Eigenvalues for the Steklov problem via Ljusternic– Schnirelman principle | ||
Journal of the Egyptian Mathematical Society | ||
Volume 21, Issue 1, April 2013, Pages 16-20 PDF (313.43 K) | ||
DOI: 10.1016/j.joems.2012.10.006 | ||
Authors | ||
G.A. Afrouzi* 1; M. Mirzapour1; S. Khademloo2 | ||
1Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran | ||
2Faculty of Basic Sciences, Babol University of Technology, Babol, Iran | ||
Abstract | ||
This paper deals with the existence of nondecreasing sequence of nonnegative eigenvalues for the systems divðaðxÞjrujp2ruÞ ¼ bðxÞjujp2u in X; jrujp2 @u @n ¼ kcðxÞjujp2u on @X; ( by using the Ljusternic–Schnirelman principle, where X is a bounded domain in RN(N P2). | ||
Keywords | ||
p-Laplacian systems; Eigenvalue problems; Variational methods; Ljusternic–Schnirelman principle | ||
Statistics Article View: 56 PDF Download: 31 |