Eigenvalues for the Steklov problem via Ljusternic– Schnirelman principle | ||
| Journal of the Egyptian Mathematical Society | ||
| Volume 21, Issue 1, April 2013, Pages 16-20 PDF (313.43 K) | ||
| DOI: 10.1016/j.joems.2012.10.006 | ||
| Authors | ||
| G.A. Afrouzi* 1; M. Mirzapour1; S. Khademloo2 | ||
| 1Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran | ||
| 2Faculty of Basic Sciences, Babol University of Technology, Babol, Iran | ||
| Abstract | ||
| This paper deals with the existence of nondecreasing sequence of nonnegative eigenvalues for the systems divðaðxÞjrujp2ruÞ ¼ bðxÞjujp2u in X; jrujp2 @u @n ¼ kcðxÞjujp2u on @X; ( by using the Ljusternic–Schnirelman principle, where X is a bounded domain in RN(N P2). | ||
| Keywords | ||
| p-Laplacian systems; Eigenvalue problems; Variational methods; Ljusternic–Schnirelman principle | ||
|
Statistics Article View: 61 PDF Download: 33 |
||