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Abstract

In this study, a new form of a quadratic spline is obtained, where the coefficients are
determined explicitly by variational methods. Convergence is studied and parity
conservation is demonstrated. Finally, the method is applied to solve integral equations.
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Introduction
In Mathematics, Physics, and Engineering, among other disciplines, there is a great need
to adjust discrete sets of data and to approximate functions. In general, it is desired
to know the values at intermediate points, which can be solved through interpolation
polynomials. In practice, high-order polynomials can introduce significant errors due to
various factors. Generally, these polynomials present fluctuations that are not present in
the function to interpolate. For this reason, in this work, the piecewise interpolation will
be considered, which is particularly useful when the data to adjust have a smooth behav-
ior alternated with strong changes. The focus will be on quadratic piecewise interpolation
S of continuous real functions. In the literature, methods and algorithms that depend on a
determined criterion in the calculation of one of the coefficients of S are presented. In [1],
a good development of interpolation methods is exposed, particularly spline methods. In
[2], some optimization algorithms can be consulted.
There is a very large and current body of literature on quadratic splines and colloca-

tion methods. In [3], quadratic spline interpolation is used where the coefficients of the
polynomials are determined in matrix form, similarly in [4]. Typically, all of these meth-
ods require the resolution of algebraic systems or recursive equations. In this article,
a variational alternative that minimizes the fluctuations of the interpolation polyno-
mial S is presented. Its coefficients are determined explicitly through simple arithmetic
computations.
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There is great interest of the Fredholm-Volterra integral equation in engineering,
physics, and other disciplines, which drives a further need to find solutions. As is well
known, explicit solutions are very difficult to obtain, so approximation methods should
be in order here. There are many works which have analyzed and proposed numerical
methods, as well as other based on the methods of splines. A recent interesting work is
[5] in which they apply the collocation method using Chebyshev’s polynomials to numer-
ically evaluate the problem of Fredholm-Volterra; in [6] this kind of integral, equations
are solved with B-Splines; in [7], fifth-order splines are used; in [8], the quadratic spline
with end condition is utilized; and in [9], variable-order fractional functional differential
equations are solved with Legendre collocation. In the present article, the spline obtained
is used to solve Fredholm-Volterra integral equations and fractional differential equations.
An advantage of the spline presented in this work with respect to the cited spline meth-

ods is that an explicit law is determined for the computation of the coefficients, which
avoids the resolution of algebraic systems that, although linear, are not exempt from
method error, plus the possibility of not being well conditioned which requires a rescaling
of the system. As for the application to integral equations, in particular the differen-
tial equations with fractional derivative, the need to solve an algebraic system lies in the
lack of knowledge of the solution, but even so, the calculation of the coefficients of the
algebraic system is simple and explicit.
The work is organized as follows: in “The quadratic spline” section, the interpolator

is presented; in the “Convergence analysis” section, the convergence is studied; in the
“Parity conservation” section, it is shown that S maintains the parity of the function to
be interpolated; in the “Fredholm integral equation” section, the results are applied for
Fredholm linear integral equations, similarly for Volterra linear integral equations in the
“Volterra integral equation” section; in the “Examples” section, the numerical results are
shown; and finally, in the “Conclusions” section, the conclusions are presented.

The quadratic spline
Consider an interval [ a, b] in which n + 1 equidistant nodes x0 = a < x1 < . . . < xn = b
are selected, where xk − xk−1 = h, k = 1, . . . , n . Let y :[ a, b]→ C be a C1 function,
and consider yk = y(xk), k = 0, . . . , n. Let Ik :=[ xk−1, xk], k = 1, . . . , n. It is desired
to determine the quadratic piecewise interpolator S(x) such that interpolates y(x) in xk ,
k = 0, . . . , n and such that S′(x) is continuous in the nodes xk , k = 1, . . . , n − 1.
Let S(x) be the function in [ x0, xn] defined through the polynomials Pk(x) so that:

S(x) = Pk(x), x ∈ Ik , k = 1, . . . , n. (1)

Since S is an interpolator, Pk(x) must verify:

Pk(xk−1) = yk−1, k = 1, . . . , n,

Pk(xk) = yk , k = 1, . . . , n.

The continuity of S′(x) imposes that:

P′
k(xk) = P′

k+1(xk), k = 1, . . . , n − 1. (2)

Lagrange polynomials pk(x) over Ik are built as:

pk(x) = x − xk−1
h

yk − x − xk
h

yk−1, k = 1, . . . , n, (3)
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which satisfy pk(xk−1) = yk−1, pk(xk) = yk , k = 1, . . . , n. Then:

Pk(x) = pk(x) + ak(x − xk−1)(x − xk), k = 1, . . . , n. (4)

In [3, 4], the coefficients ak are obtained by linear algebraic systems. Here, an explicit
formula will be found. From (2) and through simple algebraic operations:

ak+1 = �k − ak , k = 1, . . . , n − 1, (5)

�k = yk−1 − 2yk + yk+1
h2

,

from where ak = ak(a1), linear in a1. The coefficient a1 is determined from an additional
condition.
From (5):

ak = (−1)k+1a1 + rk , k ≥ 2, (6)

rk = (−1)k+1
k−1∑

j=1
(−1)j�j, k ≥ 2. (7)

Thus:

ak = (−1)k+1

⎛

⎝a1 +
k−1∑

j=1
(−1)j�j

⎞

⎠ , k ≥ 2. (8)

In this way, an explicit expression is available in terms of elementary functions, in order
to calculate the coefficients of the polynomial S. In addition, if we define r1 = 0, it is easy
to show that:

rk+1 = �k − rk , k = 1, . . . , n − 1.

Next, in order to minimize the fluctuations, a1 is determined such that the sum of the
quadratic errors between Pk(x) and pk(x) in each Ik is minimum. Let E be defined as
E = ∑n

k=1 Ek , where:

Ek =
xk∫

xk−1

[Pk(x) − pk(x)]2 dx.

Taking into account (3) and (4):

E = E(a1) =
n∑

k=1
a2k

xk∫

xk−1

(x − xk)2(x − xk−1)
2 dx,

from where:

E(a1) = h5

30

n∑

k=1
a2k .

Then, recalling (6), results ∂
∂a1 ak = (−1)k+1 from where ∂2E(a1)

∂a21
= 1

15nh
5 > 0.

Therefore, the solution a1 that minimizes E is such that ∂E(a1)
∂a1 = 0. This leads to:

a1 = 1
n

n∑

k=1
(−1)krk .
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From (7):

a1 = −1
n

n−1∑

j=1
(n − j)(−1)j�j. (9)

Finally, combining (8) and (9):

ak = (−1)k+1
n−1∑

j=1

(
j
n

+ sj − 1
)

(−1)j�j, k ≥ 2, (10)

where sj = 1 if j ≤ k − 1 and sj = 0 if j > k − 1.
Taking into account the definition of �j:

ak =
n∑

j=0
ck,j yj, (11)

where ck,j is given by:

ck,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(−1)k
h2 β1 if j = 0

(−1)k+1

h2 (2β1 + β2) if j = 1
(−1)k+j

h2 (βj−1 + 2βj + βj+1) if 1 < j < n − 1
(−1)k+n−1

h2 (2βn−2 + βn−1) if j = n − 1
(−1)k+n

h2 βn−1 if j = n

where βj = j
n if j ≤ k − 1 and βj = j

n − 1 if j > k − 1.
(11) can be rewritten in matrix form asA = C ·Y being the matrices Yn+1,1 = {yj}j=0,...,n

and Cn,n+1 = {ck,j}j=0,...,n
k=1,...,n. Note that the latter only depends on x0, h, and n. (3) and (4)

define the matrices pn,1(x) = {pk(x)}k=1,...,n, Pn,1(x) = {Pk(x)}k=1,...,n. Then, the spline S
can be written in the following matrix form:

P(x) = p(x) + X(x) · A = p(x) + X(x) · C · Y .

The importance of this equation lies in the fact that the matrix C is only once calculated
because it only depends on x0, h, and n. It does not depend on the function to interpolate.
For each data collection Y , the only new calculation is the scalar product C · Y .

Convergence analysis
Here, we will prove that the convergence order obtained for the spline presented here is
O(h) when the interpolated function has a bounded second derivative.

Theorem 1 Consider an interval [ a, b] partitioned at x0 = a < x1 < . . . < xn = b,
where xk − xk−1 = h, k = 1, . . . , n. Consider also a C1 function y :[ a, b]−→ C with
bounded second derivative. Let S(x) be the spline presented in this work that interpolates
y(x). Then, S(x) converges uniformly to y(x) when |h| −→ 0 with a convergence order of
O(h).
Demonstration:
Let:

D = max
x∈[a,b]

|y(x) − S(x)|. (12)
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Recalling (1), results:

D ≤ max
k∈{1,...,n}

max
x∈Ik

∣∣∣∣y −
(
x − xk−1

h
yk − x − xk

h
yk−1

)∣∣∣∣ + |ak|h2. (13)

From (10):

|ak| ≤
n−1∑

j=1

∣∣∣∣
j
n

+ sj − 1
∣∣∣∣ |�j|.

Noting that | jn + sj − 1| ≤ 1 ∀j = 1, . . . , n − 1 and as the second derivative of y(x) is
bounded, namely |�j| ≤ M for h sufficiently small, results:

|ak| ≤ (n − 1)M =
(
b − a
h

− 1
)
M.

In this way, back to (13):

D ≤ max
k∈{1,...,n}

max
x∈Ik

∣∣∣∣y −
(
x − xk−1

h
yk − x − xk

h
yk−1

)∣∣∣∣ +
(
b − a
h

− 1
)
Mh2.

Using the result of [1]:
∣∣∣∣y −

(
x − xk−1

h
yk − x − xk

h
yk−1

)∣∣∣∣ ≤ h2

2
max
x∈Ik

|y′′(x)|.
It results:

D ≤ Mh
(
b − a − h

2

)
.

Parity conservation
Next, it will be shown that the developed spline preserves the parity of the interpolated
function.

Theorem 2 Coefficients ak of the spline S that interpolates y = y(x), −a < x < a, in
n + 1 nodes, verify:

1) If y is even, then ak = an−k+1, k = 1, . . . , n.
2) If y is odd, then ak = −an−k+1, k = 1, . . . , n.

Demonstration:
We will do the demonstration for y even.
Since y is even, then yj = yn−j, j = 1, . . . , n − 1 with what it is immediate that �j =

�n−j, j = 1, . . . , n − 1.
Case 1: n odd.
It will be proved that ak = an−k+1, k = 1, . . . , n−1

2 by induction on k.

1) Let us see that a1 = an. From (8):

an = (−1)n+1

⎡

⎣a1 +
n−1∑

j= 1
(−1)j�j

⎤

⎦ = a1 +
n−1
2∑

j=1
(−1)j�j +

n−1∑

j= n+1
2

(−1)j�j

= a1 +
n−1
2∑

j=1
(−1)j�j +

n−1∑

j= n+1
2

(−1)j�n−j = a1 +
n−1
2∑

j=1
(−1)j�j +

n−1
2∑

j=1
(−1)n−j�j

= a1.
2) Suppose that ak = an−k+1 for some k = 1, . . . , n−3

2 .
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Let us see that ak+1 = an−k. From (5):

ak+1 = �k − ak = �n−k − an−k+1 = an−k .

Therefore, ak = an−k+1, k = 1, . . . , n−1
2 if n is odd.

Case 2: n even.
It will be proved that ak = an−k+1, k = 1, . . . , n2 by induction on k.

1) Let us see that a1 = an. From (8):

an = (−1)n+1

⎡

⎣a1 +
n−1∑

j=1
(−1)j�j

⎤

⎦ = −a1 −
n−1∑

j=1
(−1)j�j.

Then, it is enough to prove that a1 = − 1
2

n−1∑
j=1

(−1)j�j. From (9):

a1 = −1
n

n−1∑

j=1
(n− j)(−1)j�j = −1

2

⎧
⎨

⎩

n−1∑

j=1
(−1)j�j +

n−1∑

j=1

[
2(n − j)

n
− 1

]
(−1)j�j

⎫
⎬

⎭

= −1
2

⎧
⎨

⎩

n−1∑

j=1
(−1)j�j +

n
2−1∑

j=1

(
1 − 2j

n

)
(−1)j�j +

n−1∑

j= n
2+1

(
1 − 2j

n

)
(−1)j�n−j

⎫
⎬

⎭

= −1
2

⎧
⎨

⎩

n−1∑

j=1
(−1)j�j +

n
2−1∑

j=1

(
1 − 2j

n

)
(−1)j�j +

n
2−1∑

j=1

(
−1 + 2j

n

)
(−1)n−j�j

⎫
⎬

⎭

= −1
2

n−1∑

j=1
(−1)j�j.

2) Suppose that ak = an−k+1 for some k = 1, . . . , n2 − 1.

Let us see that ak+1 = an−k. From (5):

ak+1 = �k − ak = �n−k − an−k+1 = an−k .

Therefore, ak = an−k+1, k = 1, . . . , n2 if n is even.
The proof for y odd and n even is similar to case 1 and the proof for y odd and n odd is

similar to case 2.

Observation: In two of the cases (y even, n odd and y odd, n even), the property is
verified independently of the election of a1, while in the other two cases (y even, n even
and y odd, n odd), the election of a1 is fundamental. It is easy to verify that for these cases,
the property is not verified for every a1.

Corollary 1 The interpolation polynomial Pk(x) of the spline S that interpolates y =
y(x),−a < x < a, with n + 1 nodes, verify:

1) If y is even, then Pk(x) = Pn−k+1(−x), k = 1, . . . , n.
2) If y is odd, then Pk(x) = −Pn−k+1(−x), k = 1, . . . , n.

Demonstration:
Again, we will demonstrate for y even.
Recalling (4) is easy to verify that pk(x) = pn−k+1(−x), k = 1, . . . , n.
Then, taking into account that ak = an−k+1, k = 1, . . . , n and that xk = −xn−k , k =

0, . . . , n, the result is effortlessly obtained.
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The demonstration for the case y odd is similar.

Fredholm integral equation
There exist numerous works to determine the numerical solution of Fredholm linear inte-
gral equations of the first and second kind. In [6], it is evaluated numerically using a
mixed form between splines and Lagrange interpolation. This kind of problem is then
solved using Taylor’s expansion in [10]. In [11], the least squares method is utilized. The
quadrature methods are multiple, see for example [12]. An interesting work is [5] where
Chebyshev’s polynomials are used. Finally, in [7], splines of order five are used. Here,
the quadratic spline determined by our method is applied to numerically solve the linear
problem. Consider the following equation:

y(x) − λ

b∫

a

K(x, s) y(s) ds = f (x), (14)

where y(x) is to be determined, a ≤ x ≤ b, K(x, s) is continuous in � =[ a, b]×[ a, b],
f (x) is continuous in I =[ a, b], and λ is a real parameter. When f (x) ≡ 0, the equation
is homogeneous and λ becomes an eigenvalue (or characteristic root) associated to the
eigenfunction y(x) in (14). Suppose also that x, s ∈ R, f is continuous in I =[ a, b], and
the kernel K(x, s) is continuous in the region � =[ a, b]×[ a, b] with a, b < ∞. Consider
a partition of the interval I with nodes xj = a + jh, h = b−a

n , j = 0, 1, . . . , n. Using
the quadratic spline S developed in “The quadratic spline” section, y(x) is interpolated in
{yj}nj=0, whose values must be determined. Evaluating (14) in nodes xj:

yj − λ

b∫

a

K(xj, s) S(s) ds = fj, j = 0, 1, . . . , n,

where fj = f (xj). From (1):

b∫

a

K(xj, s) S(s) ds =
n∑

k=1

xk∫

xk−1

K(xj, s)Pk(s) ds.

Since ak is linear in yj, j = 0, . . . , n, this leads to a linear system. Taking into account (4)
and (11):

yj − λ

n∑

k=1

{ n∑

i=0
(δi,k mj,k−1 − δi,k−1mj,k + dk,i) yi

}
= fj, j = 0, 1, . . . , n,

where δi,k is the Kronecker delta, ck,i is that of (11), mj,k = 1
h

xk∫
xk−1

K(xj, s)(s − sk) ds, and

dk,i = ck,i
xk∫

xk−1

K(xj, s)(s − sk−1)(s − sk) ds.

From here:
n∑

i=0
(δj,i − λαj,i) yi = fj, j = 0, 1, . . . , n, (15)

αj,i =
n∑

k=1
δi,k mj,k−1 − δi,k−1mj,k + dk,i.



Ferrari et al. Journal of the EgyptianMathematical Society           (2020) 28:30 Page 8 of 14

In the non-homogeneous case, (15) represents a linear algebraic system whose solution
determines {yj}nj=0 and therefore S(x). Remark that in this case, if λ does not coincide
with the eigenvalues of the associated homogeneous equation, the integral equation has
a solution, but if it matches an eigenvalue, it does not always have a solution. Therefore,
the non-homogeneous system of equations does not always have a solution.
When f (x) ≡ 0 in [ a, b], the system is homogeneous and the problem of eigenvalues λ

and eigenfunctions y(x) is solved in the usual way.

Volterra integral equation
Volterra integral equation of the second kind

Writing the Volterra integral equation of the second kind as

y(x) = f (x) + λ

x∫

a

K(x, s) y(s) ds, (16)

it is of interest to determine y(x), a ≤ x ≤ b, where K(x, s) is continuous in � =
[ a, b]×[ a, b], f (x) is continuous in I =[ a, b] and λ is a real parameter.
For the numerical resolution of (16), partite I using nodes xj = a + jh, h = (b − a)/n,

j = 0, 1, . . . , n. The quadratic spline S interpolates y(x) in {yj}nj=0, whose values must be
determined. Then, evaluating (16) in the n + 1 nodes xj follows:

y0 = f0,

yj = fj + λ

xj∫

a

K(xj, s) y(s) ds, j = 1, . . . , n.

Taking into account that y(x) is approximated by S(x):

yj = fj + λ

j∑

k=1

xk∫

xk−1

K(xj, s)Pk(s) ds, j = 1, . . . , n.

Similarly to the “Fredholm integral equation” section, these equations represent a non-
homogeneous system of order n. From its resolution, {yj}nj=0 is determined.

Volterra integral equation of the first kind

Writing the Volterra integral equation of the first kind as:

f (x) =
x∫

0

K(x, s) y(s) ds. (17)

In the particular case in which K(x, s), ∂
∂xK(x, s), f (x), f ′(x) are continuous in 0 ≤ x ≤ b,

0 ≤ s ≤ x and K(x, x) does not vanish in 0 ≤ x ≤ b, it is possible to derivate (17) with
respect to x, obtaining:

y(x) = f ′(x)
K(x, x)

−
x∫

0

1
K(x, x)

∂

∂x
K(x, s) y(s) ds,

Table 1 Errors for f (x) = |x| with Lagrange interpolation I

n 10 15 20

en(I) 8.2 · 10−2 2.8 · 10−2 7.2 · 10+2
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Table 2 Errors for f (x) = |x| with the S spline

n 10 20 50 100

en(S) 2.6 · 10−3 6.6 · 10−4 1.0 10−4 2.6 · 10−5

which is an equation of the second kind.
A method is proposed to solve (17) which does not require the continuity conditions

of f (x) and K(x, s) nor the restriction on the zeros of K(x, x). In the same way as in the
previous cases, y(x) is determined in nodes xk , 0 ≤ xk ≤ b, x0 = 0, xn = b. Recalling (17),
F(x) is defined as:

F(x) = −f (x) +
x∫

0

K(x, s) y(s) ds, (18)

and F(xk) = 0, k = 0, 1, . . . , n. If y(x) is the solution, F(x) ≡ 0. Taking into account that y
is approximated by S, (18) writes as:

F(x) = −f (x) +
n−1∑

k=1

xk∫

xk−1

(x − s)2Pk(s) ds +
x∫

xn−1

(x − s)2Pn(s) ds, xn−1 ≤ x ≤ xn.

To determine {y(xk)}nk=0, y(x) is approximated by the spline S(x) given by (4). Evaluating
(18) in xk , k = 1, . . . , n:

0 = −fk +
k∑

j=1

xj∫

xj−1

K(xk , s)Pj(s) ds, k = 1, . . . , n,

and given the fact that Pj(s) depends linearly on {y(xk)}nk=0, a system of n non-
homogeneous linear equations is obtained which determines {y(xk)}nk=1 parametrized in
y0 = y(x0), which is determined by the following ansatz: y(x0) is the value that minimizes

G =
xn∫

xn−1
F2(x) dx.

It is easy to see that it is sufficient that ∂
∂y0G = 0. Derivability of G is guaranteed by the

linearity of Pj in y0.

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
h

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

D

Fig. 1 D vs h for f (x) = |x| with the S spline
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Table 3 Errors en for g(x) = sin 2πx

n 10 50 100

en(Q) 2.0 · 10−3 9.8 · 10−7 1.9 · 10−8

en(M) 1.0 · 10−3 8.2 · 10−11 1.8 · 10−13

en(S) 4.0 · 10−4 9.0 · 10−9 1.0 · 10−10

Examples
Quadratic spline

Consider f (x) = |x|, −1 ≤ x ≤ 1, interpolated with the Lagrange polynomial Ln(x) with
equidistant nodes. It turns out as is well known,∥∥Ln(x) − f (x)

∥∥
2 → 0 when n → ∞, (‖·‖, Lebesgue norm 2). Let en be:

en(·) =
xn∫

x0

[ · − f (x)]2 dx. (19)

It can be seen that for n > 15 the Lagrange interpolation I presents sharp fluctuations.
In Table 1, some errors are calculated.
However, with the S spline from this work, the undesired fluctuations are markedly

reduced, as seen in Table 2. Remark that despite the fact f is not a function of class C1, a
good interpolator is achieved.
Regarding the space convergence order, using D defined on (12), it is possible to see

that
∫ 1
−1(|x| − s)2dx ≤ ∫ 1

−1 D
2dx = 2D2. In this example, for n = 20, D = 5 · 10−2, then

2D2 = 5 · 10−3 which is effectively larger than e20 = 6.6 · 10−4. The space convergence
order is linear as shown in Fig. 1. The dots were numerically obtained, and the curve was
obtained by a least squares method.
As a second example, consider g(x) = sin 2πx, −1 ≤ x ≤ 1. Interpolations are made

with the Quadratic Spline end Condition routine (Q) from [8], with the natural cubic
spline of Mathematica 9.0.1.0 software (M) and with the S spline from this work. Results
are shown in Table 3.

0.02 0.04 0.06 0.08 0.10
h

0.0005

0.0010

0.0015

0.0020

0.0025
D

Fig. 2 D vs h for g(x) = sin 2πx with the S spline
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Table 4 Errors en and ET with the S spline for (20)

n 5 10

en(S) 6.4 · 10−3 5.1 · 10−4

ET 1.6 · 10−3 1.9 · 10−5

Therefore, in this example, the spline presented here is a better approximation than the
Quadratic Spline end Condition routine.
Regarding the space convergence order, for n = 50, D = 1.3 · 10−4 then 2D2 = 3.38 ·

10−8 which is effectively bigger than e50(S) = 9 · 10−9. In this case, Fig. 2 shows that the
space convergence order is cubic. The dots were numerically obtained, and the curve was
obtained by the least squares method using a third degree polynomial.
Observe that in the first example a linear space convergence order was obtained while

in the second it was cubic. The difference in behavior is due to the fact that f (x) = |x| has
no continuous derivative at x = 0 while the derivatives of g(x) = sin 2πx are continuous
at every point.

Fredholm equation

Consider two extra examples from [13]. The first of them being

: y(x) + 2
1∫

0

ex−t y(t) dt = 2 x ex, (20)

whose solution is y(x) = ex(2x − 2
3 ). The solution obtained using the quadratic spline

gives the results shown in Table 4, where the error en is defined in (19) and ET =
max

∣∣y(x) − yn(x)
∣∣ in x0 ≤ x ≤ xn.

The second example corresponds to an equation of the first kind:

y(x) − λ

1∫

0

(2xt − 4x2) y(t) dt = 0, (21)

whose solution is y(x) = x(1 − 2x), being the eigenvalue λ = −3, of multiplicity 2. The
results are shown in Table 5.
Finally, consider from [11]:

y(x) = f (x) +
1∫

0
(x + s) y(s) ds,

f (x) = 1 + cos(x) − (1 + x) sin 1 − cos 1,

whose solution is y(x) = cos x. With the S spline, for n = 5 and n = 10, e5(S) = 1.17·10−3

and e10(S) = 1.79 · 10−5 are obtained respectively. In [11], y is approximated by {1, x, x2}
using the least squares method (L) where it is obtained that e2(L) = 1.49 · 10−3, which is
very similar to our results.

Table 5 Errors en and ET with the S spline for (21)

n 5 9 11

λ − 3.21785 − 3.065060 − 3.04336

en(S) 2.5 · 10−2 7.0 · 10−3 4.6 · 10−3

ET 6.0 · 10−2 1.6 · 10−2 8.6 · 10−3
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Table 6 Errors en and ET with the S spline for (22)

n 5 10

en(S) 9.3 · 10−4 1.8 · 10−4

ET 6.1 · 10−5 5.1 · 10−6

Volterra equation

Consider from [13]:

y(x) = 1
1 + x2

−
x∫

0

s
1 + x2

y(s) ds. (22)

The results are shown in Table 6.
From [6], consider:

exp(−x2) + λ

2
x [ 1 − exp(−x2)]= y(x) + λ

x∫

0

x s y(s) ds, 0 ≤ x ≤ 1, (23)

for λ = 1, y(x) = exp(−x2). The results are shown in Table 7.
In [6], the error is not specified and the solutions are only compared graphically. For the

developed spline, the curves corresponding to the numerical and analytical solutions are
completely overlapped.
Again from [13]:

−x3 +
∫ x

0
(x − s)2 y(s) ds = 0, (24)

whose solution is y(x) ≡ 3. The results are shown in Table 8.

Fractional differential equation

Let α be a real positive number and denote bym = �α� the smaller integer bigger than α.
Let us define the Caputo fractional derivative, Dα

a , of a n times differentiable function of
real variable, y(x), as [14]

Dα
a y(x) = 1


(m − α)

∫ x

a

y(m)(t)
(x − t)α−m+1 dt , (25)

where y(m)(t) means themth derivative of the function y(t).
Let y(x) :[ 0,X] 
−→ R be a differentiable real function of the real variable x and f (x) :

[ 0,X] 
−→ R continuous. Let 1 < α ≤ 2. Then, let us consider the following fractional
differential equation:

{
Dα
0 y(x) = f (x)y(x), 0 < x < X,

Dky(0) = y(k)
0 , k = 0, 1, 2, ...,m − 1.

(26)

Table 7 Errors en and ET with the S spline for (23)

n 5 10

en(S) 4.8 · 10−4 1.3 · 10−4

ET 5.0 · 10−5 5.1 · 10−6
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Table 8 Errors en and ET with the S spline for (24)

n 5 10

en(S) 1.4 · 10−9 4.8 · 10−8

ET 6.3 · 10−9 2.5 · 10−7

Converting the initial value problem for the differential equation into an equivalent
Volterra integral equation [14]:

y(x) =
m−1∑

k=0

xk

k!
Dky(0) + 1


(α)

∫ x

0
(x − t)α−1f (t)y(t)dt,

Consider the fractional oscillator [15]:

Dα
0 y(x) = −y(x), (27)

where 1 < α ≤ 2, whose exact solution is:

y(x) = c1 Eα,1(−xα) + c2 x Eα,2(−xα),

where Eα,β(z) is the so-called Mittag-Leffler function

Eα,β(z) =
∞∑

k=0

zk


(αk + β)
.

Taking into account the results of the “Volterra integral equation” section, the equation
of Volterra associated to the equation (27) is solved with the S spline and compared with
the exact solution. The parameters used are α = 3/2, X = 10, y(0) = 1, and y′(0) = 0.
Results are shown in Table 9.

Conclusions
Using variational calculus, a quadratic spline method that minimizes the spline fluctu-
ations has been developed. Even though piecewise interpolation has several decades of
study, since the 1940s when it was developed by the mathematician I. J. Schoenberg, the
main advantage of this scheme is that the coefficients of the spline are explicitly deter-
mined through simple arithmetic calculations without needing recursive equations nor
solving algebraic systems. The reason of using a quadratic spline is that in this case
the explicit law of the coefficients of the interpolating segmental polynomial is simply
obtained. For higher order splines, although they improve the interpolation, we were not
able to find a simple and explicit expression of the coefficients. This variational method
may be considered as an adaptive scheme, due to its simplicity in the determination of the
coefficients. The spline has a linear space convergence order for functions with bounded
second derivative and it preserves the parity of the function. It is also useful for solving
Fredholm-Volterra linear integral equations and fractional differential equations given its
simplicity. Some weaknesses of the method are that the nodes must be equally spaced and
we could not extend this form to the general high-order splines and multiple dimensions.
In a second stage, the results will be extended to fractional ordinary differential equations.

Table 9 Errors en and ET with the S spline for (27)

n 5 10 15 20 50

en(S) 1.6 · 10−2 6.4 · 10−4 8.7 · 10−5 2.3 · 10−5 3.7 · 10−7

ET 8. · 10−2 1. · 10−2 3. · 10−3 1. · 10−3 1. · 10−4
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