Eigenvalues for the Steklov problem via Ljusternic– Schnirelman principle | ||||
Journal of the Egyptian Mathematical Society | ||||
Volume 21, Issue 1, April 2013, Page 16-20 PDF (313.43 K) | ||||
DOI: 10.1016/j.joems.2012.10.006 | ||||
![]() | ||||
Authors | ||||
G.A. Afrouzi* 1; M. Mirzapour1; S. Khademloo2 | ||||
1Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran | ||||
2Faculty of Basic Sciences, Babol University of Technology, Babol, Iran | ||||
Abstract | ||||
This paper deals with the existence of nondecreasing sequence of nonnegative eigenvalues for the systems divðaðxÞjrujp2ruÞ ¼ bðxÞjujp2u in X; jrujp2 @u @n ¼ kcðxÞjujp2u on @X; ( by using the Ljusternic–Schnirelman principle, where X is a bounded domain in RN(N P2). | ||||
Keywords | ||||
p-Laplacian systems; Eigenvalue problems; Variational methods; Ljusternic–Schnirelman principle | ||||
Statistics Article View: 49 PDF Download: 20 |
||||