road. 

Each frame was further processed by cropping, resizing to 32x128 pixels, and normalizing the RGB 

values to the range [0, 1], making the data suitable for neural network processing. These steps ensured 

that our model was trained on a well-rounded dataset, capable of handling a variety of driving 

conditions and responsive to different steering requirements. 

 

 

V. EXPERIMENT AND EVALUATION 

 
Evaluation of Autonomous Vehicle Systems: 

Our autonomous driving system underwent extensive evaluation across various modules to assess its 

performance and reliability in real-world scenarios, as detailed below: 

Car Vision Evaluation: 

• Lane Detection: Initially, our lane detection model required approximately 7 minutes to process a 

50-second video, significantly reducing operational efficiency. Through optimization and the 

integration of advanced mathematical models, we reduced processing time to 3 minutes, 

markedly improving over the original implementation and the Udacity self-driving car 

Nanodegree benchmark. Despite these improvements, the processing demand for real-time 

steering angle prediction remained too high, prompting a transition to deep learning approaches, 

which offer greater efficiency and real-time capability. 

• Obstacle Detection: Transitioning from a SVM-based vehicle detection system with limited 

accuracy and scope to a YOLO pre-trained neural network allowed for the detection of a broader 

range of dynamic and static objects with improved accuracy. However, real-time processing was 

constrained by available computing resources. 

• Traffic Sign Recognition: Although the initial system achieved high accuracy, its utility was 

limited to classification without actual detection in situ. To address this, we shifted to a detection 

model using the YOLO framework, significantly enhancing the functionality to localize and 

recognize traffic signs directly from video input. 

• Traffic Light Detection: Implementing inference learning reduced training times by focusing on 

retraining only the output layers, effectively maintaining high detection accuracy within the ROS 

system integration simulator. 

Sensor Fusion Evaluation: 

• Our approach utilized LIDAR technology extensively to obtain precise measurements of 

distances and coordinates of surrounding obstacles, outperforming previous methods that relied 

heavily on less precise sensors. 

The Brain: 

• Steering Angle Prediction: By optimizing the neural network to reduce complexity, our model 

surpassed the performance of both Nvidia’s and Comma.ai’s systems by preventing overfitting. 

The enhanced model demonstrated superior lane-keeping abilities on both training and testing 

tracks, and effectively handled high-speed scenarios and boundary recoveries. The model was 

trained for 30 epochs, approximately 13 hours of training time and we Dropout 50% on first fully 



connected layer and 25% on second fully connected layer.The model predicted accurate and 

precise steering angles from the frontal camera images and did not go out of road bounds, though 

it suffers from bouncing for a little distance after getting out of a turn. But all in all, it can pretty 

much drive infinitely on both tracks as shown in figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Path Planning Evaluation: 

Our evaluation of the autonomous vehicle's path planning and trajectory construction mechanisms 

provided critical insights into the operational efficiency and real-world applicability of our 

system. This component of the autonomous system was meticulously designed to ensure safe and 

efficient navigation across various traffic scenarios. Utilizing Frenet coordinates for trajectory 

planning allowed for a more structured and predictable path definition by focusing on 

longitudinal and lateral displacements relative to the road. 

• Sensor Fusion and Velocity Adjustment: The system's capability to dynamically adjust speed 

based on immediate traffic conditions demonstrated significant precision. By utilizing sensor data 

from LIDARs, radars, and cameras, the vehicle could effectively determine its reference velocity. 

If another vehicle was detected within 30 meters in the same lane, the system would adapt the 

vehicle's speed to follow the detected vehicle. Conversely, if a vehicle was detected within a 

critical 20-meter range, the system would reduce speed to maintain safety distances, preventing 

potential collisions. In conditions with no immediate front-facing traffic, the vehicle was 

programmed to maintain a speed of 49 miles per hour, aligning with speed regulations. 

• Lane Change Decision-Making: The decision-making process for lane changes was guided by 

heuristic rules, which evaluated the surrounding traffic conditions. The system first attempted to 

maintain lane integrity unless obstructed by slower traffic ahead. In such cases, it assessed the 

feasibility of lane changes to the left or right, prioritizing safety and space availability. This was 

calculated based on the gaps in adjacent lanes, requiring at least a 20-meter clearance in the front 

and a 13-meter buffer at the rear to initiate a lane change. This strategy was embedded in the 

system through specific functions within the main control program, ensuring decisions were made 

in real-time and adhered to safety standards. 

• Trajectory Smoothing Using Spline Interpolation: For trajectory smoothing, the system 

utilized spline interpolation between three strategically placed waypoints, set 30 meters apart. 

 
Figure 8 Sample images from Train and test tracks 

 



This technique minimized the trajectory's jerk, ensuring smoother transitions and turns. To 

maintain a controlled acceleration and adhere to the 10 m/s² limit, adjustments to the velocity 

were calculated for each trajectory point, based on the spline interpolation results. These points 

were then converted from local coordinates back to Frenet coordinates and processed by the 

simulation environment. 

 

 

 

• Overall System Performance: The autonomous vehicle performed reliably on the test track, 

adhering to planned paths and executing lane changes and speed adjustments as dictated by real-

time traffic conditions. However, the system occasionally experienced rare instances of 

unexpected stops, which were identified as areas for further refinement. These incidents are 

hypothesized to result from abrupt changes in sensor input or unforeseen anomalies in traffic 

patterns, highlighting the need for enhanced predictive algorithms and more robust error-handling 

mechanisms within the system architecture. 

• The results from these evaluations underscore the effectiveness of our path planning and 

trajectory construction methodologies, confirming their potential for real-world application in 

autonomous driving systems. Future iterations will focus on refining these systems to improve 

predictability and responsiveness, ensuring seamless operation under a broader range of driving 

conditions. 

VI. CONCLUSION AND FUTURE WORK  

This research presents a comprehensive evaluation and implementation of an advanced autonomous 

driving system, structured into distinct modules: Car Vision, Sensor Fusion, The Brain, and ROS 

System Integration. Each module has been meticulously designed and optimized to enhance the 

vehicle's perceptual accuracy and decision-making capabilities in a dynamic driving environment. Our 

results underscore the effectiveness of deep learning algorithms and sensor fusion in real-time vehicle 

control and navigation, particularly in complex traffic scenarios. 

The autonomous vehicle demonstrated proficient lane keeping, obstacle detection, traffic sign 

recognition, and traffic light detection. The utilization of ROS as a middleware allowed for robust 

Figure 6 The car drives well and smoothly on the track and applies minimized jerk 

trajectories for the car to follow, though it suffers from scarce unexpected stops 
 



integration of subsystems, ensuring seamless communication and efficient data handling. The 

successful implementation in a simulated environment provided a solid foundation for future real-world 

applications. 

Future research will focus on several key areas to further refine the autonomous driving 

system: 

1. Enhanced Real-Time Processing: Efforts will be directed towards improving the computational 

efficiency of the Car Vision and Sensor Fusion modules to achieve real-time processing capabilities 

without compromising accuracy or increasing hardware demands. 

2. Advanced Predictive Algorithms: Development of more sophisticated predictive models for 

dynamic object behavior will be prioritized. This will involve integrating more complex machine 

learning algorithms to enhance the predictive accuracy for the movements of other vehicles and 

pedestrians. 

3. Improved Trajectory Smoothing: Refinements in the trajectory planning algorithm will aim to 

eliminate instances of unexpected stopping and improve the smoothness of lane changes and turns, 

thereby increasing the overall comfort and safety of the vehicle. 

4. Robustness to Diverse Environmental Conditions: Testing the system under a wider range of 

weather and lighting conditions to ensure consistent performance regardless of external factors. 

5. Expansion of Testing Platforms: Beyond simulation, conducting extensive real-world trials to 

validate the system’s performance in actual driving conditions, which will help in identifying 

unforeseen challenges and practical constraints. 

6. Inter-Vehicular Communication: Exploring the potential of V2V (Vehicle to Vehicle) 

communication technologies to enhance situational awareness and decision-making capabilities. 

By addressing these areas, we aim to push the boundaries of what autonomous driving systems can 

achieve, making significant contributions to the field of autonomous vehicles and moving closer to full 

autonomy in diverse road networks. This will not only enhance vehicular autonomy but also pave the 

way for safer, more efficient urban transportation solutions. 
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