
International Journal of Theoretical and Applied Research, 2024, Vol. 3, No. 1, 379-386

∗ Corresponding author

 E-mail address: asmaadaoud.1959@azhar.edu.eg

DOI: 10.21608/IJTAR.2024.219355.1068

Special issue "selected papers from the 2nd International Conference on Basic and Applied Science (2nd IACBAS-2023)"

International Journal of Theoretical and Applied Research (IJTAR)

ISSN: 2812-5878

Homepage: https://ijtar.journals.ekb.eg

Original article

An Overview and Evaluation on Graph Neural Networks for Node Classification

Asmaa M. Mahmoud1*, Abeer S. Desuky1, Heba F. Eid1, Hoda A. Ali1

1 Department of Mathematics, Faculty of Science, Al-Azhar University, Cairo, Egypt.

ARTICLE INFO ABSTRACT

Received 09/08/2023

Revised 21/01/2024

Accepted 31/01/2024

Convolutional and recurrent neural networks have been found to be beneficial in en-

hancing numerous of machine-learning tasks. However, all of the inputs that these

deep learning models use, such text or images, are of the Euclidean structure type.

Since graphs are a non-Euclidean structure in the machine learning area, it is chal-

lenging to apply these neural networks directly to graph-based applications like node

classification. Due to increased research focus, graph neural networks—which are

created to handle specific graph-based input—have made significant advancements.

In this article, we present an in-depth review of the use of graph neural networks for

the node classification problem. The recent techniques are first described and broken

down into three primary groups: attention technique, convolutional technique, and

autoencoder technique. The performance of several approaches is then compared to

in-depth comparative tests on a number of benchmark datasets.

Keywords

Graph Neural Network Node

Classification

Graph Convolutional Network

Graph Attention Network

Graphical abstract

soft-

Graph with two

unlabelled nodes

GN

N

Graph after classified

nodes

Convolutional

technique

Autoencoder

technique

 Attention

technique

https://ijtar.journals.ekb.eg/

Ragab et al. 380

1. Introduction

The performance of neural networks has greatly im-

proved in many sectors due to the quick development of

computational resources and trainable data. The study of

graph neural networks (GNNs) has advanced signifi-

cantly in recent years. Notably, a wide range of GNN de-

signs, such as GCN [1], graph attention networks (GAT)

[2] and GraphSAGE [3] have been developed. Then,

these designs are used in numerous fields, such as social

networks [4], chemistry [5], and biology [6]. Addition-

ally, there has been an increasing trend to add more lay-

ers to the models, making them deeper, to increase their

expressiveness [7].

In the Euclidean domain, which includes audio, text,

and image, deep learning systems have shown significant

success [8]. Graph data, one of the common structures

that are not Euclidean in the machine learning industry

has the characteristics of unknown size, complex topo-

logical structure, and always having a variable node or-

dering [9]. In order to structure data, it is necessary to

directly use a common learning process (such as pooling

or convolutional operations). However, due to their ex-

ceptional ability to represent objects and relationships in

a variety of fields, such as community recognition [10],

traffic flow prediction [11], and knowledge graphs [12],

graph data are crucial structures in the machine learning

area. More researchers are dedicating more time to gen-

eralizing these successful neural networks to graph anal-

ysis [13]. Consequently, GNNs (graph neural networks)

have risen in popularity and made a number of advances

[14].

GNNs have gained popularity in recent times for a

number of graph analysis activities, such as node-fo-

cused activities (such as node classification and link pre-

diction) and graph-focused activities (such as graph sim-

ilarity classification and detection) [15]. Due to the nu-

merous application possibilities, one of the most preva-

lent types of study in graph analysis is node classifica-

tion. The goal of the node classification challenge is to

assign, using graph information, a specific label for each

unlabeled node in the graph [16]. Node classification, for

instance, may predict the study subject that every article

in the citation networks belongs to [17]. Each node in the

protein-protein interaction network can have one or more

gene ontology types ascribed to it [18]. Only a small sub-

set of the nodes in the training dataset contain labels,

which is the goal of semisupervised node classification,

as shown in Figure 1.

We give a study of graph neural networks in order to

compare various techniques in node classification. The

following list illustrates the paper's contributions:

- This survey offers an extensive review of the current

node classification graph neural network models. It

shows many well-known algorithms for each cate-

gory and develops a new taxonomy for these models.

- Based on a thorough evaluation, many popular algo-

rithms from each category are compared. These algo-

rithms are specifically rerunning on a number of well-

known benchmark datasets. The results of evalua-

tions are also used to conduct an analysis.

The rest of the paper is structured as follows: Section 2

discusses the first definition of a few notations that are

frequently used after introducing certain notions pertain-

ing to node classification. Then, in Section 3, many graph

neural network methods of various categories are pre-

sented. In Section 4, we evaluate graph neural network

methods for node classification on various datasets and

analyze these results.

Figure 1. Semi-supervised node classification illustration.

Grey relates to unlabeled nodes, while blue and red indicate

nodes for which the label is already known. The goal is to label

each grey node in accordance with all the information of those

colorful nodes.

2 Notations and Definitions

Definition 1 (Graph): Assume that there are n nodes

and m edges in the undirected graph 𝐺 = (𝑉, 𝐸), where

V = {v1, v2, . . . , vn} is a collection of nodes. The graph

is shown by an adjacency matrix denoted by the letter

𝐴 𝜖 {0,1}𝑛 ×𝑛 . If an edge connects nodes 𝑣𝑖and 𝑣𝑗, each

element Aij is set to 1; otherwise, it is set to 0. When self-

loops are included in the graph, an adjacency matrix

known as 𝐴 = 𝐴 + 𝐼 is created. Each node has a d-di-

mensional feature vector, and the feature matrix of all

nodes is displayed by the notation 𝑋 𝜖 𝑅𝑛 ×𝑑 where X =

{X1, X2, . . . , Xn} where Xi is the matching feature vector

of node vi. Additionally, one-hot encoding is utilized as

a feature for every node in unattributed graphs, i.e., X =

I.

Definition 2 (the k-hop neighbors)

The term "k-hop neighbors of ui" refers to a group of

nodes that are actually k hops away from ui and is formu-

lated as

Nk (i) = {u j |i ≠ j, min(sp (i , j), K) = k, ∀u j ∈ U}. (1)

When there is no edge between 𝑢𝑖 and 𝑢𝑗 , the shortest

path, denoted by sp(i, j), will be infinite. K is the highest

possible number of hops.

381 International Journal of Theoretical and Applied Research, 2024, 3(1)

3 Categorization and Frameworks

This section provides a thorough description of differ-

ent graph neural networks that can be applied to node

classification. Convolutional graph neural networks, at-

tention graph neural networks, and graph autoencoders

are the categories of these graph neural networks. We

provide a brief summary of each category in the para-

graphs that follow.

3.1 Graph Convolutional Technique

One of the most often used information aggregation

techniques in graph analysis is the graph convolutional

mechanism. This mechanism's fundamental principle is

to use pooling or convolutional operations on the graph

structure to obtain a higher representation of each node,

which is subsequently used in the node classifier. Graph

convolutional networks (GCNs), which are distinct from

CNNs on images and based on GNN models, are not af-

fected by the arrangement of nodes.

3.1.1 ChebNet Graph Convolutional Network

Defferrard et al. [19] developed a spectral-based graph

convolutional network named ChebNet, which includes

a quick localized spectral graph filter built from the Che-

byshev polynomial, in order to generalize CNN operators

to the graph domain. Specifically, ChebNet consists of

three primary processes, the construction of localized

convolutional filters, reducing the size of a graph, and a

pooling operation of the graph.

Graph Laplacian, which has the definition 𝐿 = 𝐷 −

𝐴 𝜖 𝑅𝑛×𝑛, is an essential operator in spectral graph anal-

ysis [20]. 𝐿 also has a normalized form that is created as

𝐿 = 𝐼𝑛 − 𝐷−
1

2 𝐴 𝐷 −
1

2 (2)

The formula for the Laplacian is 𝐿 = 𝑈Λ𝑈𝑇, where is the

diagonal matrix containing the 𝐿-derived eigenvalues,

and 𝑈 stands for the Fourier basis. diag() is a diagonal

matrix given by the input vector or matrix.

The input signal 𝑥 ∈ 𝑅𝑛 (each element associated with a

node) is then filtered using a spectral filter 𝕘𝜃 , which is

illustrated as follows:

𝕘𝜃(𝐿)𝑥 = 𝕘𝜃(UΛ𝑈𝑇)𝑥 = 𝑈𝕘𝜃(Λ)𝑈𝑇𝑥 (3)

Where 𝕘𝜃(Λ) = 𝑑𝑖𝑎𝑔(𝜃) is a nonparametric filter, 𝜃 re-

fers to the Fourier coefficients, and 𝑈𝑇𝑥 refer to the

graph Fourier transform of x.

The nonparametric filter 𝕘𝜃 , however, is difficult to learn

and unable to localize in space. Defferrard et al. [19] use

a recursive formulation of Chebyshev to compute

𝕘𝜃(𝐿) and a polynomial filter to solve these issues. The

filter can therefore be parametrized as

𝕘𝜃(Λ) = ∑ 𝜃𝑘𝑇𝑘(Λ̃)𝐾−1
𝑘=0 (4)

where [−1,1], 𝜆𝑚𝑎𝑥 represents the greatest eigenvalue of

𝐿, Λ̃ = 2Λ 𝜆𝑚𝑎𝑥 − 𝐼𝑛⁄ represents a diagonal matrix with

all components in the range [1, 1], and the parameter 𝜃 ∈

𝑅𝑘 signifies all coefficients of the Chebyshev

polynomial 𝑇𝑘(𝑥). 𝑇𝑘(𝑥) can be calculated precisely us-

ing a recursive method. 𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥, respec-

tively. 𝑇𝑘(𝑥) = 2𝑥𝑇𝑘−1(𝑥) − 𝑇𝑘−2(𝑥) . The previous

equation can be reformatted as follows:

𝕘𝜃(L)𝑥 = ∑ 𝜃𝑘𝑇𝑘(𝐿)𝑥𝐾−1
𝑘=0 (5)

The k-th order Chebyshev polynomial 𝑇𝑘(𝐿̃) Rn n can be

evaluated using the scaled graph Laplacian =

2𝐿 𝜆𝑚𝑎𝑥 − 𝐼𝑛⁄ . Since Eq. (5) is a K-order polynomial in

the Laplacian, the central vertex is therefore dependent

on its K-hop neighbors.

The hidden state is recursively updated as 𝑥̅𝑘 =

2𝐿̃𝑥̅𝑘−1 − 𝑥̅𝑘−2, where 𝑥̅0 = 𝑥 and 𝑥̅1 = 𝐿̃𝑥, according to

Defferrard et al.'s [19] denotation of 𝑥̅𝑘 = 𝑇𝑘(𝐿̃)𝑥 ∈ 𝑅𝑛.

This iterative procedure is depicted. The full filter, which

involves 𝒪(𝐾𝑚)operations, can be written as 𝑧 =

𝕘𝜃(𝐿)𝑥 = [𝑥0, 𝑥1, … . , 𝑥𝑘−1]𝜃.

3.1.2 Graph Convolution Networks (GCN)

Kipf and Welling [21] also suggest a spectral based on

GCN that aggregates the feature vector associated with

each node of its first-order approximate neighbors [22],

an alternative to using the information originated from

K-hop neighbors to represent the ChebNet node [19]. The

last hidden representation associated with each node is

then obtained by a deep neural network architecture that

is composed of stacking the graph convolutional layers

several times. As a result, the obtained representation is

similar to ChebNet in that it also contains information

about its multi-hop neighbors [19].

Kipf and Welling [21] specifically defined that amount

of hops as K = 1. As a result, Eq. (5) is transformed into

a linear function and written as

𝑧 = 𝜃0𝑇0(𝐿̃)𝑥 + 𝜃1𝑇1(𝐿̃)𝑥 = 𝜃0𝑥 + 𝜃1 (
2

𝜆𝑚𝑎𝑥
𝐿 − 𝐼𝑛) 𝑥

(6)

Kipf and Welling [21] addressed the issue of overfitting

to a graph's local structure and making the greatest eigen-

value as a 𝜆𝑚𝑎𝑥=2 to reduce the number of operations

and using a singular parameter 𝜃 = 𝜃0=−𝜃1. With this

configuration and Eq. (2), (6) is reformed as

𝑧 = 𝜃 (𝐼𝑛 + 𝐷−
1

2 𝐴 𝐷−
1

2) 𝑥 (7)

Here, all of the eigenvalues for the formula fall between

[0, 2], and all layers share the filter's parameters.

Be aware that stacking such convolutional operators

could lead to issues like numerical instability and explod-

ing or vanishing gradients when creating a deep neural

network model. Kipf and Welling [21] employed a renor-

malization trick technique to address these issues, so the

expression of Eq. (7) became

𝐼𝑛 + 𝐷−
1

2 𝐴 𝐷−
1

2 → 𝐷̃−
1

2 𝐴̃ 𝐷−
1

2 (8)

Ragab et al. 382

where 𝐴̃ = 𝐴 + 𝐼𝑛 is the adjacency matrix with a self-

loops.

The definition of Eq. (8), which is used when the in-

put signals 𝑥 ∈ 𝑅𝑛 with just one channel, was then

generalized by Kipf and Welling [21] to the case when

each signal has multiple channels 𝑋 ∈ 𝑅𝑛 ×𝑑. Here, "𝑑"

stands for the dimension of the node feature vector, or

the quantity of input channels. The following is the def-

inition of the convolutional filter for signal X:

𝑍 = 𝐷̃−
1

2 𝐴̃ 𝐷−
1

2 XW (9)

Here, the filter parameter matrix 𝑊 ∈ 𝑅𝑑×𝑓, the con-

volved feature matrix 𝑍 ∈ 𝑅𝑛×𝑓, and the dimension of

the embedding feature 𝑓 are all present.

A multi-layer Graph Convolution Network with a

layer-wise propagation rule is what Kipf and Welling

[21] intend to construct after designing the convolu-

tional filters of each layer:

 𝐻(𝑙+1) = 𝜎(𝐷̃−
1

2 𝐴̃ 𝐷−
1

2 𝐻𝑙𝑊𝑙) (10)

where 𝐻(𝑙) ∈ 𝑅𝑛×ℎ is the matrix of hidden layers, 𝑊(𝑙)

is a trainable weighted matrix, and ℎ is the upper repre-

sentation dimension. The input signal 𝑋 is used to ini-

tialize the variable 𝐻(0).

Kipf and Welling [21] suggested a two-layer GCN

model for semi-supervised node classification. Then

Kipf and Welling [21] established the following for-

ward propagation model:

𝑍 = 𝑓(𝑋, 𝐴) = 𝜎(𝐴̂ 𝑅𝑒𝐿𝑈(𝐴̂𝑋𝑊(0))𝑊(1) (11)

Where 𝑊(0) is a matrix that maps to the hidden represen-

tation of the input feature, 𝑊(1) is a matrix that maps the

hidden representation to the output, and 𝜎(.) Is a soft-

max function.

3.1.3 GraphSAGE Convolutional Network

ChebNet and GCN, however, cannot generalize to pre-

viously unseen nodes because they are fundamentally

transductive and depend on all nodes being present

throughout the training phase. Hamilton et al. [23] pro-

posed a spatial based on GCN called Graph-SAGE. To

obtain a higher representation for each node, Graph-

SAGE combined the feature information of nodes and

the structural features of a local neighborhood of the

node. This enables a model to become inductive and deal

with unseen nodes. Hamilton et al.'s [23] set of aggrega-

tors was created to learn embeddings by aggregating the

data of surrounding nodes around the current central

node rather than training several hidden representations

for each node independently. These aggregators are then

used to create GraphSAGE's forward propagation algo-

rithm. Existing 𝐾 aggregators can be identified by the

symbols AGGREGATEk, ∀𝑘 ∈ {1, … . , 𝐾} , and K pa-

rameter matrices 𝑊𝑘, ∀𝑘 ∈ {1, … . , 𝐾}, which serve as a

converters between various hops. The LSTM aggregator,

mean aggregator and pooling aggregator are the three

types of aggregators.

Hamilton et al. [23] first used AGGREGATE to gener-

ate the neighborhood vector aggregated ℎ𝑁(𝑖)
𝑘 by using

the information of all neighbors of 𝑣𝑖 which was gener-

ated in the preceding time step. This allowed each step k

to retrieve the hidden layer ℎ𝑖
𝑘 of each target node 𝑣𝑖. The

target node 𝑣𝑖 's current state is created by concatenating

ℎ𝑁(𝑖)
𝑘 with its before hidden state, ℎ𝑖

𝑘−1, and then using

𝑊𝑘 's activation function to transform this concatenated

vector. Each node's final feature representation 𝑍𝑖 is con-

structed in the 𝐾-th phase by repeating the previously

mentioned procedure.

3.1.4 Graph Neural Network Using Feature Selection-

Based Centrality Measures (GNNFC)

Previous methods used all features to represent nodes. It

becomes more computationally expensive as the number

of hops rises since the number of combinations for input

features increases exponentially. In addition, it is neces-

sary to enhance the model's prediction capability. As a

result, the feature selection approach may be used to

build a GNN model. In [24], GNNFC learns to detect rel-

evant features while minimizing the influence of insig-

nificant features by first taking all features as input.

The Chi-square between the objective and each feature is

computed in GNNFC, and the features that have the

highest Chi-square scores are selected. Since graph cen-

tralities have been used to capture important information

from the graphs, with regard to graph centrality

measures, we provide additional measurements such as

betweenness and closeness. These features are com-

puted, combined with the chosen features derived from

the input features, and then fed into GNN.

The merge procedure can be defined as follows:

X=Concat(selectedFeat,CentralityFeat) (12)

where selectedFeat denotes the features chosen using the

Chi-square approach and centralityFeat denotes the fea-

tures computed using the degree, betweenness, close-

ness, and eigenvector centrality measures.

Then, Asmaa et al. [24] proposed a design space for

GNNs composed of the following four steps:

- A preprocessing layer that creates initial node represen-

tations using a multilayer perceptron (MLP).

- A GCN-based message-passing layer.

- A post-processing layer that creates final node embed-

dings using MLP.

- The final node embeddings feed into a SoftMax layer

for predicting the node class.

The original node representation is processed ℎ𝑣
0 =

𝑋0 using an MLP in the first phase to create a message.

The representation of a node is then repeatedly updated

383 International Journal of Theoretical and Applied Research, 2024, 3(1)

in a message-passing step by aggregating the neighbors'

representations. After doing aggregation several times of

k, a node's representation captures the structural data in

its 𝑘-hop network neighborhood.

ℎ𝑣
(𝑘+1)

= 𝐴𝐺𝐺 ({𝐴𝐶𝑇 (𝐺𝑁(𝑊(𝑘)ℎ𝑢
(𝑘)

+ 𝑏(𝑘))) , 𝑢 ∈

𝑁(𝑣)}) (13)

Where ℎ𝑢
(𝑘)

 is the 𝑘 − 𝑡ℎ layer embedding of node,

𝑊(𝑘), 𝑏(𝑘) are trainable weights, and 𝑁(𝑣) is the local

neighborhood of 𝑣.

The accepted GNN in (13) starts with a linear layer and

then has a number of functions, including the nonlinear

activation function ACT (.), which takes 𝑅𝑒𝐿𝑈 into ac-

count, batch renormalization (BR), and aggregation

function (𝐴𝐺𝐺), which takes 𝑆𝑈𝑀 into account.

We used GN to normalize node features in Eq. (13) while

training. Hamilton et al. claim that jobs where node fea-

ture information is much more essential than structural

information or where there is a wide of node degrees

range are the ones where normalization is most helpful.

The GN is particularly effective at stabilizing the value

in GNNs, especially deep GNNs. As a result, normaliza-

tion is being used by more and more GNNs.

Deep GNN models typically produce poor performance

as a result. In this case, we examine dense connections

termed SKIP-CAT, which combines embeddings from

all prior layers. One method is to use the skip connections

to concatenate the outputs and inputs of GNN.

3.1.5 Dual-Net Graph Neural Network

A Dual-Net GNN architecture that consists of a classi-

fier model and a selection model is suggested by Sunil et

al. in [25]. The selector model learns to give the classifier

the ideal input subset for the greatest performance, while

the classifier model trains on a subset of the input node's

attributes to predict node labels. Together, these two

models are trained to identify the most accurate collec-

tion of features for node label predictions.

Classifier Network:

It is a two-layered 𝑀𝐿𝑃 neural network. The parameter

𝜃 in 𝑓𝑐(𝜃; 𝑋,𝑚) is used to parameterize the classifier

network. A portion of the node feature matrices, ∈ 𝑀 ,

serves as the network's input. Each input matrix is line-

arly processed, and the result is summed in the first layer.

The second layer is then mapped to non-linearity

(ReLU). After the joint model has been trained, the for-

mula 𝑓𝑐(𝜃
∗; 𝑋,𝑚∗) is applied to the test dataset, where

𝑚∗ is the ideal subset of node feature matrices as input

and indicates the learned classifier parameters.

Selector Network:

The input/output configuration of the selection network

differs from that of the other two-layered MLPs. Based

on the classifier's performance history, the selector's job

is to identify the best feature subset of 𝑋. The selector

model with 𝜑 parameter that is used, denoted as 𝑓𝑐(𝜑,𝑚)

.A one-hot encoding vector 𝑚⃗⃗ of size 2𝐾 + 1 that rep-

resents the subset of feature matrices to be chosen in ac-

cordance with 𝑚 serves as the input to the selector net-

work. For instance, the subset {𝑋, (𝐴 + 𝐼)𝑋, 𝐴3𝑋} has

𝑚⃗⃗ = (1,0,1,0,0,1,0) for 𝐾 = 3. One scalar value is pro-

duced as the output. The selector net's goal is to develop

the ability to predict the classifier's typical performance

on the mask matching the input subset.

3.1.6 Feature Extraction and Selection for GNN

Deepak et al. [26] Considered a network with ’𝑛’ nodes

and ’𝑓’ features. By using the notion of feature selection,

we can reduce the number of features from 𝑓 to 𝑘 where

𝑘 is the number of features picked (where 𝑘 < 𝑓). The

dataset is then trained using the Gumbel feature selection

matrix, which is the matrix with the features chosen

when Gumbel-Softmax is applied, and its accuracy is

evaluated. They used the Adam optimizer as a metric for

optimization and negative log-likelihood loss as a loss

function to determine the loss.

As employed in their experiment, the two-layer Graph

Convolution Network (GCN) is defined as

𝐺𝐶𝑁(𝑋, 𝐴) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐴(𝑅𝑒𝐿𝑢(𝐴𝑋𝑊𝐺𝑊1))𝑊2) (14)

We employ the following two-layer Graph Convolution

Network, which is defined below, to validate the chosen

features and determine the accuracy for classification.

𝐺𝐶𝑁(𝑋, 𝐴) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐴(𝑅𝑒𝐿𝑢(𝐴𝑋𝑊𝐺
′))𝑊2) (15)

Where 𝑊𝐺: Gumbel-Softmax feature extraction/feature

selection matrix.

𝑊𝐺
′ : feature extraction/feature selection matrix.

𝑊1,𝑊2: Layer-specific trainable weight matrix.

3.2 Attention Technique

One of the most practical artificial intelligence archi-

tectures is the attention mechanism. Different neighbours

should contribute differently to the target node rather

than using a consistent weight. Additionally, every node

has a different number of neighbors. Dealing with vary-

ing sizes of inputs and concentrating on the most im-

portant information are advantages of attention mecha-

nisms. Applying an attention mechanism to node classi-

fication is thus natural.

3.2.1 Graph Attention Networks (GAT)

When creating the higher hidden representation, Vel-

ickovi'c et al. [3] proposed an attention-based GCN that

may be utilized to build arbitrary deep GAT by stacking

such attention layers. This allowed them to capture the

varying importance of the neighborhood for a target

node. The GAT model's overall goal is to create a new

Ragab et al. 384

set of features. Using 𝑋 = {𝑋1, 𝑋2, … . 𝑋𝑛} as the model

inputs, 𝑍 = {𝑍1, 𝑍2, … . 𝑍𝑛} 𝜖 𝑅
𝑛 ×𝑓 for all nodes. To ob-

tain the hidden representations 𝐻𝑖 = 𝑊𝑋𝑖 ∈ 𝑅𝑓 for each

node, GAT initially uses a learnable linear transformer.

This transformer's parametrized weight matrix is indi-

cated here by the notation 𝑊 ∈ 𝑅𝑓×𝑑. Following that,

Velickovic et al. [3] developed an attentional function to

calculate attention weights between each node pair using

the previously mentioned hidden representation

𝑒𝑖𝑗 = 𝐴𝑇𝑇𝐸𝑁𝑇𝐼𝑂𝑁(𝐻𝑖 , 𝐻𝑗) (16)

In more detail, 𝑒𝑖𝑗 indicates the weighting of the node 𝑣𝑗

in the representation of a node 𝑣𝑖. Keep in mind that in

Eq. (16), Velickovi'c et al. [57] only employ the first-or-

der relevant neighbors. Using a softmax function, 𝑒𝑖𝑗 is

normalized to improve the comparability of the weight

coefficients between various nodes, and the improved

version is described as

𝛼𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗(𝑒𝑖𝑗) =
exp (𝑒𝑖𝑗)

∑ exp (𝑒𝑖𝑘)𝑣𝑘∈𝑁(𝑖)
 (17)

In reality, Velickovi'c et al. [3] computed the normal-

ized coefficients using simply a single FNN (forward

neural network) with an activation function. Eq. (17) is

reformed as a result as

𝛼𝑖𝑗 =
exp (𝜎(𝑎𝑇[𝐻𝑖 ||𝐻𝑗]))

∑ 𝑒𝑥𝑝 (𝜎(𝑎𝑇[𝐻𝑖 ||𝐻𝑘]))𝑣𝑘∈𝑁(𝑖)

 (18)

where 𝜎(.) is implemented by the function LeakyReLU

and 𝑎 ∈ 𝑅2𝑓 is the weight vector of the suggested at-

tention mechanism carried out by a single-layer FNN.

Once all of a node's neighbors' coefficients have been

calculated, all of their neighbors are combined linearly

to produce the last representation for each target node,

which is displayed as follows:

𝑍𝑖 = 𝜎 (∑ 𝛼𝑖𝑗𝐻𝑗𝑣𝑗∈𝑁(𝑖)) (19)

3.3 Graph Autoencoders Technique

Most unsupervised technologies now for learning a

low-dimensional embedding from massive unlabeled

training data is the autoencoder mechanism. Addition-

ally, there are numerous node classification data sets with

a few nodes that have labels. This approach must be used

in order to learn a higher representation for each node.

3.3.1 Deep Graph Infomax (DGI)

Most unsupervised learning techniques now in use for

creating node embeddings are built on the random walk

technique. These methods, however, focus excessively

on localized structure information [28], and the perfor-

mance largely depends on the selection of hyperparame-

ters [29]. DGI is an unsupervised learning technique,

which is based on the mutual information between the

entire graph's global representation and the patch repre-

sentation of special input, was developed by Velickovic

et al. [30] as a solution to this issue. Particularly, DGI

introduces mutual information maximization into the

graph data.

Velickovi'c et al. [30] used a graph convolutional en-

coder: 𝑅𝑛×𝑑 × 𝑅𝑛×𝑛 → 𝑅𝑛×𝑓 , such that = 𝑓(𝑋, 𝐴) , to

construct 𝐻𝑖 (a high-level embedding) ∀𝑣𝑖 . Keep in

mind that 𝐻𝑖 was referred to by Velickovi'c et al. [30] as

the patch representation of vi where this embedding was

created by summing up a patch of graph data. A summary

vector s was developed by Velickovic et al. [30] to rep-

resent the global data of the complete network. The

readout function ℛ ∶ 𝑅𝑛×𝑑 → 𝑅𝑑 , which accepts the de-

rived patch representations as input and may be written

as 𝑠 = ℛ(𝑓(𝑋, 𝐴)) = ℛ(𝐻) , is used to compute the

summary vector s.

Then, Velickovi'c et al. [30] used the discriminator 𝒟 ∶
 𝑅𝑑 × 𝑅𝑑 → 𝑅 to assign a probability score to each

patch-summary pair. Keep in mind that the objective

function will use this score after that.

4 Evaluation Analysis

On a number of well-known node classification da-

tasets, we compare the aforementioned graph neural net-

work models in this section. We begin by thoroughly de-

scribing the statistical data and parameter settings of the

datasets. Finally, classification outcomes from the vari-

ous approaches are offered.

4.1 Datasets

With two benchmark datasets, as mentioned in Table 1,

that are often used in GNN literature, we perform an

evaluation of the fully supervised node classification

problem. The citation network-based datasets Cora and

Citeseer [17] are generally regarded as homophily da-

tasets. We use publicly available data splits to give a fair

comparison. Since all parameters for all algorithms are

specified based on the original articles, we compare the

performance of different approaches using accuracy

evaluation criteria, as in [31]

Table 1. Details surrounding the datasets used in this paper

Datasets Cora Citeseer

Number of Nodes 2708 node 3327 node

Number of Edges 5429 edge 4732 edge

Number of Avg. Deg 3.90 2.74

Number of Features 1433 3703

Number of Classes 7 6

4.2 Evaluation results

This section discusses the thorough evaluation of the

existing GNN model for node classification tasks. The

outcomes are also extensively reported as shown in Table

2. Two citation network benchmark datasets, which are

common citation networks with identical training and

385 International Journal of Theoretical and Applied Research, 2024, 3(1)

testing split [17], are selected to compare the perfor-

mance of various techniques.

Table 2. compares the accuracy of the node classification re-

sults for the well-known GNN models.

 Cora Citeseer

ChebNet [32] 78.08± 0.86 67.87 ± 1.49

GCN [24] 87.28 ± 1.26 76.68 ± 1.64

GraphSAGE [24] 86.90 ± 1.04 76.04 ±1.30

GNNFC [24] 89.5 80.1

Dual-Net GNN [25] 87.77 ±1.16 77.15 ± 1.58

Deepak’s method [26] 73.80 61.80

GAT [33] 82.68 ± 1.80 75.46 ± 1.72

DGI [26][30] 82.30 ± 0.6 71.80 ± 0.7

 5 Conclusion

We gave an overview of graph neural networks in this

research and compared them in node classification tasks.

These graph analysis algorithms were categorized into

three groups based on the three main learning paradigms:

convolutional technique, attention technique, and auto-

encoder technique. For each category, a thorough intro-

duction to a number of well-liked techniques was given.

To examine the effectiveness of node classification, de-

tailed comparative tests on two benchmark datasets were

also run.

References

[1] T. N. Kipf and M. Welling, Semi-supervised classifi-

cation with graph convolutional networks, Prepr.

arXiv1609.02907, 2016.

https://arxiv.org/abs/1609.02907

[2] W. L. Hamilton, R. Ying, and J. Leskovec, Inductive

representation learning on large graphs, Prepr.

arXiv1706.02216, 2017.

https://arxiv.org/abs/1706.02216

[3] P. Veličković, G. Cucurull, A. Casanova, A. Romero,

P. Liò, and Y. Bengio, Graph attention networks, Prepr.

arXiv1710.10903, 2017

https://arxiv.org/abs/1710.10903

[4] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L.

Hamilton, and J. Leskovec, Graph convolutional neural

networks for web-scale recommender systems, Proceed-

ings of the 24th ACM SIGKD, Jun. 2018, doi:

10.1145/3219819.3219890.

https://arxiv.org/abs/1806.01973

[5] W. Jin, R. Barzilay, and T. Jaakkola, Junction tree

variational autoencoder for molecular graph generation,

in Proceedings of the 35th International Conference on

Machine Learning, 80(2018) 2323–2332.
https://arxiv.org/abs/1802.04364

[6] M. Zitnik and J. Leskovec, Predicting multicellular

function through multi-layer tissue networks, Bioinfor-

matics, 33(14)(2017) 190-198, doi: 10.1093/bioinfor-

matics/btx252. https://academic.oup.com/bioinformat-

ics/article/33/14/i190/3953967

[7] Y. Rong, W. Huang, T. Xu, and J. Huang, DropEdge:

Towards deep graph convolutional networks on node

classification, Prepr. arXiv1907.10903, 2019.
https://arxiv.org/abs/1907.10903

[8]L. Elman, Finding structure in time. Cogn, Sci.

14(2)(1990) 179–211. https://www.sciencedi-

rect.com/science/article/abs/pii/036402139090002E

[9] E. Bullmore, O. Sporns, Complex brain networks:

graph theoretical analysis of structural and functional

systems, Nat. Rev. Neurosci. 10(3) 186 (2009).
https://www.nature.com/articles/nrn2575

[10]J. Yang, J. Leskovec, Community-affiliation graph

model for overlapping network community detection, In:

Proceedings of 12th IEEE International Conference on

Data Mining,(2012) 1170–1175. https://cs.stan-

ford.edu/people/jure/pubs/agmfit-icdm12.pdf

[11] W. Huang., G. Song, H. Hong, K. Xie, Deep archi-

tecture for traffic flow prediction: Deep belief networks

with multitask learning. IEEE Trans. Intell. Transp. Syst.

15(5) (2014) 2191–2201. https://ieeexplore.ieee.org/ab-

stract/document/6786503

[12] G. Ji, K. Liu, S. He, J. Zhao, Knowledge graph com-

pletion with adaptive sparse transfer matrix, In: Proceed-

ings of the 30th AAAI Conference on Artificial Intelli-

gence,(2016) 985–991.
https://ojs.aaai.org/index.php/AAAI/article/view/10089

[13] M. Gori, G. Monfardini, F. Scarselli, A new model

for learning in graph domains, In: Proceedings of the

2005 IEEE International Joint Conference on Neural

Networks, (2005) 729–734. https://ieeex-

plore.ieee.org/document/1555942

[14] F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner,

G. Monfardini, The graph neural network model, IEEE

Trans. Neural Netw, 20(1) (2009) 61–80.
https://ieeexplore.ieee.org/document/4700287

[15] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, D. Song,

Neural network-based graph embedding for cross-plat-

form binary code detection. In: Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communi-

cations Security, (2017) 363–376.

https://arxiv.org/abs/1708.06525

[16] P. Kazienko, T. Kajdanowicz, Label-dependent

node classification in the network, Neurocomputing.

75(1)(2012) 199–209.
https://www.sciencedirect.com/science/arti-

cle/abs/pii/S092523121100508X

[17] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gal-

ligher, Eliassi- Rad, Collective classification in network

data, AI Mag. 29(3), 93–93 (2008)

https://ojs.aaai.org/aimagazine/index.php/aimaga-

zine/article/view/2157

[18] A. Subramanian, P. Tamayo, V.K. Mootha, S.

Mukherjee, B.L. Ebert, M.A. Gillette, Paulovich, A.,

Pomeroy, S.L., Golub, T.R., Lander, E.S., et al, Gene set

enrichment analysis: a knowledge based approach for in-

terpreting genome-wide expression profiles. Proc. Natl.

Acad. Sci USA 102(43) (2005). 15545 15550.

https://pubmed.ncbi.nlm.nih.gov/16199517/

https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1806.01973
https://arxiv.org/abs/1802.04364
https://academic.oup.com/bioinformatics/article/33/14/i190/3953967
https://academic.oup.com/bioinformatics/article/33/14/i190/3953967
https://arxiv.org/abs/1907.10903
https://www.nature.com/articles/nrn2575
https://cs.stanford.edu/people/jure/pubs/agmfit-icdm12.pdf
https://cs.stanford.edu/people/jure/pubs/agmfit-icdm12.pdf
https://ieeexplore.ieee.org/abstract/document/6786503
https://ieeexplore.ieee.org/abstract/document/6786503
https://ojs.aaai.org/index.php/AAAI/article/view/10089
https://ieeexplore.ieee.org/document/1555942
https://ieeexplore.ieee.org/document/1555942
https://ieeexplore.ieee.org/document/4700287
https://arxiv.org/abs/1708.06525
https://www.sciencedirect.com/science/article/abs/pii/S092523121100508X
https://www.sciencedirect.com/science/article/abs/pii/S092523121100508X
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157
https://pubmed.ncbi.nlm.nih.gov/16199517/

Ragab et al. 386

[19] M. Defferrard, X. Bresson, P. Vandergheynst, Con-

volutional neural networks on graphs with fast localized

spectral filtering, In: Proceedings of the 30th Conference

on Neural Information Processing Systems, (2016)

3844–3852. https://arxiv.org/abs/1606.09375

[20] D.A. Spielman, Spectral graph theory and its appli-

cations, In: Proceedings of the 48th Annual IEEE Sym-

posium on Foundations of Computer Science,(2007) 29–

38.
https://ieeexplore.ieee.org/document/4389477

[21] T.N. Kipf, M. Welling, Semi-supervised classifica-

tion with graph convolutional networks, In: Proceedings

of the 4th International Conference on Learning Repre-

sentations (2016) https://arxiv.org/abs/1609.02907

[22] D.K. Hammond, P. Vandergheynst, Gribonval, R,

Wavelets on graphs via spectral graph theory. Appl.

Comput. Harmon. Anal. 30(2) (2011), 129–150.

https://arxiv.org/abs/0912.3848

[23] W. Hamilton, Z. Ying, J. Leskovec, Inductive rep-

resentation learning on large graphs, In: Proceedings of

the 31st Conference on Neural Information Processing

Systems, (2017) 1024–1034.
https://arxiv.org/abs/1706.02216

[24] A. M. Mahmoud, A.S. Desuky, H. F. Eid and H. A.

Ali, Node classification with graph neural network based

centrality measures and feature selection, International

Journal of Electrical and Computer Engineering

(IJECE), 13(2)(2023) 2114-2122.
https://ijece.iaescore.com/index.php/IJECE/arti-

cle/view/28677

[25] K.M. Sunil, Feature selection: Key to enhance node

classification with graph neural networks, CAAI Trans-

actions on Intelligence Technology, 8(2023) 14-28.
https://ietresearch.onlineli-

brary.wiley.com/doi/full/10.1049/cit2.12166

[26] D. B. Acharya and H. Zhang, Feature selection and

extraction for graph neural networks, in Proceedings of

the 2020 ACM Southeast Conference, (2020) 252–255,

doi: 10.1145/3374135.3385309.
https://arxiv.org/abs/1910.10682

[27] https://petar-v.com/GAT/.

[28] L.F. Ribeiro, P.H. Saverese, D.R. Figueiredo,

Struc2vec: Learning node representations from structural

identity, In: Proceedings of 23rd ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data

Mining, (2017) 385–394.
https://arxiv.org/abs/1704.03165

[29] A. Grover, J. Leskovec, Node2vec: Scalable feature

learning for networks, In: Proceedings of the 22ndAC-

MSIGKDDInternational Conference on Knowledge Dis-

covery and Data Mining,(2016) 855–864.
https://arxiv.org/abs/1607.00653

[30] P. Veliˇckovi´c, W. Fedus, W.L. Hamilton, P. Liò,

Y. Bengio, R.D. Hjelm, Deep graph infomax, In: Pro-

ceedings of the 6th International Conference on Learning

Representations (2018).
https://arxiv.org/abs/1809.10341

[31] S. Xiao, S. Wang, Y. Dai et al, Graph neural net-

works in node classification: survey and evaluation, Ma-

chine Vision and Applications 33(4) (2022).

https://doi.org/10.1007/s00138-021-01251-0.

[32] M. He, Z. Wei, and J. Wen, Convolutional Neural

Networks on Graphs with Chebyshev Approximation,

Revisited, 36th Conference on Neural Information Pro-

cessing Systems (NeurIPS), 2022.
https://arxiv.org/abs/2202.03580

[33] S. K. Maurya, X. Liu, and T. Murata, Simplifying

approach to node classification in Graph Neural Net-

works, Journal of Computational Science, 62(2022), doi:

10.1016/j.jocs.2022.101695.
https://arxiv.org/abs/2111.06748

https://arxiv.org/abs/1606.09375
https://ieeexplore.ieee.org/document/4389477
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/0912.3848
https://arxiv.org/abs/1706.02216
https://ijece.iaescore.com/index.php/IJECE/article/view/28677
https://ijece.iaescore.com/index.php/IJECE/article/view/28677
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/cit2.12166
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/cit2.12166
https://arxiv.org/abs/1910.10682
https://arxiv.org/abs/1704.03165
https://arxiv.org/abs/1607.00653
https://arxiv.org/abs/1809.10341
https://doi.org/10.1007/s00138-021-01251-0
https://arxiv.org/abs/2202.03580
https://arxiv.org/abs/2111.06748

