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1. Introduction

T.S. Blyth and J.C. Varlet [1] introduced the class MS of all

MS-algebras which is a common abstraction of de Morgan
algebras and Stone algebras. T.S. Blyth and J.C. Varlet [2]
characterized the subvarieties of MS. The class MS contains

the well-known classes for examples Boolean algebras, de
Morgan algebras, Kleene algebras and Stone algebras.
Recently A. Badawy, D. Guffova and M. Haviar [3] intro-
duced and characterized the class of principal MS-algebras

by means of triples. A. Badawy [4] introduced de Morgan
filters of decomposable MS-algebras. S. El-Assar and A.
Badawy [5] introduced Homomorphisms and Subalgebras of

MS-algebras. C. Luo and Y. Zeng [6] characterized the MS-
algebras on which all congruences are in a one-to-one
correspondence with the kernel ideals. In [7] M. Sambasiva

Rao introduced the concepts of boosters and b-filters of
MS-algebras. Also M. Sambasiva Rao [8] introduced the
notion of e-filters of MS-algebras.

In this paper, the concept of dL-filters is introduced in prin-

cipal MS-algebras and then many properties of dL-filters are
studied. Various examples of d-filters are introduced. A char-
acterization of dL-filters of a principal MS-algebra is obtained.

Also a principal dL-filter of the form Ka on a principal MS-
algebra L, for every a 2 L is introduced. Every principal dL-fil-
ter can be expressed as Ka for some a 2 L. It is proved that the

class KðLÞ of all principal dL-filters forms a de Morgan algebra
on its own. A one-to one correspondence between the set of all
principal dL-filters of a principal MS-algebra L and the set of
all principal filters of L�� is obtained. Finally, a relationship

between dL-filters and congruences on a principal MS-algebra
is investigated.
2. Preliminaries

In this section, some certain definitions and results which were
introduced in the papers [1–3,9,10] are given.

A de Morgan algebra is an algebra ðL;_;^;�; 0; 1Þ of type
(2, 2, 1, 0, 0) where ðL;_;^; 0; 1Þ is a bounded distributive lat-
tice and � the unary operation of involution satisfies:
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x ¼ x; ðx _ yÞ ¼ x ^ y; ðx ^ yÞ ¼ x _ y:

An MS-algebra is an algebra ðL;_;^;�; 0; 1Þ of type (2, 2, 1,
0, 0) where ðL;_;^; 0; 1Þ is a bounded distributive lattice and �

the unary operation of involution satisfies:

x 6 x��; ðx ^ yÞ� ¼ x� _ y�; 1� ¼ 0:

The class MS of all MS-algebras is equational. A de Mor-

gan algebra is anMS-algebra satisfying the identity, x ¼ x��. A
K2-algebra is an MS-algebra satisfying the additional two
identities

x ^ x� ¼ x� ^ x��; ðx ^ x�Þ _ ðy _ y�Þ ¼ y _ y�:

The class S of all Stone algebras is a subclass of MS and is
characterized by the identity x ^ x� ¼ 0. A Boolean algebra is
an MS-algebra satisfying the identity x _ x� ¼ 1.

Some of the basic properties of MS-algebras which were
proved in [1,10] are given in the following Theorem.

Theorem 2.1. For any two elements a; b of an MS-algebra L,
we have

(1) 0� ¼ 1,
(2) a 6 b) b� 6 a�,
(3) a��� ¼ a�,
(4) ða _ bÞ� ¼ a� ^ b�,
(5) ða _ bÞ�� ¼ a�� _ b��,
(6) ða ^ bÞ�� ¼ a�� ^ b��.

Theorem 2.2. Let L be an MS-algebra. Then

(1) L�� ¼ fx 2 L : x ¼ x��g is a de Morgan algebra and a sub-
algebra of L,

(2) DðLÞ ¼ fx 2 L : x� ¼ 0g is a filter of dense elements of L,

(3) BðLÞ ¼ fx 2 L�� : x _ x� ¼ 1g is a Boolean algebra and a
subalgebra of L��.

For any MS-algebra L, let FðLÞ denote to the set of all fil-
ters of L. It is known that ðFðLÞ;^;_Þ is a distributive lattice,
where F ^ G ¼ F \ G and F _ G ¼ ff ^ g : f 2 F; g 2 Gg. Also,

½aÞ ¼ fx 2 L : x P ag is a principal filter of L generated by a.
By a congruence on an MS-algebra ðL;_;^; �Þ we shall

mean a lattice congruence h such that

ðx; yÞ 2 h impliesðx�; y�Þ 2 h

Through what follows, for an MS-algebra L we shall
denote by r the universal congruence on L. The Cokernel of
the lattice congruence h on a lattice L is defined as

Cokerh ¼ fx 2 L : ðx; 1Þ 2 hg:

The following definition of a principal MS-algebra was intro-
duced in [3].

Definition 2.3 (Definition 2.1, 3). An MS-algebra ðL;_;^;
�; 0; 1Þ is called a principal MS-algebra if it satisfies the

following conditions

(1) the filter DðLÞ is principal, i.e., there exists an element

dL 2 L such that DðLÞ ¼ ½dLÞ;
(2) x ¼ x�� ^ ðx _ dLÞ for any x 2 L.
3. Properties of dL-filters

In this Section, the concept of dL-filters is introduced in a prin-
cipal MS-algebra. Many properties and examples of dL-filters

are investigated. Also, a set of equivalent conditions is derived
for a filter of a principal MS-algebra to become a dL-filter.

Definition 3.1. Let L be a principal MS-algebra with the
smallest dense element dL. A filter F of L is called a dL-filter if

dL 2 F.

Clearly the filter ½dLÞ is a dL-filter of L. It is observed that
½dLÞ is the smallest dL-filter of L and L is the greatest dL-filter

of L.

Example 3.2.

(1) Every filter of a de Morgan algebra M is a dL-filter as
dM ¼ 1 belongs to any filter.

(2) Let L ¼ f0; x; y; z; 1 : 0 < x < y < z < 1g be a five
element chain and x� ¼ x; y� ¼ z� ¼ 0. Clearly L is a
principal MS-algebra with the smallest dense element

y. We observe that the filters fy; z; 1g; fx; y; z; 1g and L
are dL-filters of L but the filters fz; 1g and f1g are not.

Now, for every filter F of a principal MS-algebra L with the
smallest dense element dL, consider the set LðFÞ as follows:
LðFÞ ¼ fx 2 L : x�� 2 Fg:

We first state the following Lemma.

Lemma 3.3. Let F be a filter of a principal MS-algebra L with
the smallest dense element dL. Then LðFÞ is a dL-filter of L
containing F.
Proof. Firstly we prove that LðFÞ is a filter of L. Clearly

1 2 LðFÞ. Let x; y 2 LðFÞ. Then x��; y�� 2 F. It follows that
ðx ^ yÞ�� ¼ x�� ^ y�� 2 F. Then x ^ y 2 LðFÞ. Again, let
x 2 LðFÞ and z 2 L such that z P x. Hence z�� P x�� 2 F.
Then z�� 2 F implies z 2 LðFÞ. Therefore LðFÞ is a filter of L.

Since d��L ¼ 1 2 F, then dL 2 LðFÞ. So LðFÞ is a dL-filter of L.
Since x�� P x for all x 2 F, then x�� 2 F. Hence x 2 LðFÞ.
Therefore F#LðFÞ. h

A characterization of dL-filters of a principal MS-algebra L
is given in the following Theorem.

Theorem 3.4. Let F be a filter of a principal MS-algebra L with
the smallest dense element dL. Then F is a dL-filter if and only if
LðFÞ ¼ F.
Proof. Let F be a dL-filter. Then dL 2 F. Since x _ dL P dL,
then x _ dL 2 F. Let x 2 LðFÞ. Then x�� 2 F. Now by Defini-

tion 2.3 (2) we get

x ¼ x�� ^ ðx _ dLÞ 2 F:

Then LðFÞ#F. By Lemma 3.3, F#LðFÞ. Therefore LðFÞ ¼ F.

Conversely, let LðFÞ ¼ F. By the above Lemma 3.3, F is a dL-
filter of L. h
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Let FdL ðLÞ be the class of all dL-filters of a principal MS-
algebra L. It is observed that the intersection and the supre-
mum of two dL-filters of L are again dL-filters of L. Then we

can formulate the following.

Theorem 3.5. For any principal MS-algebra L with the smallest
dense element dL, the class FdLðLÞ is a sublattice of FðLÞ with
unit.

Now more examples of dL-filters of a principal MS-algebra

L are given in the following Lemma 3.6.

Lemma 3.6. Let F be a filter of a principal MS-algebra L with
the smallest dense element dL. Then

(1) every maximal filter L is a dL-filter,
(2) for any prime filter P of L the set ‘ðP Þ ¼ fx 2 L : x� R Pg

is a dL-filter.

Proof.

(1) Let M be a maximal filter of L. Suppose dL R M . Then

M _ ½dLÞ ¼ L. Hence a ^ b ¼ 0 for some a 2 M ; b 2 ½dLÞ.
Then 0 ¼ a ^ b P a ^ dL implies a ^ dL ¼ 0. It follows
that a 6 a�� ¼ a�� ^ d��L ¼ 0�� ¼ 0, where d��L ¼ 1. Then

0 ¼ a 2 M which is a contradiction. Hence dL 2 M .
Therefore, M is a dL-filter of L.

(2) Since 0 ¼ 1� R P , then 1 2 ‘ðP Þ. Let x; y 2 ‘ðP Þ. Then
x� R P and y� R P . Since P is prime, then we get
ðx ^ yÞ� ¼ x� _ y� R P . Hence x ^ y 2 ‘ðP Þ. Let x 2 ‘ðP Þ
and z 2 L such that z P x. Thus y� 6 x�. Then x� R P
implies y� R P . Hence y 2 P . Then ‘ðP Þ is a filter of L.

Since d�L ¼ 0 R P then dL 2 ‘ðP Þ. So, ‘ðP Þ is a dL-filter
of L. h

It is not true that every dL-filter is a maximal filter. For, in
Example 3.2 (2), the filter fy; z; 1g is a dL-filter but not a max-

imal filter.

Lemma 3.7. Let L be a principal K2-algebra with the smallest
dense element dL. Then

(1) The filter L_ ¼ fx _ x� : x 2 Lg is a dL-filter.
(2) Any proper filter of L which contains either x or x� for all

x 2 L is a dL-filter.

Proof.

(1) Since dL ¼ dL _ d�L, then dL 2 L_ and L_ is a dL-filter
of L.

(2) Let F be a proper filter contains either x or x� for all
x 2 L. Let y 2 L_. Then y ¼ x _ x� for some x 2 L. By
the hypotheses we get y ¼ x _ x� 2 F . Then L_# F .
From (1), dL 2 L_. It follows that dL 2 F . Therefore F
is a dL-filter of L. h

A characterization of dL-filters of a principal MS-algebra L

is studied in the following Theorem.
Theorem 3.8. Let F be a proper filter of a principal MS-algebra

L with the smallest dense element dL. Then the following
conditions are equivalent.

(1) F is a dL-filter,
(2) x _ dL 2 F for each x 2 L,
(3) x�� 2 F implies x 2 F ,
(4) For x; y 2 L; x� ¼ y� and x 2 F imply y 2 F .
Proof.

(1)) (2) Let F be a dL-filter of L. Then dL 2 F . Since
x _ dL P dL 2 F for all x 2 L, then x _ dL 2 F and
the condition (2) holds.

(2)) (3) Let x _ dL 2 F for all x 2 L. Suppose x�� 2 F . Since
L is principal, then x ¼ x�� ^ ðx _ dLÞ 2 F and the
condition (3) holds.

(3)) (4) Let x; y 2 L and x� ¼ y�. Suppose x 2 F . Then

y�� ¼ x�� 2 F . So by the condition (3), we get y 2 F .
(4)) (1) Since d�L ¼ 0 ¼ 1� and 1 2 F , by condition (4), we

have dL 2 F . Therefore F is a dL-filter of L. h
4. Principal dL-filters

In this section, the concept of principal dL-filters in the class of

all principal MS-algebras is studied and characterized. Also a
representation of any dL-filter of a principal MS-algebra as a
union of certain principal dL-filters is given.

For any element a of a principal MS-algebra L with the
smallest dense element dL, consider the set Ka as follows:

Ka ¼ fx 2 L : x� 6 a�g

In the following Theorem 4.1, some of the basic properties of

the set Ka are observed.

Theorem 4.1. Let L be a principal MS-algebra with the smallest
dense element dL. Then for any two elements a; b of L we have

(1) Ka is a dL-filter of L containing a,
(2) Ka ¼ ½a�� ^ dLÞ,
(3) Ka ¼ Ka�� ,

(4) Ka ¼ Kb if and only if a� ¼ b�.

Proof.

(1) Clearly 1 2 Ka. Let x; y 2 Ka. Then x� 6 a� and y� 6 a�.
Hence ðx ^ yÞ� ¼ x� _ y� 6 a�. It follows that x ^ y 2 Ka.
Now, let x 2 L and z P x for some z 2 L. Then

z� 6 x� 6 a�. Thus z� 2 Ka. Therefore Ka is a dL-filter
of L. Since d�L ¼ 0 6 a�, then Ka is a dL-filter of L.

(2) Let x 2 Ka. Then x� 6 a� implies x�� P a��. Hence
x ¼ x�� ^ ðx _ dLÞP a�� ^ ðx _ dLÞP a�� ^ dL. Then
x 2 ½a�� ^ dLÞ. Then Ka # ½a�� ^ dLÞ Conversely, let

x 2 ½a�� ^ dLÞ. Then x P a�� ^ dL. It follows that
x� 6 a��� _ d�L ¼ a� as a� ¼ a��� and d�L ¼ 0. Hence

a 2 Ka and ½a�� ^ dLÞ# Ka. Therefore Ka ¼ ½a�� ^ dLÞ.
(3) From the fact that x� ¼ x��� for all x 2 L, we get

Ka ¼ fx 2 L : x� 6 a� ¼ a���g ¼ Ka�� :
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(4) Let Ka ¼ Kb. Since a; b 2 Ka ¼ Kb, then a� 6 b� and

b� 6 a�. It follows that a� ¼ b�. Conversely, let
a� ¼ b�. Then Ka ¼ fx2 L : x� 6 a�g ¼ fx2 L : x� 6 b�g ¼ Kb. h

For the principalMS-algebra, we have the following crucial
lemma.

Theorem 4.2. Let L be a principal MS-algebra with the smallest

dense element dL. Then every principal dL-filter can be expressed
as Ka for some a 2 L.

Proof. Let F ¼ ½aÞ be a dL-filter of L. We claim that F ¼ Ka.

Let x 2 F. Then x P a. Then x�� P a�� P a�� ^ dL implies
x�� 2 ½a�� ^ dLÞ ¼ Kd. Since Ka is a dL-filter and x�� 2 Ka, then
by Theorem 3.8(3), x 2 Ka, it follows that F#Ka. Conversely,
since a 6 dL and a 6 d��, then a 6 a�� ^ dL. Hence

Ka ¼ ½a�� ^ dLÞ# ½aÞ ¼ F. Therefore F ¼ Ka. h

Consider KðLÞ ¼ fKa : a 2 Lg the class of all principal
dL-filters of a principal MS-algebra L. More properties of
principal dL-filters are studied in Theorem 4.3.

Theorem 4.3. Let L be a principal MS-algebra with the smallest

dense element dL. Then for any two elements a; b of L, the
following statements are hold.

(1) a 6 b in L implies Kb # Ka in KðLÞ,
(2) Ka^b ¼ Ka _ Kb,
(3) Ka_b ¼ Ka \ Kb,
(4) KðLÞ is a bounded distributive lattice,

(5) a! Ka� is an epimorphism of L into KðLÞ.

Proof.

(1) Let a 6 b in L. Assume x 2 Kb, then x� 6 b� 6 a�. Hence
x 2 Ka and F b # Ka.

(2) By Theorem 4.1 (2), we get

Ka^b ¼ ½ða ^ bÞ�� ^ dLÞ ¼ ½a�� ^ b�� ^ dLÞ
¼ ½ða�� ^ dLÞ ^ ðb�� ^ dLÞÞ ¼ ½a�� ^ dLÞ _ ½b�� ^ dLÞ
¼ Ka _ Kb:
(3) Using Lemma (2) and by distributivity of L we get

Ka_b ¼ ½ða _ bÞ�� ^ dLÞ ¼ ½ða�� _ b��Þ ^ dLÞ
¼ ½ða�� ^ dLÞ _ ðb�� ^ dLÞÞ ¼ ½a�� ^ dLÞ \ ½b�� ^ dLÞ
¼ Ka \ Kb:
(4) Clearly K1 ¼ ½dLÞ and K0 ¼ L are the smallest and the

greatest elements of KðLÞ respectively. Then by (2) and
(3) we observe that ðKðLÞ;_;\; ½dLÞ; LÞ is a bounded lat-
tice. Using the distributivity of L, we can get

Ka _ ðKb \ KcÞ ¼ ðKa _ KbÞ \ ðKa _ KcÞ. Therefore
KðLÞ is a bounded distributive.

(5) Define the mapping f : L! KðLÞ by f ðaÞ ¼ Ka� . Let

a; b 2 L. Then by (2) and (3) above and Theorem 4.1(3)
we get the following equalities.
fða ^ bÞ ¼ Kða^bÞ� ¼ Ka�_b� ¼ Ka� \ Kb� ¼ fðaÞ \ fðbÞ;
fða _ bÞ ¼ Kða_bÞ� ¼ Ka�^b� ¼ Ka� _ Kb� ¼ fðaÞ _ fðbÞ;
fða�Þ ¼ Ka�� ¼ Ka

fð0Þ ¼ ½dLÞ and fð1Þ ¼ L:

Then f is a (0,1)-lattice homomorphism. Now, for every

Ka 2 KðLÞ, by Theorem 4.1(3) we get fða�Þ ¼ Ka�� ¼ Ka. There-
fore f is an epimorphism. h

Consider the subset I ¼ fa�� ^ dL : a 2 Lg of a principal
MS-algebra L with the smallest dense element dL. Now some

properties of I are given in the following.

Theorem 4.4. Let L be a principal MS-algebra with the smallest
dense element dL. Then the following statements hold

(1) I is an ideal of L,
(2) I is a de Morgan algebra on its own,
(3) I ffi L��,
(4) KðLÞ ffi I .

Proof.

(1) Clearly 0 2 I. Let x; y 2 I . Then x ¼ a�� ^ dL and
y ¼ b�� ^ dL for some a; b 2 L. Hence x _ y ¼
ða�� ^ dLÞ _ ðb�� ^ dLÞ ¼ ða _ bÞ�� ^ dL. It follows that

x _ y 2 I . Again, let x 2 I and z 6 x; z 2 L. Then
x ¼ a�� ^ dL for some a 2 L. Since z ¼ z�� ^ ðz _ dLÞ, then
z ¼ z ^ x ¼ z�� ^ ðz _ dLÞ ^ a�� ^ dL ¼ ðz ^ aÞ�� ^ dL.
Therefore z 2 I and I is an ideal of L.

(2) We observe that 0 and dL are the smallest and the great-
est elements of I respectively. From (1), I is a bounded
distributive lattice. Define the operation � on I by
�x ¼ x� ^ dL. Then for any x; y 2 M we get

x ^ y ¼ ðx ^ yÞ� ^ dL ¼ ðx� _ y�Þ ^ dL ¼ ðx� ^ dLÞ _ ðy� ^ dLÞ
¼ x _ y;

x _ y ¼ ðx _ yÞ� ^ dL ¼ x� ^ y� ^ dL ¼ ðx� ^ dLÞ ^ ðy� ^ dLÞ
¼ x ^ y;

x ¼ x� ^ dL ¼ ðx� ^ dLÞ� ^ dL ¼ x�� ^ dL as d�L ¼ x�� ^ ðx _ dLÞ
as x 6 dL ¼ x:
Therefore I is a de Morgan algebra.

(3) Define a mapping f : L�� ! I by f ðaÞ ¼ a ^ dL. Clearly

f ð0Þ ¼ 0 and f ð1Þ ¼ dL. For all a; b 2 L�� we have

a ¼ a�� and b ¼ b��. Now

fða _ bÞ ¼ ða _ bÞ ^ dL ¼ ða ^ dLÞ _ ðb ^ dLÞ ¼ fðaÞ _ fðbÞ;
fða ^ bÞ ¼ ða ^ bÞ ^ dL ¼ ða ^ dLÞ ^ ðb ^ dLÞ ¼ fðaÞ ^ fðbÞ;
fða�Þ ¼ a� ^ dL ¼ a��� ^ dL ¼ a�� ^ dL ¼ a ^ dL ¼ fðaÞ
Then f is a homomorphism. Let fðaÞ ¼ fðbÞ. Then
a ^ dL ¼ b ^ dL implies a ¼ a�� ^ d��L ¼ b�� ^ d��L ¼ b as
a ¼ a�� and d��L ¼ 1. Hence f is an injective map.
Now we prove that f is a surjective map. Let x 2M.

Then x ¼ a�� ^ dL for some a 2 L. Thus
fða��Þ ¼ a�� ^ dL ¼ x. Therefore f is an isomorphism
between two de Morgan algebras L�� and I.



dL-Filters of principal MS-algebras 467
(4) Define g : I ! KðLÞ by gða�� ^ dLÞ ¼ Ka� . Let x; y 2 M .

Then x ¼ a�� ^ dL for some a 2 L and y ¼ b�� ^ dL for
some b 2 L. Now

gðx _ yÞ ¼ gðða _ bÞ�� ^ dLÞ ¼ Kða_bÞ� ¼ Ka�^b� ¼ Ka� _ Kb�

¼ gðxÞ _ gðyÞ;
gðx ^ yÞ ¼ gðða ^ bÞ�� ^ dLÞ ¼ Kða^bÞ� ¼ Ka�_b� ¼ Ka� \ Kb�

¼ gðxÞ \ gðyÞ;
gðxÞ ¼ gða� ^ dLÞ ¼ Ka�� ¼ Ka� ¼ gðxÞ
Then

x ¼ a
a su
Ka� ¼
that a

fore g
g is a homomorphism. For any Ka 2 KðLÞ, there exists
� ^ dL 2 I such that gða� ^ dLÞ ¼ Ka�� ¼ Ka. Hence g is
rjective. Suppose that gða� ^ dLÞ ¼ gða� ^ dLÞ. Then
Kb� . By Theorem 4.1 (2), ½a� ^ dLÞ ¼ ½b� ^ dLÞ. It follows
� ^ dL ¼ b� ^ dL. Then g is an injective mapping. There-

is an isomorphism. h
A one-to-one correspondence between the class of all prin-
cipal dL-filters of L and the class of all principal filters of L�� is
obtained in the following Theorem 4.5.

Theorem 4.5. Let L be a principal MS-algebra with the smallest

dense element dL. Then there exists a one-to-one correspondence
between the class of all principal dL-filters of L and the class of
all principal filters of L��.

Proof. Let F be a principal dL-filter generated by the element

a. One can easily prove that ½aÞ \ L�� is a filter of L��. Now
let x 2 ½aÞ \ L��. Then x P a and x 2 L��. Hence
x ¼ x�� P a��. Therefore a�� is the smallest element of

½aÞ \ L��. Then ½aÞ \ L�� is a principal filter of L�� generated
by a��. Conversely, let A ¼ ½aÞ be a principal filter of L��.
Then by Theorem 4.1(1) and (2), Ka is a principal dL-filter

of L. h

It is known that any filter of a finite MS-algebra is a prin-

cipal filter. From the above Theorem, the following corollary is
an immediate consequence.

Corollary 4.6. Let L be a finite principal MS-algebra. Then we
have

(1) Every dL-filter can be expressed as Ka for some a 2 L,
(2) F dL ðLÞ ¼ KðLÞ.

Now, we can represent any dL-filter of a principal MS-alge-

bra L as a union of certain principal dL-filters.

Theorem 4.7. Let F be a dL-filter of a principal MS-algebra L
with the smallest dense dL. Then F ¼

S
x2FKx.

Proof. Let y 2 F. Since L is principal MS-algebra,
then y ¼ y�� ^ ðy _ dLÞP y�� ^ dL. Thus y 2 ½y�� ^ dLÞ ¼
Ky #

S
x2FKx. Then F#

S
x2FKx. Conversely, let y 2

S
x2FKx.

Then y 2 Kz for some z 2 F. Then y� 6 z� implies
y�� P z�� 2 F. Then y�� 2 F implies y 2 F as F is a dL-filter.
Thus

S
x2FKx #F. Therefore F ¼

S
x2FKx. h
5. Congruences via dL-filters

In this section, the relationship between dL-filters and congru-
ences of a principal MS-algebra L is investigated.

Let L be a principalMS-algebra with the smallest dense ele-
ment dL. Define a binary relation hdL on L as follows:

ðx; yÞ 2 hdL if and only ifx ^ dL ¼ y ^ dL:

Some properties of hdL are studied in the following
Theorem 5.1.

Theorem 5.1. Let L be a principal MS-algebra with the smallest
dense element dL. Then the following statements hold

(1) hdL is a congruence on L with CokerhdL ¼ ½dLÞ,
(2) ½x�hdL ¼ ½x���hdL for all x 2 L,
(3) L=hdL is a de Morgan algebra on its own.

Proof.

(1) It is clear that hdL is a lattice congruence on L. Let
ðx; yÞ 2 hdL . Then x ^ dL ¼ y ^ dL. Hence x� ¼ x� _ d�L ¼
ðx ^ dLÞ� ¼ ðy ^ dLÞ� ¼ y� _ d�L ¼ y� as d�dL

¼ 0. Hence

x� ^ dL ¼ y� ^ dL and ðx�; y�Þ 2 hdL . Therefore hdL is a
congruence on L. Now we have

CokerhdL ¼ fx 2 L : ðx; 1Þ 2 hdLg ¼ fx 2 L : x ^ dL ¼ dLg
¼ fx 2 L : x P dLg ¼ ½dLÞ:

(2) Since x ¼ x�� ^ ðx _ dLÞ for all x 2 L, then we get

x ^ dL ¼ x�� ^ ðx _ dLÞ ^ dL ¼ x�� ^ dL
Then ðx; x��Þ 2 hdL implies ½x�hdL ¼ ½x���hdL .

(3) It is known that the quotient set L=hdL is f½x�hdL : x 2 Lg.

Clearly ðL=hdL ;_;^Þ is a bounded distributive

lattice with bounds ½0�hdL and ½1�hdL ¼ ½dLÞ, where

½x�hdL ^ ½y�hdL ¼ ½x ^ y�hdL and ½x�hdL _ ½y�hdL ¼ ½x _ y�hdL .
We can define a unary operation � on L=hdL by

½x�hdL ¼ ½x��hdL . We observe ½0�hdL ¼ ½1�hdL and

½1�hdL ¼ ½0�hdL . We have the following equalities

½x�hdL ¼ ½x���hdL ¼ ½x�hdL ;

½x�hdL ^ ½y�hdL ¼ ½x ^ y�hdL ¼ ½ðx ^ yÞ��hdL ¼ ½x� _ y��hdL

¼ ½x��hdL _ ½y��hdL ¼ ½x�hdL _ ½y�hdL :
Similarly we can prove that ½x�hdL _ ½x�hdL ¼
½x�hdL ^ ½y�hdL . Then L=hdL is a de Morgan algebra. h
The following Lemma characterizes the Cokernel dL-filters.

Lemma 5.2. Let h be a congruence relation on a principal MS-

algebra L with the smallest dense element dL such that h P hdL .
Then Cokerh is a dL-filter of L.

Proof. It is known that Cokerh is a filter of L. Since
dL ^ dL ¼ dL ¼ 1 ^ dL, then ðdL; 1Þ 2 hdL # h. Hence

ðdL; 1Þ 2 h and dL 2 Cokerh. Therefore Cokerh is a dL-filter
of L. h
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For every element a of a principal MS-algebra L, define the
relation hKa

on L as follows

ðx; yÞ 2 hKa
if and only if x�� ^ a ¼ y�� ^ a

The following Theorem reveals many basic properties of hKa
.

Theorem 5.3. Let L be a principal MS-algebra with the smallest
dense element dL. Then for any a 2 L we have the following

(1) hKa is a lattice congruence on L with CokerhKa ¼ Ka,
(2) ðx; x��Þ 2 hKa for all x 2 L,
(3) hK1

¼ hdL and hK0
¼ r,

(4) hKa ¼ hKa�� ,
(5) L=hKa is a de Morgan algebra on its own.

Proof.

(1) Obviously hKa is an equivalent relation on L. Let

ðx; yÞ; ðc; dÞ 2 hKa . Then x�� ^ a ¼ y�� ^ a and
c�� ^ a ¼ d�� ^ a. Then we have the following equalities

ðx _ cÞ�� ^ a ¼ ðx�� _ c��Þ ^ a ¼ ðx�� ^ aÞ _ ðc�� ^ aÞ
¼ ðy�� ^ aÞ _ ðd�� ^ aÞ ¼ ðy�� _ d��Þ ^ a

¼ ðy _ dÞ�� ^ a
and
ðx ^ cÞ�� ^ a ¼ ðx�� ^ c��Þ ^ a ¼ ðx�� ^ aÞ ^ ðc�� ^ aÞ
¼ ðy�� ^ aÞ ^ ðd�� ^ aÞ ¼ ðy�� ^ d��Þ ^ a

¼ ðy ^ dÞ�� ^ a
Consequently ðx _ c; y _ dÞ; ðx ^ c; y ^ dÞ 2 hKa
. There-

fore hKa
is a lattice congruence relation on L. Now we

show that CokerhKa
¼ Ka.
CokerhKa
¼ fx 2 L : ðx; 1Þ 2 hKa

g ¼ fx 2 L : x�� ^ a

¼ 1�� ^ ag ¼ fx 2 L : x�� ^ a ¼ ag ¼ fx 2 L : x��

P ag ¼ fx 2 L : x� 6 a�g ¼ Ka
(2) Since x�� ¼ x���� for all x 2 L, then x�� ^ a ¼ x���� ^ a. It
follows that ðx; x��Þ 2 hKa .

(3) Let ðx; yÞ 2 hdL . Thus x ^ dL ¼ y ^ dL. Then

x�� ^ d��L ¼ y�� ^ d��L implies x�� ^ 1 ¼ y�� ^ 1. Hence
ðx; yÞ 2 K1 and hdL # hK1

. Conversely, let ðx; yÞ 2 K1.
Then x�� ^ 1 ¼ y�� ^ 1 implies x�� ^ ddL ¼ y��^dL . Then

ðx��; y��Þ 2 hdL . By Theorem 5.1(2), ðx; x��Þ; ðy��; yÞ 2
hdL . Then by transitivity of hdL we get ðx; yÞ 2 hdL . Then
hK1

# hdL and hK1
¼ hdL . Now we observe that

hK0
¼ fðx; yÞ 2 L� L : x�� ^ 0 ¼ 0 ¼ y�� ^ 0g ¼ L� L ¼ r:
(4) Now we proceed to show that hKa ¼ hKa��
ðx; yÞ 2 hKa
() x�� ^ a ¼ y�� ^ a() ðx�� ^ aÞ��

¼ ðy�� ^ aÞ�� () x�� ^ a�� ¼ y�� ^ a�� as a����

¼ a�� () ðx; yÞ 2 Ka�� :
(5) Since L is a bounded distributive lattice, then
ðL=hKa ;_;^; ½0�hKa ;KaÞ is a bounded distributive

lattice. Define the unary operation � on L=hKa

by ½x�hKa ¼ ½x��hKa . Then we observe that
½x�hKa
¼ ½x���hKa

¼ ½x�hKa
;

½x�hKa
^ ½y�hKa

¼ ½x�hKa
_ ½y�hKa

;

½x�hKa
_ ½y�hKa

¼ ½x�hKa
^ ½y�hKa

:

Therefore ðL=hKa
;_;^;�; ½0�hKa

;KaÞ is a de Morgan

algebra. h
Let ConMðLÞ ¼ fhKa
: a 2 L��g. Now we prove the

following.

Theorem 5.4. Let L be a principal MS-algebra with the smallest
dense element dL. Then for any a; b 2 L�� we have the following
(1) a 6 b in L�� if and only if hKb 6 hKa in ConM ðLÞ,
(2) hKa \ hKb ¼ hKa_b ,
(3) hKa _ hKb ¼ hKa^b .

Proof.

(1) Let a 6 b and ðx; yÞ 2 hKb . Then x�� ^ b ¼ y�� ^ b. Hence

x�� ^ b ^ a ¼ y�� ^ b ^ a. This leads to x�� ^ a ¼ y�� ^ a.
Then ðx; yÞ 2 hKa and hKb # hKa . Conversely, let
hKb # hKa . Then we have ðb; 1Þ 2 hKb # hKa . This implies

that b�� ^ a ¼ 1�� ^ a ¼ a. Thus b ¼ b�� P a.
(2) Since a; b 6 a _ b, then by (1), hKa_b # hKa ; hKb . Hence

hKa_b # hKa \ hKb . Conversely, let ðx; yÞ 2 hKa \ hKb . Then

ðx; yÞ 2 hKa ; hKb . Then we have x�� ^ a ¼ y�� ^ a and
x�� ^ b ¼ y�� ^ b. Now

x�� ^ ða _ bÞ ¼ ðx�� ^ aÞ _ ðx�� ^ bÞ ¼ ðy�� ^ aÞ _ ðy�� ^ bÞ
¼ y�� ^ ða _ bÞ:
Consequently ðx; yÞ 2 hKa_b . Then hKa
\ hKb

# hKa_b .

(3) It is clear that hKa^b is an upper bound of both hKa and

hKb on ConM ðLÞ. Let hKz be an upper bound of both

hKa and hKb on ConM ðLÞ, for some z 2 L��. Then, we
obtain hKa # hKz and hKb # hKz . This result leads to
a P z and b P z, which implies a ^ b P z. Hence by

(1), we have hKa^b # hKz . Thus, hKa^b is the supremum of
both hKa and hKb on ConM ðLÞ. h

From above Theorem 4.2, the following Theorem is an
immediate consequence.

Theorem 5.5. ConMðLÞ forms a de Morgan algebra on its own.
Proof. From the above Theorem 4.2(2) and (3) we proved that

the infimum and the supremum of any two elements of
ConMðLÞ are elements of ConMðLÞ. Then ðConMðLÞ;\;_Þ is
a lattice. For every hKa

; hKb
; hKc

2 ConMðLÞ, We get the follow-

ing equalities.

hKa
\ ðhKb

_ hKc
Þ ¼ hKa

\ hKb^c ¼ hKa_ðb^cÞ ¼ hKða_bÞ^ða_cÞ

¼ hKa_b _ hKa_c ¼ ðhKa
\ hKb

Þ _ ðhKa
\ hkcÞ

This shows that ConMðLÞ is a distributive lattice. Since
hK1
¼ hdL and hK0

¼ r are the least and the greatest elements
of ConMðLÞ respectively, then ConMðLÞ is bounded. Now, we
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define a unary operation � on ConMðLÞ by hKa
¼ hKa� . Then we

get the following equalities.

hKa
¼ hKa

;

hKa
\ hKb

¼ hKa_b ¼ hKða_bÞ� ¼ hka�^b� ¼ hKa� _ hKb� ¼ hKa
_ hKb

;

hKa
_ hKb

¼ hKa^b ¼ hKða^bÞ� ¼ hKa�_b� ¼ hKa� \ hKb� ¼ hKa
\ hKb

:

Therefore ðConMðLÞ;_;\;�; hdL ;rÞ forms a de Morgan

algebra on its own. h

Finally, we conclude this paper with the following.

Theorem 5.6. Let L be a principal MS-algebra with the smallest
dense element dL. Then for any a 2 BðLÞ we have the following

(1) hKa is a congruence on L,

(2) hKa \ hKa� ¼ hdL ,
(3) hKa _ hKa� ¼ r,
(4) L=hKa is a Boolean algebra, whenever L 2 S,

(5) ConBðLÞ ¼ fhKa : a 2 BðLÞg is a Boolean subalgebra of
ConM ðLÞ.

Proof.

(1) We proved in Theorem 5.3(1) that hKa is a lattice congru-
ence on L. Now for every element a of a Boolean subal-

gebra BðLÞ of L, we prove that hKa preserves the
operation �. Since BðLÞ is a Boolean algebra, then
a _ a� ¼ 1 and a ^ a� ¼ 0 for all a 2 BðLÞ. Now we get

the following equalities

ðx; yÞ 2 hKa
) x�� ^ a ¼ y�� ^ a) ðx�� ^ aÞ _ a�

¼ ðy�� ^ aÞ _ a� ) ðx�� _ a�Þ ^ ða _ a�Þ
¼ ðy�� _ a�Þ ^ ða _ a�Þ ) x�� _ a� ¼ y�� _ a� as a _ a�

¼ 1) ðx�� _ a�Þ� ¼ ðy�� _ a�Þ� ) x��� ^ a�� ¼ y��� ^ a��

) x��� ^ a ¼ y��� ^ a as a�� ¼ a) ðx�; y�Þ 2 hKa
Therefore hKa
is a congruence on L.
(2) Using Theorem 5.4 (2) and a _ a� ¼ 1, we get.

hKa
\ hKa� ¼ hKa_a� ¼ hK1

¼ hdL
(3) By Theorem 5.4 (3) and a ^ a� ¼ 0, we obtain the
following.

hKa
_ hKa� ¼ hKa^a� ¼ hK0

¼ r
(4) By Theorem 5.3(5), for every a 2 L, we proved that
L=hKa is a de Morgan algebra. Let L 2 S and a 2 BðLÞ.
Then for every x 2 L we have x ^ x� ¼ 0 and

x _ x� 2 ½dLÞ# Ka. Consequently

½x�hKa
_ ½x��hKa

¼ ½x _ x��hKa
¼ Ka ¼ ½1�hKa
½x�hKa
^ ½x��hKa

¼ ½x ^ x��hKa
¼ ½0�hKa
every element of L=hKa
has a complement. Then L=hKa

is
lean algebra.
a Boo

(5) For every a; b 2 BðLÞ we have hKa _ hKb ¼
hKa^b 2 ConBðLÞ and hKa ^ hKb ¼ hKa_b 2 ConBðLÞ as
a _ b; a ^ b 2 BðLÞ. Then ðConðLÞ;_;^Þ is a sublattice

of ConM ðLÞ. Since 0; 1 2 BðLÞ, then hK0
; hK1

2 ConBðLÞ.
Hence ConBðLÞ is a bounded distributive lattice. Now
we can define the unary operation � on ConBðLÞ by

hKa ¼ hKa� . Then we get hKa \ hKa ¼ hKa� \ hKa ¼
hK1
¼ hdL and hKa _ hKa ¼ hKa� _ hKa ¼ hK0

¼ r. Then
every element of ConBðLÞ has a complement. Therefore
ConBðLÞ is a Boolean subalgebra of ConM ðLÞ. h
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