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Convolutional and recurrent neural networks have been found to be beneficial in en-

hancing numerous of machine-learning tasks. However, all of the inputs that these 

deep learning models use, such text or images, are of the Euclidean structure type. 

Since graphs are a non-Euclidean structure in the machine learning area, it is chal-

lenging to apply these neural networks directly to graph-based applications like node 

classification. Due to increased research focus, graph neural networks—which are 

created to handle specific graph-based input—have made significant advancements. 

In this article, we present an in-depth review of the use of graph neural networks for 

the node classification problem. The recent techniques are first described and broken 

down into three primary groups: attention technique, convolutional technique, and 

autoencoder technique. The performance of several approaches is then compared to 

in-depth comparative tests on a number of benchmark datasets. 
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1. Introduction 

The performance of neural networks has greatly im-

proved in many sectors due to the quick development of 

computational resources and trainable data. The study of 

graph neural networks (GNNs) has advanced signifi-

cantly in recent years. Notably, a wide range of GNN de-

signs, such as GCN [1], graph attention networks (GAT) 

[2] and GraphSAGE [3] have been developed. Then, 

these designs are used in numerous fields, such as social 

networks [4], chemistry [5], and biology [6]. Addition-

ally, there has been an increasing trend to add more lay-

ers to the models, making them deeper, to increase their 

expressiveness [7].  

In the Euclidean domain, which includes audio, text, 

and image, deep learning systems have shown significant 

success [8]. Graph data, one of the common structures 

that are not Euclidean in the machine learning industry 

has the characteristics of unknown size, complex topo-

logical structure, and always having a variable node or-

dering [9]. In order to structure data, it is necessary to 

directly use a common learning process (such as pooling 

or convolutional operations). However, due to their ex-

ceptional ability to represent objects and relationships in 

a variety of fields, such as community recognition [10], 

traffic flow prediction [11], and knowledge graphs [12], 

graph data are crucial structures in the machine learning 

area. More researchers are dedicating more time to gen-

eralizing these successful neural networks to graph anal-

ysis [13]. Consequently, GNNs (graph neural networks) 

have risen in popularity and made a number of advances 

[14].  

GNNs have gained popularity in recent times for a 

number of graph analysis activities, such as node-fo-

cused activities (such as node classification and link pre-

diction) and graph-focused activities (such as graph sim-

ilarity classification and detection) [15]. Due to the nu-

merous application possibilities, one of the most preva-

lent types of study in graph analysis is node classifica-

tion. The goal of the node classification challenge is to 

assign, using graph information, a specific label for each 

unlabeled node in the graph [16]. Node classification, for 

instance, may predict the study subject that every article 

in the citation networks belongs to [17]. Each node in the 

protein-protein interaction network can have one or more 

gene ontology types ascribed to it [18]. Only a small sub-

set of the nodes in the training dataset contain labels, 

which is the goal of semisupervised node classification, 

as shown in Figure 1. 

We give a study of graph neural networks in order to 

compare various techniques in node classification. The 

following list illustrates the paper's contributions: 

- This survey offers an extensive review of the current 

node classification graph neural network models. It 

shows many well-known algorithms for each cate-

gory and develops a new taxonomy for these models. 

- Based on a thorough evaluation, many popular algo-

rithms from each category are compared. These algo-

rithms are specifically rerunning on a number of well-

known benchmark datasets. The results of evalua-

tions are also used to conduct an analysis. 

The rest of the paper is structured as follows: Section 2 

discusses the first definition of a few notations that are 

frequently used after introducing certain notions pertain-

ing to node classification. Then, in Section 3, many graph 

neural network methods of various categories are pre-

sented. In Section 4, we evaluate graph neural network 

methods for node classification on various datasets and 

analyze these results. 

 

Figure 1. Semi-supervised node classification illustration. 

Grey relates to unlabeled nodes, while blue and red indicate 

nodes for which the label is already known. The goal is to label 

each grey node in accordance with all the information of those 

colorful nodes. 

2 Notations and Definitions 

Definition 1 (Graph): Assume that there are n nodes 

and m edges in the undirected graph 𝐺 =  (𝑉, 𝐸), where 

V = {v1, v2, . . . , vn} is a collection of nodes. The graph 

is shown by an adjacency matrix denoted by the letter 

𝐴 𝜖 {0,1}𝑛 ×𝑛 . If an edge connects nodes 𝑣𝑖and 𝑣𝑗, each 

element Aij is set to 1; otherwise, it is set to 0. When self-

loops are included in the graph, an adjacency matrix 

known as 𝐴 = 𝐴 + 𝐼 is created. Each node has a d-di-

mensional feature vector, and the feature matrix of all 

nodes is displayed by the notation 𝑋 𝜖 𝑅𝑛 ×𝑑 where X = 

{X1, X2, . . . , Xn} where Xi is the matching feature vector 

of node vi. Additionally, one-hot encoding is utilized as 

a feature for every node in unattributed graphs, i.e., X = 

I. 

 

Definition 2 (the k-hop neighbors ) 

The term "k-hop neighbors of ui" refers to a group of 

nodes that are actually k hops away from ui and is formu-

lated as 

Nk (i) = {u j |i ≠ j, min(sp (i , j ), K) = k, ∀u j ∈ U}.    (1) 

When there is no edge between 𝑢𝑖 and 𝑢𝑗 , the shortest 

path, denoted by sp(i, j), will be infinite. K is the highest 

possible number of hops. 
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3 Categorization and Frameworks 

This section provides a thorough description of differ-

ent graph neural networks that can be applied to node 

classification. Convolutional graph neural networks, at-

tention graph neural networks, and graph autoencoders 

are the categories of these graph neural networks. We 

provide a brief summary of each category in the para-

graphs that follow. 

3.1 Graph Convolutional Technique  

One of the most often used information aggregation 

techniques in graph analysis is the graph convolutional 

mechanism. This mechanism's fundamental principle is 

to use pooling or convolutional operations on the graph 

structure to obtain a higher representation of each node, 

which is subsequently used in the node classifier. Graph 

convolutional networks (GCNs), which are distinct from 

CNNs on images and based on GNN models, are not af-

fected by the arrangement of nodes. 

  

3.1.1 ChebNet Graph Convolutional Network 

Defferrard et al. [19] developed a spectral-based graph 

convolutional network named ChebNet, which includes 

a quick localized spectral graph filter built from the Che-

byshev polynomial, in order to generalize CNN operators 

to the graph domain. Specifically, ChebNet consists of 

three primary processes, the construction of localized 

convolutional filters, reducing the size of a graph, and a 

pooling operation of the graph.  

Graph Laplacian, which has the definition 𝐿 = 𝐷 −

𝐴 𝜖 𝑅𝑛×𝑛, is an essential operator in spectral graph anal-

ysis [20]. 𝐿 also has a normalized form that is created as 

𝐿 = 𝐼𝑛 − 𝐷−
1

2  𝐴  𝐷 −
1

2                          (2) 

The formula for the Laplacian is 𝐿 = 𝑈Λ𝑈𝑇, where is the 

diagonal matrix containing the 𝐿-derived eigenvalues, 

and 𝑈 stands for the Fourier basis. diag() is a diagonal 

matrix given by the input vector or matrix.  

The input signal 𝑥 ∈ 𝑅𝑛 (each element associated with a 

node) is then filtered using a spectral filter 𝕘𝜃  , which is 

illustrated as follows: 

𝕘𝜃(𝐿)𝑥 = 𝕘𝜃(UΛ𝑈𝑇)𝑥 =  𝑈𝕘𝜃(Λ)𝑈𝑇𝑥               (3) 

Where 𝕘𝜃(Λ) = 𝑑𝑖𝑎𝑔(𝜃) is a nonparametric filter, 𝜃 re-

fers to the Fourier coefficients, and 𝑈𝑇𝑥 refer to the 

graph Fourier transform of x. 

The nonparametric filter 𝕘𝜃 , however, is difficult to learn 

and unable to localize in space. Defferrard et al. [19] use 

a recursive formulation of Chebyshev to compute 

𝕘𝜃(𝐿) and a polynomial filter to solve these issues. The 

filter can therefore be parametrized as 

𝕘𝜃(Λ) = ∑ 𝜃𝑘𝑇𝑘( Λ̃ )𝐾−1
𝑘=0                         (4) 

where [−1,1], 𝜆𝑚𝑎𝑥  represents the greatest eigenvalue of 

𝐿, Λ̃  =  2Λ 𝜆𝑚𝑎𝑥 − 𝐼𝑛⁄  represents a diagonal matrix with 

all components in the range [1, 1], and the parameter 𝜃 ∈

𝑅𝑘 signifies all coefficients of the Chebyshev 

polynomial 𝑇𝑘(𝑥). 𝑇𝑘(𝑥) can be calculated precisely us-

ing a recursive method.   𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥, respec-

tively. 𝑇𝑘(𝑥) = 2𝑥𝑇𝑘−1(𝑥) − 𝑇𝑘−2(𝑥)  . The previous 

equation can be reformatted as follows: 

𝕘𝜃(L)𝑥 = ∑ 𝜃𝑘𝑇𝑘( 𝐿 )𝑥𝐾−1
𝑘=0                                (5) 

The k-th order Chebyshev polynomial 𝑇𝑘(𝐿̃) Rn n can be 

evaluated using the scaled graph Laplacian =

2𝐿 𝜆𝑚𝑎𝑥 − 𝐼𝑛⁄ . Since Eq. (5) is a K-order polynomial in 

the Laplacian, the central vertex is therefore dependent 

on its K-hop neighbors. 

The hidden state is recursively updated as 𝑥̅𝑘 =

2𝐿̃𝑥̅𝑘−1 − 𝑥̅𝑘−2, where 𝑥̅0 = 𝑥 and 𝑥̅1 = 𝐿̃𝑥, according to 

Defferrard et al.'s [19] denotation of 𝑥̅𝑘 = 𝑇𝑘(𝐿̃)𝑥 ∈ 𝑅𝑛. 

This iterative procedure is depicted. The full filter, which 

involves  𝒪(𝐾𝑚)operations, can be written as 𝑧 =

𝕘𝜃(𝐿)𝑥 = [𝑥0, 𝑥1, … . , 𝑥𝑘−1]𝜃. 

3.1.2 Graph Convolution Networks (GCN) 

Kipf and Welling [21] also suggest a spectral based on 

GCN that aggregates the feature vector associated with 

each node of its first-order approximate neighbors [22], 

an alternative to using the information originated from 

K-hop neighbors to represent the ChebNet node [19]. The 

last hidden representation associated with each node is 

then obtained by a deep neural network architecture that 

is composed of stacking the graph convolutional layers 

several times. As a result, the obtained representation is 

similar to ChebNet in that it also contains information 

about its multi-hop neighbors [19]. 

Kipf and Welling [21] specifically defined that amount 

of hops as K = 1. As a result, Eq. (5) is transformed into 

a linear function and written as 

𝑧 = 𝜃0𝑇0(𝐿̃)𝑥 + 𝜃1𝑇1(𝐿̃)𝑥 = 𝜃0𝑥 + 𝜃1 (
2

𝜆𝑚𝑎𝑥
𝐿 − 𝐼𝑛) 𝑥                                                                                  

(6) 

Kipf and Welling [21] addressed the issue of overfitting 

to a graph's local structure and making the greatest eigen-

value as a 𝜆𝑚𝑎𝑥=2 to reduce the number of operations 

and using a singular parameter 𝜃 = 𝜃0=−𝜃1. With this 

configuration and Eq. (2), (6) is reformed as 

𝑧 = 𝜃 (𝐼𝑛 + 𝐷−
1

2 𝐴 𝐷−
1

2) 𝑥                                     (7) 

Here, all of the eigenvalues for the formula fall between 

[0, 2], and all layers share the filter's parameters. 

Be aware that stacking such convolutional operators 

could lead to issues like numerical instability and explod-

ing or vanishing gradients when creating a deep neural 

network model. Kipf and Welling [21] employed a renor-

malization trick technique to address these issues, so the 

expression of Eq. (7) became  

𝐼𝑛 + 𝐷−
1

2 𝐴 𝐷−
1

2  → 𝐷̃−
1

2 𝐴̃ 𝐷−
1

2                         (8) 
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where 𝐴̃ = 𝐴 + 𝐼𝑛 is the adjacency matrix with a self-

loops. 

The definition of Eq. (8), which is used when the in-

put signals 𝑥 ∈  𝑅𝑛  with just one channel, was then 

generalized by Kipf and Welling [21] to the case when 

each signal has multiple channels 𝑋 ∈  𝑅𝑛 ×𝑑. Here, "𝑑" 

stands for the dimension of the node feature vector, or 

the quantity of input channels. The following is the def-

inition of the convolutional filter for signal X: 

𝑍 = 𝐷̃−
1

2 𝐴̃ 𝐷−
1

2 XW                                    (9) 

Here, the filter parameter matrix 𝑊 ∈ 𝑅𝑑×𝑓, the con-

volved feature matrix 𝑍 ∈ 𝑅𝑛×𝑓, and the dimension of 

the embedding feature 𝑓 are all present.  

A multi-layer Graph Convolution Network with a 

layer-wise propagation rule is what Kipf and Welling 

[21] intend to construct after designing the convolu-

tional filters of each layer: 

    𝐻(𝑙+1) =  𝜎(𝐷̃−
1

2 𝐴̃ 𝐷−
1

2 𝐻𝑙𝑊𝑙 )              (10) 

where 𝐻(𝑙) ∈  𝑅𝑛×ℎ is the matrix of hidden layers, 𝑊(𝑙) 

is a trainable weighted matrix, and ℎ is the upper repre-

sentation dimension. The input signal 𝑋 is used to ini-

tialize the variable 𝐻(0).                 

Kipf and Welling [21] suggested a two-layer GCN 

model for semi-supervised node classification. Then 

Kipf and Welling [21] established the following for-

ward propagation model: 

𝑍 = 𝑓(𝑋, 𝐴) =  𝜎(𝐴̂ 𝑅𝑒𝐿𝑈(𝐴̂𝑋𝑊(0))𝑊(1)      (11)                                                   

Where 𝑊(0) is a matrix that maps to the hidden represen-

tation of the input feature, 𝑊(1) is a matrix that maps the 

hidden representation to the output, and 𝜎(. )  Is a soft-

max function. 

3.1.3 GraphSAGE Convolutional Network 

ChebNet and GCN, however, cannot generalize to pre-

viously unseen nodes because they are fundamentally 

transductive and depend on all nodes being present 

throughout the training phase. Hamilton et al. [23] pro-

posed a spatial based on GCN called Graph-SAGE. To 

obtain a higher representation for each node, Graph-

SAGE combined the feature information of nodes and 

the structural features of a local neighborhood of the 

node. This enables a model to become inductive and deal 

with unseen nodes. Hamilton et al.'s [23] set of aggrega-

tors was created to learn embeddings by aggregating the 

data of surrounding nodes around the current central 

node rather than training several hidden representations 

for each node independently. These aggregators are then 

used to create GraphSAGE's forward propagation algo-

rithm. Existing 𝐾 aggregators can be identified by the 

symbols AGGREGATEk, ∀𝑘 ∈ {1, … . , 𝐾} , and K pa-

rameter matrices 𝑊𝑘, ∀𝑘 ∈ {1, … . , 𝐾}, which serve as a 

converters between various hops. The LSTM aggregator, 

mean aggregator and pooling aggregator are the three 

types of aggregators. 

Hamilton et al. [23] first used AGGREGATE to gener-

ate the neighborhood vector aggregated ℎ𝑁(𝑖)
𝑘   by using 

the information of all neighbors of 𝑣𝑖 which was gener-

ated in the preceding time step. This allowed each step k 

to retrieve the hidden layer ℎ𝑖
𝑘 of each target node 𝑣𝑖. The 

target node 𝑣𝑖 's current state is created by concatenating 

ℎ𝑁(𝑖)
𝑘  with its before hidden state, ℎ𝑖

𝑘−1, and then using 

𝑊𝑘 's activation function to transform this concatenated 

vector. Each node's final feature representation 𝑍𝑖 is con-

structed in the 𝐾-th phase by repeating the previously 

mentioned procedure. 

3.1.4 Graph Neural Network Using Feature Selection-

Based Centrality Measures (GNNFC) 

Previous methods used all features to represent nodes. It 

becomes more computationally expensive as the number 

of hops rises since the number of combinations for input 

features increases exponentially. In addition, it is neces-

sary to enhance the model's prediction capability. As a 

result, the feature selection approach may be used to 

build a GNN model. In [24], GNNFC learns to detect rel-

evant features while minimizing the influence of insig-

nificant features by first taking all features as input. 

The Chi-square between the objective and each feature is 

computed in GNNFC, and the features that have the 

highest Chi-square scores are selected. Since graph cen-

tralities have been used to capture important information 

from the graphs, with regard to graph centrality 

measures, we provide additional measurements such as 

betweenness and closeness. These features are com-

puted, combined with the chosen features derived from 

the input features, and then fed into GNN. 

The merge procedure can be defined as follows:  

X=Concat(selectedFeat,CentralityFeat)           (12) 

where selectedFeat denotes the features chosen using the 

Chi-square approach and centralityFeat denotes the fea-

tures computed using the degree, betweenness, close-

ness, and eigenvector centrality measures. 

Then, Asmaa et al. [24] proposed a design space for 

GNNs composed of the following four steps: 

- A preprocessing layer that creates initial node represen-

tations using a multilayer perceptron (MLP). 

- A GCN-based message-passing layer. 

- A post-processing layer that creates final node embed-

dings using MLP. 

- The final node embeddings feed into a SoftMax layer 

for predicting the node class. 

The original node representation is processed ℎ𝑣
0 =

𝑋0 using an MLP in the first phase to create a message. 

The representation of a node is then repeatedly updated 
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in a message-passing step by aggregating the neighbors' 

representations. After doing aggregation several times of 

k, a node's representation captures the structural data in 

its 𝑘-hop network neighborhood. 

ℎ𝑣
(𝑘+1)

= 𝐴𝐺𝐺 ({𝐴𝐶𝑇 (𝐺𝑁(𝑊(𝑘)ℎ𝑢
(𝑘)

+ 𝑏(𝑘))) , 𝑢 ∈

𝑁(𝑣)})                                                               (13) 

Where  ℎ𝑢
(𝑘)

 is the 𝑘 − 𝑡ℎ layer embedding of node, 

𝑊(𝑘), 𝑏(𝑘) are trainable weights, and 𝑁(𝑣) is the local 

neighborhood of 𝑣. 

The accepted GNN in (13) starts with a linear layer and 

then has a number of functions, including the nonlinear 

activation function ACT (. ), which takes 𝑅𝑒𝐿𝑈 into ac-

count, batch renormalization (BR), and aggregation 

function (𝐴𝐺𝐺), which takes 𝑆𝑈𝑀 into account. 

We used GN to normalize node features in Eq. (13) while 

training. Hamilton et al. claim that jobs where node fea-

ture information is much more essential than structural 

information or where there is a wide of node degrees 

range are the ones where normalization is most helpful. 

The GN is particularly effective at stabilizing the value 

in GNNs, especially deep GNNs. As a result, normaliza-

tion is being used by more and more GNNs.  

Deep GNN models typically produce poor performance 

as a result. In this case, we examine dense connections 

termed SKIP-CAT, which combines embeddings from 

all prior layers. One method is to use the skip connections 

to concatenate the outputs and inputs of GNN.  

3.1.5 Dual-Net Graph Neural Network 

A Dual-Net GNN architecture that consists of a classi-

fier model and a selection model is suggested by Sunil et 

al. in [25]. The selector model learns to give the classifier 

the ideal input subset for the greatest performance, while 

the classifier model trains on a subset of the input node's 

attributes to predict node labels. Together, these two 

models are trained to identify the most accurate collec-

tion of features for node label predictions.  

 

Classifier Network: 

It is a two-layered 𝑀𝐿𝑃 neural network. The parameter 

𝜃  in 𝑓𝑐(𝜃; 𝑋,𝑚) is used to parameterize the classifier 

network. A portion of the node feature matrices, ∈ 𝑀 , 

serves as the network's input. Each input matrix is line-

arly processed, and the result is summed in the first layer. 

The second layer is then mapped to non-linearity 

(ReLU). After the joint model has been trained, the for-

mula 𝑓𝑐(𝜃
∗; 𝑋,𝑚∗) is applied to the test dataset, where 

𝑚∗ is the ideal subset of node feature matrices as input 

and indicates the learned classifier parameters. 

 

Selector Network: 

The input/output configuration of the selection network 

differs from that of the other two-layered MLPs. Based 

on the classifier's performance history, the selector's job 

is to identify the best feature subset of 𝑋. The selector 

model with 𝜑 parameter that is used, denoted as 𝑓𝑐(𝜑,𝑚) 

.A one-hot encoding vector 𝑚⃗⃗  of size 2𝐾 +  1 that rep-

resents the subset of feature matrices to be chosen in ac-

cordance with 𝑚 serves as the input to the selector net-

work. For instance, the subset {𝑋, (𝐴 + 𝐼)𝑋, 𝐴3𝑋} has 

𝑚⃗⃗ = (1,0,1,0,0,1,0) for 𝐾 =  3. One scalar value is pro-

duced as the output. The selector net's goal is to develop 

the ability to predict the classifier's typical performance 

on the mask matching the input subset. 

3.1.6 Feature Extraction and Selection for GNN 

Deepak et al. [26] Considered a network with ’𝑛’ nodes 

and ’𝑓’ features. By using the notion of feature selection, 

we can reduce the number of features from 𝑓 to 𝑘 where 

𝑘 is the number of features picked (where 𝑘 <  𝑓). The 

dataset is then trained using the Gumbel feature selection 

matrix, which is the matrix with the features chosen 

when Gumbel-Softmax is applied, and its accuracy is 

evaluated. They used the Adam optimizer as a metric for 

optimization and negative log-likelihood loss as a loss 

function to determine the loss. 

 

As employed in their experiment, the two-layer Graph 

Convolution Network (GCN) is defined as 

 

𝐺𝐶𝑁(𝑋, 𝐴) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐴(𝑅𝑒𝐿𝑢(𝐴𝑋𝑊𝐺𝑊1 ))𝑊2) (14) 

 

We employ the following two-layer Graph Convolution 

Network, which is defined below, to validate the chosen 

features and determine the accuracy for classification. 

 

𝐺𝐶𝑁(𝑋, 𝐴) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐴(𝑅𝑒𝐿𝑢(𝐴𝑋𝑊𝐺
′  ))𝑊2)      (15) 

 

Where 𝑊𝐺: Gumbel-Softmax feature extraction/feature 

selection matrix. 

𝑊𝐺
′ : feature extraction/feature selection matrix. 

𝑊1,𝑊2: Layer-specific trainable weight matrix. 

 

3.2 Attention Technique 

One of the most practical artificial intelligence archi-

tectures is the attention mechanism. Different neighbours 

should contribute differently to the target node rather 

than using a consistent weight. Additionally, every node 

has a different number of neighbors. Dealing with vary-

ing sizes of inputs and concentrating on the most im-

portant information are advantages of attention mecha-

nisms. Applying an attention mechanism to node classi-

fication is thus natural.  

3.2.1 Graph Attention Networks (GAT)    

When creating the higher hidden representation, Vel-

ickovi'c et al. [3] proposed an attention-based GCN that 

may be utilized to build arbitrary deep GAT by stacking 

such attention layers. This allowed them to capture the 

varying importance of the neighborhood for a target 

node. The GAT model's overall goal is to create a new 
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set of features. Using 𝑋 = {𝑋1, 𝑋2, … . 𝑋𝑛} as the model 

inputs, 𝑍 = {𝑍1, 𝑍2, … . 𝑍𝑛} 𝜖 𝑅
𝑛 ×𝑓 for all nodes. To ob-

tain the hidden representations 𝐻𝑖 = 𝑊𝑋𝑖 ∈  𝑅𝑓 for each 

node, GAT initially uses a learnable linear transformer. 

This transformer's parametrized weight matrix is indi-

cated here by the notation 𝑊 ∈ 𝑅𝑓×𝑑. Following that, 

Velickovic et al. [3] developed an attentional function to 

calculate attention weights between each node pair using 

the previously mentioned hidden representation 

𝑒𝑖𝑗 = 𝐴𝑇𝑇𝐸𝑁𝑇𝐼𝑂𝑁(𝐻𝑖 ,  𝐻𝑗)                         (16) 

In more detail, 𝑒𝑖𝑗 indicates the weighting of the node 𝑣𝑗 

in the representation of a node 𝑣𝑖. Keep in mind that in 

Eq. (16), Velickovi'c et al. [57] only employ the first-or-

der relevant neighbors. Using a softmax function, 𝑒𝑖𝑗 is 

normalized to improve the comparability of the weight 

coefficients between various nodes, and the improved 

version is described as 

𝛼𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗(𝑒𝑖𝑗) =  
exp (𝑒𝑖𝑗)

∑ exp (𝑒𝑖𝑘)𝑣𝑘∈𝑁(𝑖)
            (17) 

In reality, Velickovi'c et al. [3] computed the normal-

ized coefficients using simply a single FNN (forward 

neural network) with an activation function. Eq. (17) is 

reformed as a result as 

𝛼𝑖𝑗 = 
exp (𝜎(𝑎𝑇[𝐻𝑖 ||𝐻𝑗] ))

∑ 𝑒𝑥𝑝 (𝜎(𝑎𝑇[𝐻𝑖 ||𝐻𝑘] ))𝑣𝑘∈𝑁(𝑖)

                           (18) 

where 𝜎(. ) is implemented by the function LeakyReLU 

and 𝑎 ∈  𝑅2𝑓 is the weight vector of the suggested at-

tention mechanism carried out by a single-layer FNN. 

Once all of a node's neighbors' coefficients have been 

calculated, all of their neighbors are combined linearly 

to produce the last representation for each target node, 

which is displayed as follows: 

𝑍𝑖 = 𝜎 (∑ 𝛼𝑖𝑗𝐻𝑗𝑣𝑗∈𝑁(𝑖) )                                     (19) 

3.3 Graph Autoencoders Technique 

Most unsupervised technologies now for learning a 

low-dimensional embedding from massive unlabeled 

training data is the autoencoder mechanism. Addition-

ally, there are numerous node classification data sets with 

a few nodes that have labels. This approach must be used 

in order to learn a higher representation for each node. 

 

3.3.1 Deep Graph Infomax (DGI) 

Most unsupervised learning techniques now in use for 

creating node embeddings are built on the random walk 

technique. These methods, however, focus excessively 

on localized structure information [28], and the perfor-

mance largely depends on the selection of hyperparame-

ters [29]. DGI is an unsupervised learning technique, 

which is based on the mutual information between the 

entire graph's global representation and the patch repre-

sentation of special input, was developed by Velickovic 

et al. [30] as a solution to this issue. Particularly, DGI 

introduces mutual information maximization into the 

graph data. 

   

Velickovi'c et al. [30] used a graph convolutional en-

coder: 𝑅𝑛×𝑑  ×  𝑅𝑛×𝑛 → 𝑅𝑛×𝑓 , such that = 𝑓(𝑋, 𝐴) , to 

construct 𝐻𝑖  (a high-level embedding) ∀𝑣𝑖 . Keep in 

mind that 𝐻𝑖  was referred to by Velickovi'c et al. [30] as 

the patch representation of vi where this embedding was 

created by summing up a patch of graph data. A summary 

vector s was developed by Velickovic et al. [30] to rep-

resent the global data of the complete network. The 

readout function ℛ ∶  𝑅𝑛×𝑑 → 𝑅𝑑 , which accepts the de-

rived patch representations as input and may be written 

as 𝑠 = ℛ(𝑓(𝑋, 𝐴)) = ℛ(𝐻) , is used to compute the 

summary vector s. 

Then, Velickovi'c et al. [30] used the discriminator 𝒟 ∶
 𝑅𝑑 × 𝑅𝑑 → 𝑅 to assign a probability score to each 

patch-summary pair. Keep in mind that the objective 

function will use this score after that. 

 

4 Evaluation Analysis 

On a number of well-known node classification da-

tasets, we compare the aforementioned graph neural net-

work models in this section. We begin by thoroughly de-

scribing the statistical data and parameter settings of the 

datasets. Finally, classification outcomes from the vari-

ous approaches are offered. 

 

4.1 Datasets 

With two benchmark datasets, as mentioned in Table 1, 

that are often used in GNN literature, we perform an 

evaluation of the fully supervised node classification 

problem. The citation network-based datasets Cora and 

Citeseer [17] are generally regarded as homophily da-

tasets. We use publicly available data splits to give a fair 

comparison. Since all parameters for all algorithms are 

specified based on the original articles, we compare the 

performance of different approaches using accuracy 

evaluation criteria, as in [31] 

 
Table 1. Details surrounding the datasets used in this paper 

Datasets Cora Citeseer 

Number of  Nodes  2708 node 3327 node 

Number of  Edges 5429 edge  4732 edge 

Number of  Avg. Deg 3.90 2.74 

Number of  Features 1433 3703 

Number of  Classes 7 6 

4.2 Evaluation results 

This section discusses the thorough evaluation of the 

existing GNN model for node classification tasks. The 

outcomes are also extensively reported as shown in Table 

2. Two citation network benchmark datasets, which are 

common citation networks with identical training and 
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testing split [17], are selected to compare the perfor-

mance of various techniques. 

 

Table 2. compares the accuracy of the node classification re-

sults for the well-known GNN models. 

 Cora Citeseer 

ChebNet [32] 78.08± 0.86 67.87 ± 1.49 

GCN [24] 87.28 ± 1.26 76.68 ± 1.64 

GraphSAGE [24] 86.90 ± 1.04 76.04 ±1.30 

GNNFC [24] 89.5 80.1 

Dual-Net GNN [25] 87.77 ±1.16 77.15 ± 1.58 

Deepak’s method [26] 73.80 61.80 

GAT [33] 82.68 ± 1.80 75.46 ± 1.72 

DGI [26][30] 82.30 ± 0.6 71.80 ± 0.7 

 5 Conclusion 

We gave an overview of graph neural networks in this 

research and compared them in node classification tasks. 

These graph analysis algorithms were categorized into 

three groups based on the three main learning paradigms: 

convolutional technique, attention technique, and auto-

encoder technique. For each category, a thorough intro-

duction to a number of well-liked techniques was given. 

To examine the effectiveness of node classification, de-

tailed comparative tests on two benchmark datasets were 

also run. 
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