On generalized Jordan *-derivation in rings | ||||
Journal of the Egyptian Mathematical Society | ||||
Volume 22, Issue 1, 2014, Page 11-13 PDF (320.77 K) | ||||
Document Type: Original Article | ||||
DOI: 10.1016/j.joems.2013.04.011 | ||||
![]() | ||||
Authors | ||||
Nadeem ur Rehman Rehman; Abu Zaid Ansari; Tarannum Bano | ||||
Department of Mathematics, Aligarh Muslim University, Aligarh 202 002, India | ||||
Abstract | ||||
Let n P 1 be a fixed integer and let R be an (n+1)!-torsion free *-ring with identity element e. If F, d:Rfi R are two additive mappings satisfying F(xn+1) = F(x)(x*)n + xd(x)(x*)n1+ x2d(x)(x*)n2+ +xnd(x) for all x 2 R, then d is a Jordan *-derivation and F is a generalized Jordan *-derivation on R. | ||||
Keywords | ||||
Additive mappings; Semiprime rings and involution | ||||
Statistics Article View: 29 PDF Download: 52 |
||||