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1. INTRODUCTION  

 

Burr [1] introduced twelve cumulative distribution functions with the primary purpose of 

fitting distributions to real data. One of the most important of them is the Burr XII (BXII)  

distribution with parameters    . BXII is an important distribution in statistics and 

operations research. It has a wide range of applications in several areas such as chemical 

engineering, quality control, business, meteorology, hydrology, medical, and reliability 

studies for more details see Al-Hussaini and Jaheen [2], Wu et al. [3] and Soliman et al. 

[4]. To significantly expand the flexibility of the BXII distribution, Jamal et al. [5] 

suggested a new three-parameter modified Burr XII distribution (MBXII). The 

distribution's adaptability and usefulness are demonstrated by fitting it to two separate 

data sets. The findings showed that the distribution closely matches the data sets. Burr 

XII, Logistic, Log-logistic, Modified Log-logistic, Lomax, Modified Lomax and 
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This paper investigates the estimation of parameters for the modified Burr 

XII distribution under a progressive Type-II censoring scheme. We employ 

both Bayesian and maximum likelihood approaches to estimate the model's 

parameters. Approximate confidence intervals (ACIs) are constructed to 

quantify the uncertainty associated with the unknown parameters. 

Subsequently, the Markov chain Monte Carlo (MCMC) method is used to 

obtain Bayesian estimates. The credible intervals are then computed in turn. 

Finally, we illustrate the methodology's practical application by analyzing a 

real data set. 

mailto:safaaabdelaziz@science.aun.edu.eg


Sara M.A.M. Ali et al 414 

Modified Logistic are special cases from MBXII distribution, for more details see Jamal 

et al. [5].   

The MBXII distribution has a probability density function (PDF), cumulative distribution 

function (CDF), and hazard rate function as follows: 

       ( )     
    *

 

 
  + (       )                  

                     (   )                                 

(1) 

       ( )    (   
    )

  
                                                     (2) 

      ( )  *
 

 
  + 

       

       
                                                          

 

Reliability studies and survival analysis frequently use censored data. Single-censored 

observations occur when a sample is taken across a complete time period but either the 

last or the first observations are unknown add to that the censoring may be justified in 

order to reduce the time and expense of testing. Various techniques can result in censored 

data. Type-I and Type-II censoring are the most two popular censoring techniques. So-

called Type-II censoring that describes the experiment would be continued until a 

predetermined number of items are failed. As opposed to, when using Type-I censoring, 

the experiment is over at a pre-specified time. Type-I and Type-II censoring are not 

flexible enough to allow units to be removed from the experiment at any point other than 

the termination point. To solve this problem, we discuss a progressive Type-II censoring 

scheme, which is a generalization of Type-II censoring and a more flexible censoring 

method. In the following, a description of the specific scenarios in this scheme. 

Assume that   identical and independent units are put on a life test, and that at the start of 

the experiment, the researcher determines that pre-fixed integer   (     )  failures are 

to be recorded. At first failure (say       ),    of the alive units     are randomly taken 

away from the test. At the second failure (say       )    of the alive units        are 

randomly taken away from the test. And so it continues until the  
  

failure then    

    ∑   
   
    are taken away from the test and the experiment is terminated. More 

information about progressive Type-II censorship and its various advantages can be 

found in monographs by Aggarwala and Balakrishnan [6], Balakrishnan [7] and 

Balakrishnan and Cramer [8]. Several authors, including Wu [9], Wu and Chang [10], 

Asgharzadeh [11], Wu et al. [12], Kang et al. [13], Wu and Gui [14], Abu-Moussa et al. 

[15] have investigated inference in progressively Type-II censored samples with various 

lifetime distributions, including Weibull, Pareto, generalized logistic, Burr XII, Half 

Logistic, Nadarajah-Haghighi, Rayleigh distributions, respectively. However, depending 
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on the observed sample (                             ) from a progressive Type-II 

censoring scheme the likelihood function of the progressive Type-II censored data is 

 
    ∏ (      )

 

   

 (   (      ))
                                       

(3) 

 

where     (      )(         ) (                  ). 

For more details see Balakrishnan and Cramer [8]. 

According to this study, the estimation of the parameters of the MBXII distribution is 

considered depending on progressive Type-II using maximum likelihood and Bayesian 

techniques. The maximum likelihood estimation and the Fisher information matrix is 

discussed in Sections 2 and 3, respectively. Section 4 presents the Bayesian inference 

method. Section 5 presents a simulation study that compares the performance of the 

model as well as a real-life example for demonstration purposes. Finally, in Section 6, we 

give a final conclusion for the paper. 

2. MAXIMUM LIKELIHOOD ESTIMATION  

 

The likelihood function of the parameters     and   of the MBXII distribution are 

obtained from Eqs. (1), (2) and using (3) as follows: 
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 The natural logarithm say,  , of the likelihood function is 
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By taking the first partial derivatives of    with respect to     and   we have 
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By putting Eqs.(6−8)equal to zero, we get 
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The solution of these equations gives the maximum likelihood estimates (MLEs) 

for the unknown population parameters    , and  . These solutions cannot be obtained in 

a simple closed form. However, some numerical techniques can be used in this proposal, 

e.g., Newton-Raphson method. 

 

3. APPROXIMATE CONFIDENCE INTERVALS 

 

The asymptotic variances-covariances of the MLEs for the parameters    , and   are 

supplied by elements of the inverse of the Fisher information matrix, which is defined by 

     [
    

      
]      i, j=1,2,3 and   (         )  (     ). 

Unfortunately, the exact mathematical expressions for the above expectations are quite 

difficult to be obtained. Consequently, we provide the MLEs’ approximate (observed) 

asymptotic variance-covariance matrix, produced by removing the expectation operator 

E. The observed Fisher information matrix    (     ) can be given by 
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And then    ( ̂  ̂  ̂) is given by 
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The asymptotic normality of the MLEs can be employed to compute the approximate 

confidence intervals for parameters    , and  . As a result, (1−ξ )100% confidence 

intervals ( CIs) for parameters    , and   become [ ̂    
 

√   ( ̂)], [ ̂    
 

√   ( ̂)], 

and  [ ̂    
 

√   ( ̂)],where   
 

 is a normal standard value. 
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4. BAYES ESTIMATION  

 

Modern products often have highly reliable and protracted lifespans, which can 

occasionally result in a lack of data availability in lifetime studies, where a small sample 

size may significantly impact the correctness of the inferential results. Therefore, 

Bayesian estimation is more practical than classical estimation methods due to its 

capacity to include more information in the inferential approach. The Bayesian estimation 

has drawn the attention of many researchers in recent years. 

In this section, we obtain the Bayesian inference of the unknown parameters of the 

MBXII distribution based on progressive Type-II censoring under squared error (SE) and 

LINEX loss functions. It is assumed here that the parameters    , and   are independent 

and follow the gamma prior distributions with hyperparameters (       ) for c, 

(       ) for k, and (       ) for   .i.e. 

  ( )   
                    

  ( )   
                    

  ( )   
                    

The joint prior density function for    , and   is 

  (     )                   (           )                    (9) 

 

Combining Eq.(4) with Eq.(9), the joint posterior density function of    , and   can be 

written as 

 

  (       )                     (         
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  ] (        
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]   

(10) 

 

Therefore, the Bayes estimate of any function of    , and   say    (     ) under SE 

and LINEX loss functions are given respectively by 
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It is evident that, it is not possible to compute 11 and 12 analytically because it cannot be 

obtained in a simple closed form. Then, we propose using the MCMC method to compute 

Bayes estimates for    , and   by generating samples from the posterior distribution 

using the Metropolis-Hastings technique. A lot of papers dealt with MCMC techniques 

such as Gupta [16] and Wu and Gui [14], among others. 

4.1 MCMC method 

From Eq.(10), the conditional posterior density distributions of    , and   are given, 

respectively, by 
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• The Metropolis-Hasting algorithm proceeds as follows: 

1. Take the initial guess of    , and  , say  ( )  ( ), and  ( ) respectively. 

2. Set j=1. 

3. Generate  ( )  ( ), and  ( ) from   
 (       ),   

 (       ), and   
 (  

     ) with  ( (   )    ( )),  ( (   )    ( )), and  ( (   )    ( )) as 

normal proposal distribution, where Var(c), Var(k), and Var(λ) can be obtained 

from the main diagonal of the inverse Fisher information matrix. 

4. Set j=j+1. 

5. Repeat steps 3-4 N times. 

6. Obtain the Bayesian estimates of    (     ) under squared error loss function 

of 
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The Bayes estimates of    (     ), under LINEX loss function are given by 
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5. SIMULATION STUDY AND DATA ANALYSIS  

 

To evaluate the practical utility of the proposed estimation methodologies, the following 

two subsections will present their performance assessment. This will be achieved through 

a simulation study and subsequent analysis of a real data. 

5.1 Simulation study 

In this section, Monte Carlo simulations are conducted to compare between MLEs and 

Bayesian estimates of the MBXII parameters. Samples are generated under progressive 

Type-II censoring with two sample sizes        and   , different numbers of failures 

  and different schemes. At first, we generate     and   from the Gamma(     ), 

Gamma(     )  and Gamma (     ) prior densities, respectively, with hyperparameters 

       ,              . These generated values are:  

Case 1:          ,       and         , 

Case 2:         ,       , and       . 

 We generate      random samples from the MBXII distribution for the previous 

parameter combinations. The average estimate (AE) and mean squared error (MSE) are 

the tools used to test the point estimate, but the lower interval (L) and upper interval (U) 

and then the average length estimate are those that are used to test the interval estimate. 

Also in the tables, BSEL denotes the Bayes estimates under the squared error loss 

function and BLINEX denotes the Bayes estimates under the LINEX loss function. 

Tables 1-4 contain list of all the outcomes of the criteria quantities, where        is the 

significance level for all interval estimates. Moreover, for Bayesian estimation, the 

Metropolis-Hasting sampling size N is taken to be 11,000 abandoning the first 1000 

iterations and we take two values for   (      )for the LINEX loss function. Where 

the scheme (           )  (                             ). 
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Table 1: AEs and MSEs of MLE and the Bayes estimates of                  

and           

 

 

𝒏  𝒎              scheme 

      MLE 

 

 AE       MSE 

BSEL 

 

 AE       MSE 

                BLINEX 

         𝒂                 𝒂        

  AE       MSE      AE       MSE 

 

30   15 

 

(   5) 

 ̂ 0.30562 0.01766 0.33971 0.01849 0.35824 0.02631 0.32342 0.01345 

 ̂ 0.51911 0.04876 0.54002 0.02297 0.59314 0.03805 0.49867 0.01657 

 ̂ 0.65676 0.25859 0.64536 0.06111 0.85395 0.23969  0.54464  0.02436 

  

(           ) 

 ̂ 0.31445 0.02096 0.34808 0.02126 0.36801 0.03246 0.33096 0.01499 

 ̂ 0.54646 0.06243 0.55655 0.02938 0.61464 0.05145 0.51253 0.01991 

 ̂ 0.6442 0.2953 0.63965 0.06261 0.85173 0.24894 0.54005 0.02565 

 

       25 

 

(       5     ) 

 ̂ 0.30188 0.01428 0.33559 0.01679 0.3535 0.02408 0.31989 0.01212 

 ̂ 0.50184 0.03751 0.51666 0.01737 0.55907 0.02496 0.48203 0.01444 

 ̂ 0.6227 0.20298 0.60097 0.0418 0.75365 0.15216 0.525 0.01927 

  

(           ) 

 ̂ 0.30361 0.01399 0.33508  0.01557  0.35222  0.0217  0.31982 0.01147 

 ̂ 0.50591  0.0394  0.51796  0.01868  0.56137  0.02702  0.4827  0.01539 

 ̂ 0.60809  0.2005  0.59857  0.04243  0.74758  0.14847  0.52226  0.01942 

 

50   25 

 

(   5) 

 ̂ 0.29266  0.00754  0.31224  0.00807  0.32134  0.00978  0.30365  0.00673 

 ̂ 0.51294 0.02922  0.52142  0.01609  0.55582  0.02225  0.49229  0.01323 

 ̂ 0.56542   0.09844  0.59395  0.04151  0.72324  0.11939  0.52094  0.02073 

  

(       5     ) 

 ̂ 0.29459  0.00748  0.31382  0.00832  0.32308  0.0102  0.3051  0.00685 

 ̂ 0.52483  0.0333  0.52983  0.01813  0.56463  0.02567  0.50045  0.01433 

 ̂ 0.58137  0.24365  0.59642  0.04634  0.72822  0.13985  0.52433  0.02308 

 

       40 

 

(   5         5) 

 ̂ 0.28269  0.00686  0.23052  0.00764  0.31356  0.00916  0.29727  0.00644 

 ̂ 0.50945  0.00686  0.51514  0.01436  0.54386  0.01824  0.49015  0.01257 

 ̂ 0.55691  0.11166  0.5683  0.0344  0.65738  0.08494  0.51424  0.0192 

  

(   9        9) 

 ̂ 0.28917  0.00664  0.30757  0.00747  0.31591  0.00901 0.29969  0.00627 

 ̂ 0.51414  0.02625  0.51722 0.01499 0.54567  0.01911 0.49232 0.01299 

 ̂ 0.5473  0.09207  0.56239  0.03325  0.64983  0.08142 0.50954 0.01924 
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Table 2: AEs and MSEs of MLE and the Bayes estimates of                     

and          

 

 

𝒏  𝒎           scheme 

      MLE 

 

 AE       MSE 

BSEL 

 

 AE       MSE 

                BLINEX 

         𝒂                 𝒂        

  AE       MSE     AE       MSE 

 

30   15 

 

(   5) 

 ̂ 2.0886  0.27271  1.95354  0.10107  2.22443  0.12102  1.82246  0.1647 

 ̂ 0.76526  0.05681  0.53024  0.01392  0.56164  0.01229  0.50373  0.01729 

 ̂ 0.52561  0.56486  1.3078  0.00634  1.4101  0.03283  1.23724  0.00023 

  

(           ) 

 ̂ 2.05759 0.19881  1.93559  0.09867  2.17038  0.08035  1.81561  0.16593 

 ̂ 0.84988  0.11122  0.57779  0.01373  0.61595  0.01686  0.54608  0.01406 

 ̂ 0.50168  0.59204  1.3161  0.00763  1.42011  0.03647  1.24345  0.0003 

 

       25 

 

(       5     ) 

 ̂ 2.19512  0.1716  1.97771  0.08773  2.19751  0.08212  1.85229  0.14429 

 ̂ 0.91162  0.14406  0.61729  0.01317  0.64657  0.01726  0.59142  0.01135 

 ̂ 0.55691  0.53958  1.32432  0.00921  1.42956  0.04028  1.24966  0.00056 

  

(           ) 

 ̂ 2.28409  0.24516  2.01573  0.10551  2.26731  0.16891  1.87533  0.14245 

 ̂ 0.88673  0.12573  0.60272  0.01133  0.63047  0.01416  0.57824  0.01049 

 ̂ 0.54451  0.53434  1.32146  0.00863  1.42603  0.0388  1.24765  0.00047 

 

50   25 

 

(   5) 

 ̂ 2.16377  0.11221  1.95427  0.08698  2.12594  0.05148  1.84533  0.14489 

 ̂ 0.86832  0.09937  0.57686  0.00798  0.60273  0.00849  0.55394  0.00889 

 ̂ 0.52355  0.55139  1.31484  0.00748  1.41779  0.03564  1.24303  0.00035 

  

(       5     ) 

 ̂ 2.17358  0.1035  1.96836  0.08425  2.1381  0.05501  1.85848  0.13791 

 ̂ 0.89898  0.14417  0.60339  0.01066  0.63263  0.01382  0.5779  0.00976 

 ̂ 0.56298  0.51939  1.32317  0.00892  1.42825  0.03964  1.2486  0.00049 

 

       40 

 

(   5         5) 

 ̂ 2.33853  0.13951  2.06338  0.06515  2.24092  0.07748  1.93697  0.09983 

 ̂ 0.90208  0.1383  0.60256  0.00677  0.62249  0.00783  0.5841  0.00658 

 ̂ 0.58483  0.56571  1.32599  0.00955  1.43083  0.04081  1.2513  0.00065 

  

(   9        9) 

 ̂ 2.35334  0.1392  2.06957  0.07345  2.25042  0.09047  1.9422  0.10439 

 ̂ 0.90015  0.12748  0.60994  0.00718  0.63022  0.00864 0.59115 0.00667 

 ̂ 0.60115 0.53282 1.3277  0.00993  1.43224  0.04144  1.25288  0.00074 
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Table 3: CIs and Credible intervals of                     and            

 

𝒏    𝒎         scheme 

     Approximate Intervals 

    L              U           length 

       Credible Intervals 

    L              U           length 

 

30     15 

 

(   5) 

 ̂ 0.08824  0.523  0.43476  0.16746  0.55205  0.38459 

 ̂ 0.07704  0.96117  0.88412  0.26234  0.93035  0.66801 

 ̂ 0.27504  1.58857  1.86361  0.22288  1.34048  1.1176 

  

(           ) 

 ̂ 0.09281  0.53609  0.44327  0.17295  0.56432  0.39136 

 ̂ 0.09177  1.00116  0.90939  0.27163  0.95734  0.68571 

 ̂ -0.29777  1.58617  1.88394  0.22514  1.33898  1.11384 

 

        25 

 

(       5     ) 

 ̂ -0.18386  0.78762  0.97148  0.1676 0.54269  0.37509 

 ̂ -0.406  1.40967  1.81567  0.26083  0.86926  0.60842 

 ̂ -1.53982  2.78521  4.32503  0.24448  1.20212  0.95765 

  

(           ) 

 ̂ 0.09417  0.51306  0.41889  0.16735  0.54257 0.37522 

 ̂ 0.10915  0.90267  0.79353 0.25995 0.87355 0.6136 

 ̂ -0.15705    1.37322 1.53027 0.24102 1.20252 0.9615 

 

50    25 

 

(   5) 

 ̂ 0.13461  0.4507  0.31609  0.18136 0.46349  0.28213 

 ̂ 0.17404  0.85185 0.67781 0.28287 0.83695 0.55409 

 ̂ 0.03167  1.16251 1.19418 0.23573 1.16758 0.93185 

  

(       5     ) 

 ̂ 0.13702  0.45217 0.31515 0.18224 0.46726 0.28502 

 ̂ 0.18686  0.86281 0.67595 0.29108 0.84676 0.55567 

 ̂ -0.06212  1.22485 1.28697 0.24453 1.16305 0.91852 

 

         40 

 

(   5         5) 

 ̂ 0.13848 0.43411 0.29563 0.18035 0.44955 0.2692 

 ̂ 0.20361  0.81529  0.61168  0.29259  0.80441  0.51182 

 ̂ 0.06252  1.05131  0.98879  0.26641  1.04683  0.78041 

  

(   9        9) 

 ̂ 0.14067  0.43768  0.29701  0.1827  0.45097  0.26827 

 ̂ 0.20725  0.82103  0.61378  0.29447  0.8041  0.50963 

 ̂ 0.05771  1.0369  0.97919  0.26468  1.03566  0.77098 
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      Table 4: CIs and Credible intervals of                     and          

 

𝒏    𝒎        scheme 

     Approximate Intervals 

    L              U           length 

       Credible Intervals 

    L              U           length 

 

30     15 

 

(   5) 

 ̂ 0.60177  3.57544  2.97368  1.52166  2.75239  1.23073 

 ̂ -0.60757  2.13809  2.74565  0.30236  0.83145  0.52908 

 ̂ -2.08503  3.13625  5.22128  1.0104  1.88036  0.86996 

  

(           ) 

 ̂ 0.65741  3.45776  2.80035  1.5203  2.6952  1.1749 

 ̂ -0.64237  2.34213  2.9845  0.32887  0.90694  0.57807 

 ̂ -2.00976  3.01311  5.02287  1.01066  1.88844  0.87778 

 

        25 

 

(       5     ) 

 ̂ 0.91855  3.47169  2.55314  1.53102  2.72125  1.19022 

 ̂ -0.55104  2.37428  2.92533  0.38626  0.90351  0.51725 

 ̂ -1.89237  3.00618  4.89856  1.0112  1.8949  0.8837 

  

(           ) 

 ̂ 0.96608  3.60209  2.63601  1.53994  2.80659  1.26665 

 ̂ -0.51079  2.28426  2.79505  0.37765  0.88302  0.50537 

 ̂ -1.87992  2.96894  4.84887  1.01134  1.89317  0.88183 

 

50     25 

 

(   5) 

 ̂ 0.95303  3.3745  2.42146  1.52973  2.6306  1.10087 

 ̂ 0.61184  2.34848  2.96033  0.35909  0.84907  0.48998 

 ̂ -2.02312  3.07022  5.09333  1.01124  1.88688  0.87564 

  

(       5     ) 

 ̂ 1.00846  3.33869  2.33023  1.53581  2.64175  1.10595 

 ̂ -0.58087  2.37884  2.95971  0.37497  0.89025  0.51528 

 ̂ -1.90569  3.03164  4.93733  1.01134  1.89333  0.88199 

 

         40 

 

(   5         5) 

 ̂ 1.27725  3.39982  2.12257  1.56843  2.74723  1.1788 

 ̂ -0.43933 2.24349  2.68282  0.40287  0.83836  0.43549 

 ̂ -1.73161  2.90126  4.63287  1.011173  1.89343  0.8817 

  

(   9        9) 

 ̂ 1.29601  3.41066  2.11465  1.573  2.75958  2.75958  

 ̂ -0.42326  2.22355  2.64681  0.40842  0.8468  0.43838 

 ̂ -1.71049  2.91278  4.62327  1.01214  1.89565  0.88352 
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5.2 Real data example 

 

To demonstrate how the proposed method works in practice, we examined one data set as 

an example. These data represent the total annual rainfall (in inches) during January from 

1880 to 1916 recorded at Los Angeles Civic Center (see the website of Los Angeles 

Almanac: www.laalmanac.com/weather/we08aa.htm), and further analyzed by Selim [17] 

and Wu and Gui [14]. The data is shown in Table 5 below. The Kolmogorov-Smirnov 

(K-S) goodness of fit test is used to determine the validity of the MBXII model in fitting 

this data. Kolmogorov-Smirnov test results show that K-S distance = 0.1072 and p-value 

= 0.8742. As a result, the MBXII model fits the data well. Furthermore, supporting this 

conclusion are the empirical CDF plot in Figure 1 and the Quantile-Quantile (Q-Q) plot. 

There are 37 values in the original data set,       , we take      and       for the 

LINEX loss function. The censoring schemes that have been used are: 

Scheme I:                                          

Scheme II:                                               

We propose the progressive censored sample, as illustrated in Table 6. We use the same 

hyper-parameters for Bayesian estimation as those in Subsection 5.1. The estimates 

depend on progressive Type-II censoring can be found in Table 7. In Table 7, the results 

obtained with scheme I are represented by the values in the top cell and the values in the 

lower cell represent the outcomes that were reached using Scheme II. The proposed 

estimations for a given parameter have pretty similar values. 

Table 5: A real data set recorded by Selim [17]. 

1.33 1.43 1.01 1.62 3.15 1.05 

7.72 0.20 6.03 0.25 7.83 0.25 

0.88 6.29 0.94 5.84 3.23 3.70 

1.26 2.64 1.17 2.49 1.62 2.10 

0.14 2.57 3.85 7.02 5.04 7.27 

1.53 6.70 0.07 2.01 10.35 5.42 

13.3      

 



Sara M.A.M. Ali et al 426 

     

Figure 1: The K-S test for generated and empirical data for MBXII (     ).  

 

Table 6: The censored data set. 

Scheme I 

  1 2 3 4 5 6 7 8 9 10 11 12 

       7 0.07 0.14 0.2 0.25 0.88 0.94 1.05 1.17 1.26 1.33 1.43 1.53 

   4 0 0 0 0 0 0 0 0 0 0 0 

  13 14 15 16 17 18 19 20 21 22 23 24 

       7 1.62 2.01 2.49 2.57 2.64 3.15 3.23 3.7 3.85 5.04 5.42 5.84 

   0 0 0 0 0 0 0 0 0 0 0 0 

  25 26 27 28 29 30       

       7 6.03 6.29 6.70 7.02 7.27 7.72       

   0 0 0 0 0 3       

Scheme II 

  1 2 3 4 5 6 7 8 9 10 11 12 

       7 0.07 0.14 0.2 0.25 0.88 0.94 1.01 1.17 1.26 1.33 1.43 1.53 

   1 1 1 1 1 1 1 0 0 0 0 0 

  13 14 15 16 17 18 19 20 21 22 23 24 

       7 1.62 2.01 2.49 2.57 2.64 3.15 3.23 3.7 3.85 5.42 5.84 6.03 

   0 0 0 0 0 0 0 0 0 0 0 0 

  25 26 27 28 29 30       

       7 6.29 6.70 7.02 7.83 10.35 13.3       

   0 0 0 0 0 0       
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Table 7: The MLE and Bayes estimates for real data example 

Scheme I MLE BSEL BLINEX 

 ̂ 0.76763 0.83385 0.87449 

 ̂ 0.16698 0.2627 0.26648 

 ̂ 1.30983 0.8835 0.98298 

Scheme II MLE BSEL BLINEX 

 ̂ 0.79474 0.90292 0.95465 

 ̂ 0.16954 0.26756 0.27094 

 ̂ 1.41168 0.91187 1.0057 

 

  

CONCLUSION 

 

 

The purpose of this research is to look into parameter point estimation and interval 

estimation. Maximum likelihood and Bayesian estimation procedures are used to estimate 

the unknown parameters of the MBXII distribution based on progressive Type-II 

censored sample. We also use the observed Fisher information matrix to calculate the 

approximate confidence intervals. We apply the MCMC method to get the processes for 

Bayesian estimation under different loss functions. After that, the pertinent credible 

intervals are computed in turn. Based on the results listed in Tables 1 and 2, one can 

observe the following: 

1. The MSE associated with Bayes estimates are less than the     . 

2. The MSE of Bayes estimates and MLEs of unknown parameters    , and   

decreases as the values of n and m increase. 

From the results in Tables 3 and 4, 

1. When n or m is increased, the average length of credible intervals and 

approximate confidence intervals decrease. 

2. The average length of credible intervals is relatively smaller than the average 

length of approximate confidence intervals when n and m are fixed. 
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According to simulation results, it is discovered that Bayesian estimation performs better 

than MLEs in the vast majority of circumstances. Finally, a real data set is provided to 

confirm the proposed estimates. 
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