Journal of the Egyptian Mathematical Society (2015) 23, 470-475

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

\
)

. ‘N’“"‘e-ﬂ“.;” ;,_’)f'j,,,/

WWW.etms-eg.org
www.elsevier.com/locate/joems

ORIGINAL ARTICLE

On some generalizations of certain retarded

@ CrossMark

nonlinear integral inequalities with iterated
integrals and an application in retarded differential

equation

A. Abdeldaim *”, A.A. El-Deeb ¢

& Department of Mathematics and Computer Science, Faculty of Science, Port Said University, Port Said, Egypt
® Department of Mathematics, Faculty of Science and Humanities, Shagra University, Dawadmi, Saudi Arabia
¢ Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt

Received 25 September 2014; revised 30 November 2014; accepted 1 December 2014

Available online 20 February 2015

KEYWORDS

Integral inequality;

Analysis technique;
Estimation;

Retarded integral and differ-
ential equation

MATHEMATICS SUBJECT CLASSIFICATION:

Abstract In this paper, we investigate some new nonlinear retarded integral inequalities of Gron-
wall-Bellman—Pachpatte type. These inequalities generalize some former famous inequalities and
can be used as handy tools to study the qualitative as well as the quantitative properties of solutions
of some nonlinear retarded differential and integral equations. An application is also presented to
illustrate the usefulness of some of our results in estimation of solution of certain retarded nonlinear
differential equations with the initial conditions.
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1. Introduction

Integral inequalities involving functions of one independent
variable, which provide explicit bounds on unknown functions
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play a fundamental role in the development of the theory of
linear and nonlinear ordinary differential equations, integral
equations, and differential-integral equations, see for instance
[1-3]. One of the best known and widely used inequalities in
the study of nonlinear differential equations is Gronwall-Bell-
man inequality [4,5], which has become one of the very few
classical and most influential results in the theory and applica-
tions of inequalities. Because of its fundamental importance,
over the years, many generalizations and analogous results
of Gronwall-Bellman inequality have been established, such
as [6-28]. Gronwall-Bellman inequality can be stated as
follows:
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Theorem 1.1. Let f(t) and u(t) be a real-valued nonnegative
continuous functions defined on Dy = [0, h], and let uy and h be
positive constants for which the inequality

t

u(t) < up+ / f(S)u(s)ds, Vte D,.
0

Then

u(t) < upexp (/tf(s)ds)7 Vte D;.
0

However, in certain situations the bounds provided by the
above-mentioned inequalities are not directly applicable, and
it is desirable to find some new estimates which will be equally
important in order to achieve a diversity of desired goals. In
the present paper we establish explicit bounds on retarded
Gronwall-Bellman and Pachpatte-like inequalities and extend
certain results that were proved be El-Owaidy et al. in [13],
which can be used to study the qualitative behavior of the solu-
tions of certain classes of retarded differential equations. In
our results, there are not only composite functions of unknown
functions in iterated integrals on the right hand side of our
inequalities, but also the composite functions of unknown
function exist in every layer of the iterated integrals, also we
illustrate an application of our results, which verifies that
our results are handy tools to study the qualitative properties
of nonlinear differential equations and integral equations.

Theorem 1.2 (Lipovan [10]). Let u,f € C([to, To), Ry). Fur-
ther, let o. € C([to, To), [to, To]) be a nondecreasing with a(t) < t
on [to, To|, and let k be a nonnegative constant.

Then the inequality

o(1)

ut) <k+ [ fis)u(s)ds

ty <t < Ty,

(1)
implies that

o

0
u(t) < kexp ( f(S)dS>, to <t < Ty

a(ty)

Theorem 1.3 (Agarwal [11]). Let ¢ € C(R,, R, ) be an increas-
ing function, u,a,f € C([to, To], R.),a(t) be an increasing func-
tion, and o(t) € C([to, To), [to, To]) be a nondecreasing with
a(t) < t on [ty, Ty| where Ty € (0,00) is a constant . Then the
inequality

o(1)

S(s)$(us))ds,

o(0)

u(t) < a(t) + ty < t < Ty,

implies that
(1)

o(0)

u(h) < w! (W(a(t)) f(s)ds), ty < t < Ty,

where
[ dr
1 (D)

WL is the inverse function of W, and T* is the large number such
that

/46 ds, t>0,

o(T%) S/
f(s)ds < !

W(a(T*))(/a(o) ‘ o

2. Main results

In this section, several new generalized retarded integral
inequalities of Gronwall-Bellman type are introduced.
Throughout this article, R denoted the set of real numbers,
I=1[0,00) is the subset of R, denotes the derivative. C(Z, 1)
denotes the set of all continuous functions from 7 into / and

C'(1,1) denotes the set of all continuously differentiable func-
tions from [ into I.

Theorem 2.1. Let u(t),g(t),f(t) € C(I,I) be nonnegative func-

tions. We suppose that ¢, ¢, o € Cl(l, I) are increasing func-
tions, with ¢'(t) < k, ¢ > 0,a(t) < t,a(0) =0, for all t € I k,ug
be positive constants, If the inequality

o(1)
u(t) < up +
0

(5)p(uls)) [<p<u<s>> v Sguw(u(z))d;} &,
Viel, (2.1)
holds, for all t € I. Then

(1)
u(t) < ¢! (Q(uo) +/0 f(s)ﬁ(oc’](s))dv), Vi el, (2.2)

where
D(r) = /Ir %, r>0, (2.3)
and
B1) = exp ( /;m g(s)ds) (W )~ [ " fexp ([ gu)dz) dy),]
(2.4)

Sorall t € I, such that (¢~ (u)) — k fox(/)f(s) exp ([ g(A)dA)ds >
0,vVte L

Proof. Let z(¢) denotes the function on the right-hand side of
(2.1), which is a nonnegative and nondecreasing function on 7
with z(0) = uy. Then (2.1) is equivalent to

u(t) < z(1), u(e(t)) < z(a(1)) < z(1),  Viel
Differentiating z(z), with respect to ¢, we get

/7 o(r)
= OO o)) + [ elo)otuls)a] e

el

(2.5)

Using (2.5), we get

dz

- S L O e(z((0))y(1), Ve € 1, (2.6)

where y(1) = p(z(1)) + [;" g(s)(z(5) ds.»(0) = p(2(0)) = (o).
»(1) is a nonnegative and nondecreasing function on /. By the
monotonicity ¢,¢’,z and o(r)<t we have o(z(¢)) <y(1),
¢'(z(1)) < k. Differentiating y(¢) with respect to 7, and using
(2.6), we have

% < @' (2(0)e! (1)) (1) + o (1)g (1)) (2(1))
< kol ()f(e(1))y* (1) + o (1)g () (1), Vi€ L
But y(7) > 0, from (2.7) we get

2.7)
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d / —1 , (1) a(r) ‘
P0G~ Ol O < kO, el @8 iy [T <f’§(<))> ds + / et 2
If we let { / h(/l dxl]d
v(t) =y (), Vtel, (2.9)
then we get (0) = ¢~ () and y2(1) & = — 2, thus from (2.8) for all r € I. By the relation % < <p(‘;(([’)) then the above

and (2.9), we have
O o (g(al) > kel (f(ale) Ve €

The above inequality implies an estimation for v(¢) as in the
following

(0 > e (- | gt 9ds) ({0 ()
- 0“(').f<s> exp ([ et1ar) )

for all r € I, from (2.4), (2.9) and (2.10), we get y(z) < B(1),
where f(7) as defined in (2.4). Thus from (2.6) we have

L < AP, Vel

By taking t = s in (2.11) and integrating it from 0 to ¢, using
(2.3), we obtain

(2.10)
(2.11)

2 < 07 (@) + [ LD ),

(1)

<ot (@) + [ A9BGO) Jas wer @

0

Using (2.12) in (2.5), we get the required inequality in (2.2).
This completes the proof. [

Theorem 2.2. Let u(t),g(t), h(t) € C(I,1) be nonnegative func-
tions, and f(t) is a positive, monotonic, nondecreasing function.
We suppose that ¢,¢ o € C'(I,1) are increasing functions
2l < (), with ¢'(1) < k(1) < 1,0(0) =0, for all
tel, k uo be positive constants. If the inequality

and

(1)

g(s)o(us))[o(us))

0

o(r)
u(t) < f) + / ol + /

+ [ oty

holds for all t € I. Then

(2.13)

o(1)
u(1) Sf(l)45"<4’(1)+/0 g9l +f(5)@(0<"(5))]d5),

(2.14)
for all t € I, where @ as defined in (2.3) and
(1)
k. h(s)]d:
o) = ;?p( ks (s) +S ()]ds) Nrel,
o (1) — [ kg(s)/1s) expl fy ke () + (2))de)ds
(2.15)
such that

/“mg(s)f(s) exp (/Ox[g(f) + h(r)]dr) ds< o '(1),Vtel

0

Proof. Since f{¢) is a positive, monotonic, nondecreasing func-
tion, we observe from (2.13) that

inequality can be written as
M (1) u(?) (1) M
o<t eo(f)a [ donon(77)

«Jol) + e g )
for all r € I. Let

r(1) = u()

f(—t),v tel, r0)<1,

(2.16)

hence

o(t) 0]
() <1+ / ¢(5)p(r(s))ds + / (5o (r(s) [ (r(5))

Ny — °

forallt el

Let V(¢) denotes the function on the right-hand side of
(2.17), which is a nonnegative and nondecreasing function on 7
with V(0) = 1. Then (2.17) is equivalent to

r(1) < V(1) r(2(r)) < V(1)) < V(1)

Differentiating V/(¢), with respect to ¢ and using (2.18), we get
V(1) < g(a(0)o ()p(V()[1 + fa(0)y(1)], Vel — (2.19)

where (1) = p(V(1)) + [ h(s)@(V(s))ds, hence 3(0) = ¢(1),
and @(V(r)) < y(1),y(?) is a nonnegative and nondecreasing
function on /. By the monotonicity of ¢, ',V and o(f) < ¢
we have ¢(V(1)) < (1), ¢’ (V(#)) < k. Differentiating y(r) with
respect to ¢, and using (2.19), we get

7'(1) < [eg(en(1)) + h(e(0)]er (1)y(2) + kg (o)) (2)f(ex(2))7* (1),
Viel,

(2.17)

Viel (2.18)

but y(¢) > 0, thus from the above inequality, we get
y 2 (07 (1) — kg (e(2)) + h(e(0)ed (1)y ™" (1) < kg (en(t))ed (1)f((1)),

Viel (2.20)
If we let
(r)=y"(1), Vriel, (2.21)

then we get /(0) —I'(t), thus from

(2.20), we have
I(1) + [kg(o(t)) + h(e(£)]ol (1)1(2)
—kg(o(0))od (O)f(x(2)), Vie€L
The above inequality implies the estimation for /(¢) such that
kfl(') s)exp( [, [kg(t) + h(t)]dr)ds
exp(J; g [kg(s) +h(s))ds)

=@ '(1) and y%y'(1) =

l(z)> , Viel

Then from the above inequality in (2.21), we have

(1) < O),Viel,
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where O(r) as defined in (2.15), thus from (2.19) and the above

inequality, we obtain

V(1) < g(e(0)o! (p(V(1))[1 + fla(0) O(1)], (2.22)

Since @(V(t)) > 0, for all 7 > 0, then from (2.22) we have
V(1)

p(V(1))

for all ¢ € I. By taking ¢ = s in the above inequality and inte-

grating it from 0 to ¢, and using the definition of @ in (2.3),
we get

Viel

< g(a(0)o (D[ +Ax(1))O(1)],

o(t)
(V1)) < 4’(1)+/0 g1+ /()0 (' (5))], (2.23)

for all ¢ € I, where @ is defined by (2.3), from (2.23), we have

o(r)
V(r)@*(@(m [ e +f<s)@(oc“<s>)]ds), (2.24)

for all ¢ € I, from (2.16), (2.18) and (2.24) we get the required
inequality in (2.14). This completes the proof. [

Remark 2.1. Theorem 2.2 gives the explicit estimation in The-
orem 2.3 in [13], when ¢(u(?)) = u(z).

Theorem 2.3. Let u(t),g(t),f(t) € C(I,I) be nonnegative func-
tions. We suppose that ¢, @,,o € c' (I, 1) are increasing func-
tions with a(t) <t,0,(t)>0,i=1,2,0(0) =0 and ¢|(t) =
©,(1), for all t € I uy be positive constant. If the inequality

o(1) s p
@1 () Suo+ [ f(s)pa(u(s)) {u(SH/O g(i)fm(u(i))d)»} ds,

0

viel, (2.25)
holds, for all t € I. Then
(1)
u(t) < o7 (uo) +/ S(8)B1 (") (s)ds, Vi < Ty, (2.26)
0
where
pio =2 (o [o w0 -p) | Mf(s)dsr
1 1 A
(1)
+/0 g(s)ds), (2.27)
" ds
Q1) = /l oy O (2.28)

Q7' 7! are the inverse functions of Q, ¢, respectively and T) is
the largest number such that

1
=

? o(t)
+ / g(s)ds
0

(1)

9([¢‘<uo>+<1p> 0

</°° ds
= @i(s)’

forall t < T.

@4

(2.29)

Proof. Let ¢,(J(7)) denotes the function on the right-hand side
of (2.25), which is a nonnegative and nondecreasing function
on I with J(0) = ¢; ' (up). Then (2.25) is equivalent to

Viel

A
N
~
3
A
N

J(a(1)) < J(1), (2.30)
Differentiating ¢, (/()), with respect to ¢, and using (2.30), we
get

A 2D~ o (1o s o)) (1)

o(1)
+/0 &A@ (u(2))da)" < o ()f((1)) 2 (J (1))

a(t)
x [J(t) + / gD, (J()dA], Viel

Using the relation ¢ (J(z)) = ¢,(J(¢)), then from the above
inequality, we obtain

PO < et

where

w(t) = J(1) + o g(s)oy(J(s))ds, w(0) = J(0) = o (o) and
J(t) < w(t), w is a nonnegative and nondecreasing function
on /. Differentiating w(z) with respect to ¢, and using (2.31),
we have

% < L (U)W (1) + 2 (1)g(x(1)) @, (J((1))

(2.31)

< o (O)f (o)W (1) + of (1)g(a(1)) @y (w(e(2))), VI €L
(2.32)
By w(t) > 0, from (2.32), we get
dw Do , @1 (w(a(1)))
0] < o (O)f(aft))dt + o (t)g(oc(t))Wdt, Vte L
(2.33)

Integrating (2.33) from 0 to 7, we have
(1)
WP (1) < o (o) + (1 = p) / s)ds + (1 - p)
0

(1) "
< [ et

) (2.34)

for all 7 € I, from (2.34), we have
o(T)
W0 <o )+ (=) [ s+ (1= p)
0
o(1)
% / g()) (pl (M)(S) dS7
0

we(s)

(2.35)

for all + < T, where 0 < T'< Ty is chosen arbitrarily, 7} is

defined by (2.29). Let m!™?(¢) denote the function on the

right-hand side of (2.35), which is a positive and nondecreasing
1

function on 7 with m(0) = |/ " (uo) + (1 = p) fo“mf(s)ds]'*"

and

w(t) < m(t),

Vi<T. (2.36)

Differentiating m'~(¢) with respect to ¢ and using (2.36), we
get

dm ,
m < o (H)g(a(1)),

by the definition of Q in (2.28), then from (2.37), we obtain

Vi<T, (2.37)
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(1)
Q(m(1)) < Qm(0)) + / a(s)ds

<Q<[<p€1<uo>+<1 -n [ xmf(s)dsm +f “eoyas,

forall t < T. Let t = T, then from the above inequality, we get

() < Q([mﬁ‘(uw +-p) [ im.f(SMYF) +f " g)ds

(2.38)

Since 0 < T'< T} is chosen arbitrary, then from (2.38) in
(2.36), we obtain

w(t) < Bi(1), Vi<Ti, (2.39)

where f3,(7) as defined in (2.27), thus from (2.31) and (2.39), we
obtain
) < o (00t

By taking 7 = s in (2.40) and integrating it from 0 to ¢ we have

Vi< T (2.40)

o(1)
J(1) < gol’l(uo) +/0 S8 (a7 (s)ds, Vi< T. (2.41)

Using (2.41) in (2.30), we get the required inequality in (2.206).
This completes the proof. [J

3. An application

In this section, we apply our result obtained in Theorem 2.1 to
the following nonlinear retarded differential equation with the
initial condition.

WO — M1, uo(1)), H(t, u(a(1)))), V1 € 1,

(3.1)
u(0) = uy,

where 1 is a constant, M € C(P,
following conditions:

|M (2, u, H)| < flo(8)) p(u(2(2)))

{ u(o(2))] +/ |K (s, u(a
|K(#,u(o(1)))] < g(o()) p(u((2))), (3.3)
where f(t),g(¢) as defined in Theorem 2.1.

R) H € C(I x I, R), satisfy the

|ds} (3.2)

Corollary 3.1. Consider nonlinear system (3.1) and suppose
that M, H satisfy the conditions (3.2) and (3.3). We suppose
that ¢,¢' o€ C'(I,1) are increasing functions with ¢'(t) <
kyo(r) < t,0(0) =0, for all t € Ik,uy are positive constants,
then each solution u(t) of (3.1) under discussion verifies the
following estimation:

where @ as defined in (2.3), and

Ba(t) = exp (/01(') %aﬁ) N <(<0"(uo)) - k/oxm
X exp (/0 %d@)@)i Viel, (3.5)

Proof. Integrating both sides of (3.1) from 0 to ¢, we have

u(t) = uy + /0 ' M(s, u(a(s)

using the conditions (3.2) and (3.3), then from (3.6) we get

JH(s,u(o(s))))ds, Veel,  (3.6)

(0] < o+ / 1) lo(u >>>\@<o(<<>>>\+ /“'g(x<i>)|<o<u(u(z)>>|d@ds

O fs)lp(u)] Do)
<w [T [‘ wonl+ [ ‘d’]

for all ¢ € I, applying Theorem 2.1 to the above inequality, we
obtain the required estimation (3.4). This completes the
proof. [

Remark 3.1. Gronwall-like inequality can be applied to the
analysis of the behavior of the solutions of some retarded non-
linear differential equations. Our results also can be used to
prove the global existence, uniqueness, stability, and other
properties of the solutions of various nonlinear retarded differ-
ential and integral equations. The importance of these inequal-
ities stem from the fact that it is applicable in certain situations
in which other available inequalities do not apply directly.
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